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Abstract: A series of boron, aluminum, gallium, and indium chelates containing the underexplored
bis(phenolate) aza-dipyrromethene (aza-DIPY) core were prepared. These compounds were found to
possess near-infrared absorption and emission profiles in the 710 to 770 nm domain and exhibit quan-
tum yield values up to 14%. X-ray diffraction analysis revealed that heavier group 13 bis(phenolate)
aza-DIPY chelates possessed octahedral geometries with either THF or pyridine groups occupying
the axial positions as opposed to the tetrahedral geometry of the boron chelate.
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1. Introduction

Since its resurgence nearly two decades ago, the aza-dipyrromethene (aza-DIPY) core
(A, Figure 1) has received significant attention due to its intense absorbing and emitting
profile in the near-infrared (NIR) region which makes them exciting candidates for applica-
tion in both the physical and biological sciences [1–4]. From the perspective of effectively
modulating these profiles, boron difluoride chelates of the aza-DIPY core (aza-BODIPYs,
(B) represent the majority of literature examples as numerous strategies are known to push
absorption and emission maxima beyond 800 nm [5–10].
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Figure 1. Aza-DIPY (A), aza-BODIPY (B), bis(phenolate) aza-DIPY (C), bis(phenolate) DIPY (D),
bis(phenolate) DIPY main group chelates (E) and bis(phenolate) transition metal chelates (F).

In conjunction with our prior work functionalizing aza-BODIPYs through the direct
incorporation of nitro groups [11], we became interested with the bis(phenolate) aza-DIPY
core structure (C), having ortho-functionalized phenolic groups present on the proximal
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rings. Motivation for this core structure stemmed from the previous work done by Burgess
and others which demonstrated that bis(phenolate) aza-BODIPYs can achieve absorption
and emission maxima upwards of 780 nm [12–18]. Additionally, very recent work by
Sauvé and coworkers detailed that the addition of phenylacetylene groups on the 2- and
6-positions of the bis(phenolate) aza-BODIPY core can further shift absorption and emission
maxima past 820 nm [19].

The structurally related bis(phenolate) dipyrromethene core (D), whose boron chelates
were also originally reported by Burgess and coworkers [20], represents a secondary source
of inspiration as numerous elements beyond boron have also been chelated to afford a
diverse array of compounds with interesting structural and photophysical properties. For
example, Nabeshima and coworkers explored the insertion of heavier Group 13 centers (Al,
Ga, In, E) and found that such complexes were able to serve as efficient luminescent sensors
to both alkaline earth and transition metals [21–23]. Further work by their group also
considered the insertion of Group 14 and 15 centers which yielded chelates that incorporate
both bent and linear oxygen bonds and serve as zwitterionic NIR pH sensors [24–27].
Significant work on inserting transition metal centers into the bis(phenolate) DIPY core has
also been performed. For example, Nozaki and coworkers explored Group 4 and heavier
Group 14 (Ti, Zr, Ge, Sn, F) DIPY chelates as catalysts for the copolymerization of epoxides
with carbon dioxide [28]. Work by Thomas and others have also demonstrated that DIPY
chelates containing Mn can serve as catalysts for olefin epoxidations [29–31]. Furthermore,
numerous reports have indicated that both mid- and late-transition metal DIPY chelates
can exhibit both innocent and non-innocent redox properties [32–35]. Indeed, a recent
2019 report by Kadish and coworkers [36] directly suggested that such behavior with
bis(phenolate) DIPYs may very well serve as an analogy for the well-known corrole macro-
cycle which has received significant attention in its own right over the past three decades.
This analogy is also the subject of a very recent review by Paolesse and coworkers [37].

To the best of our knowledge, no chelates outside of boron that contain the bis(phenolate)
aza-DIPY core structure are currently known to the literature. Given the likely structural
properties that such chelates will share with their DIPY congeners in addition to their
expected NIR traits, further research is of clear interest. Here, we disclose the synthesis of
a series of aza-BODIPY (1a-b), aza-ALDIPY (2a-b), aza-GADIPY (3a-b), and aza-INDIPY
(4a-b) complexes. This series of compounds lays the groundwork for a thorough investiga-
tion of this comparatively underexplored class of molecules and validates their expected
structural and spectral properties. In addition to their 1H, 11B, 13C and HRMS data, we also
report the X-ray structures of 1a, 2a-b, 3a-b, and 4a-b which unambiguously confirm their
structural identities. Finally, the computational and photophysical properties of 1a-b, 2a-b,
3a-b, and 4a-b are discussed and compared.

2. Results and Discussion
2.1. Synthesis and Structural Characterization

The synthesis of bis(phenolate) aza-MDIPYs 1a-b, 2a-b, 3a-b, and 4a-b follows the well-
established procedures previously outlined by Burgess [18] and Nabeshima [23] as depicted
in Scheme 1. Bis(phenolate) aza-DIPY core structures 7a-b, containing para-functionalized
methyl- and methoxyphenyl groups, were specifically chosen as they possess relatively sim-
ilar electron donating capabilities and will likely exhibit the most bathochromically shifted
absorption and emission spectra based on prior work by ourselves and others [11–18]. The
first step involves subjecting known chalcones 5a-b to a Henry reaction with nitromethane
to give compounds 6a-b in excellent yields (>95%). Next, 6a-b are reacted with an excess
of ammonium acetate in refluxing 1-butanol to generate bis(phenolate) aza-DIPYs 7a-b in
moderate yields (37–63%).
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Scheme 1. Synthesis of bis(phenolate) aza-DIPY cores 7a-b.

To form bis(phenolate) aza-BODIPYs, the final step involves subjecting 7a-b to a
BF3·OEt2/DIPEA mixture in refluxing THF, forming 1a-b in moderate yields (45–52%) as
depicted in Scheme 2. To generate heavier Group 13 derivatives, 1.5 equivalents of either
Al(acac)3, Ga(acac)3, or In(acac)3 were added to the core in refluxing pyridine to form the
corresponding bis(phenolate) aza-ALDIPYs (2a-b), aza-GADIPYs (3a-b), and aza-INDIPYs
(4a-b), respectively, in good yields (65–72%).
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Scheme 2. Synthesis of bis(phenolate) aza-BODIPYs 1a-b, aza-ALDIPYs 2a-b, aza-GADIPYs 3a-b,
and aza-INDIPYs 4a-b.

All reactions were monitored through observation of a characteristic upfield shift of
the pyrrolic 1H signal correlating to the 2- and 6-positions of the bis(phenolate) aza-DIPY
core. Additionally, boron chelations were followed through the expected appearance of a
11B singlet between −3.5 and −2.5 ppm. For aluminum, gallium, and indium chelations,
we observed the appearance of pyridine signals in an approximate 2:1 ratio with respect to
the bis(phenolate) aza-DIPY core, implying the inclusion of two axially bound pyridine
units to the metal center, completing their expected octahedral geometries.

2.2. Crystallography

Single crystals of bis(phenolate) aza-BODIPY 1a were obtained through the slow
vapor diffusion of a THF solution of 1a with n-pentane. Analysis of the diffraction data
unambiguously confirms the structural identity of 1a and its expected tetrahedral boron
center (Figure 2). To accommodate this coordination geometry, both phenolic rings exhibit
significant flexing as demonstrated by torsion angles of −22.23(9)◦ and −24.41(4)◦ along
C2–C1–C9–C14 and C6–C5–C15–C20, respectively.
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Figure 2. Molecular structure of 1a. Ellipsoids are drawn at the 40% probability level. Hydrogen
atoms have been removed for clarity.

Single crystals of bis(phenolate) aza-ALDIPY 2a were obtained through layering
n-hexane in a 1:1 pyridine:toluene solution followed by slow evaporation. As seen in
Figure 3, two pyridine groups are bound axially to the Al center, giving a nearly linear
angle of 176.55(7)◦ along the N4–Al1–N5 axis. The Al center also fits within the plane of
the bis(phenolate) aza-DIPY core and we observe the phenolic rings puckering slightly
inwards, resulting in an interplanar angle of 3.31(8)◦. These structural trends are similarly
found with the diffraction data of 2b, 3a-b, and 4a-b (see the Supporting Information
for full details). Interestingly, when THF was used as a coordinating solvent instead of
pyridine, single crystals of bis(phenolate) aza-INDIPY 4a’ were obtained through layering
n-decane over a saturated THF solution. As seen in Figure 4, 4a’ incorporates two identical
octahedral aza-INDIPY cores that are dimerized together forming a central four-membered
ring that contains an In2O2 moiety (In1-O2: 2.141 Å; In1-O2’: 2.224 Å). The axially bound
THF groups (omitted for clarity, see Supporting Information) are also moderately bent out
of linearity as evidenced from the 163.81(12)◦ angle along the O3–In1–O2’ axis. There is also
significant twisting (17.44(3)◦) between the axially bound phenolic group and the aza-DIPY
core to accommodate dimerization which also explains the discrete In-O bond lengths.
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atoms have been removed for clarity.
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groups and hydrogen atoms have been removed for clarity.

2.3. Computational Measurements

To better understand the photophysical properties of 1a-b, 2a-b, 3a-b¸and 4a-b, density
functional theory (DFT) calculations were performed [38,39]. All data are given in Table 1
with the frontier molecular orbitals of 1a, 2a, 3a, and 4a displayed in Figure 5 (see the
Supporting Information for full details). Using the experimentally determined crystal
structure of 2a as a reference, the computed ground state geometries were found to be
in excellent agreement using the B3LYP functional with Dunning’s jul-cc-pVDZ basis
set [40]. The jul-cc-pVDZ basis set was selected due to its good performance in a variety
of systems [41] and in our prior studies, we found it gave the best balance of accuracy
and computational cost for functionalized DIPYs [11]. With the optimized structures in
hand, TD-DFT calculations using B3LYP/jul-cc-pVDZ for 1a-b, 2a-b, and 3a-b with MeOH
as the implicit solvent [42,43] were performed; for 4a-b, B3LYP/LanL2DZ was used for
both geometry optimization and TD-DFT calculations to accommodate the In nuclei [44,45].
Overall, our computations generated theoretical λabs values that closely matched their
experimental values with deviations below 5%; the sole exception to this was bis(phenolate)
aza-BODIPY 1a which exhibited a deviation of 9.1%.

As seen in Figure 5, both methyl and methoxy-functionalized bis(phenolate) aza-
MDIPYs possess little orbital density on the distal arenes which suggests that such func-
tionalization bears little influence. Instead, the majority of HOMO and LUMO density
resides on the aza-DIPY core, resulting in the expected π-π* transitions. Furthermore, little
to no orbital density was found on the metal centers which agrees with numerous aza-DIPY
studies performed previously [12–18,46,47]. Perhaps the greatest difference between the
frontier molecular orbital plots of these compounds involves the LUMO+1 orbital as 1a-b
has orbital density spread throughout the proximal rings and aza-DIPY core while 2a-b,
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3a-b, and 4a-b have orbital density exclusively on the axially bound pyridines. These
structures were also visualized in the DIPY plane, with the images included in the SI.
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2a 731 4.48 1.70 766 35 625 7.5 −5.00 −3.20 1.80 689 
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Figure 5. HOMO-1, HOMO, LUMO, and LUMO+1 plots of 1a, 2a, 3a, and 4a. Calculations were
performed at the B3LYP/jul-cc-pVDZ level of theory for 1a, 2a, and 3a and the B3LYP/LanL2DZ
level of theory for 4a with MeOH as the implicit solvent for all compounds.

Table 1. Photophyiscal and computational data for bis(phenolate) aza-DIPYs 1a-b, 2a-b, 3a-b, and
4a-b.

Photophysical a Computational d

Compound λabs log ε Egap
b λem

c SS c

(nm)
SS c

(cm−1) Φ c EHOMO ELUMO EGap λGap

1a 728 4.50 1.71 747 19 350 13.7 −5.56 −3.66 1.90 652
1b 732 4.47 1.70 751 19 345 8.8 −5.21 −3.43 1.78 695
2a 731 4.48 1.70 766 35 625 7.5 −5.00 −3.20 1.80 689
2b 728 4.56 1.71 762 34 613 7.0 −4.97 −3.17 1.80 689
3a 734 4.58 1.69 774 40 704 6.1 −5.01 −3.21 1.80 688
3b 732 4.71 1.70 770 38 674 8.4 −4.98 −3.17 1.81 688
4a 714 4.67 1.74 752 38 708 0.3 −5.01 −3.14 1.87 661
4b 713 4.45 1.74 746 37 620 0.7 −4.98 3.11 1.87 665

a Spectra were obtained in MeOH at 10 µM. Wavelengths are in nm. b Optical HOMO/LUMO gap was determined
at λabs. c λabs was used as the excitation wavelength for λem. Stokes shifts (SS) are measured in both nm and cm−1.
Quantum yields are measured using an internal integrating sphere in ambient air at room temperature and are
reported in %. d Calculations were performed using B3LYP/jul-cc-pVDZ for 1a-b, 2a-b, and 3a-b with MeOH as
implicit solvent; B3LYP/LanL2DZ was used for 4a-b with MeOH as implicit solvent.
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2.4. Photophysical Properties
2.4.1. Electronic Absorption Spectra

The absorption spectra for 1a-b, 2a-b, 3a-b and 4a-b in DMSO are shown in Figure 6
and listed in Table 1. As expected with most aza-BODIPYs, all compounds exhibited
intense absorption maxima between 715–735 nm with extinction coefficients between
30,000 and 52,000 M−1 cm−1. Also present are smaller absorption maxima located at the
650 nm, 450 nm, and 325 nm ranges. Interestingly, 1a-b exhibit bathochromically shifted
absorptions in the 525 nm range as compared to 2a-b, 3a-b, and 4a-b which give them a
purple hue compared to the green color that the remaining complexes possess. As predicted
by the frontier molecular orbital plots mentioned above, para-functionalization on the distal
positions of the bis(phenolate) aza-DIPY core had little effect on the absorption maxima
which was similarly observed by Burgess and coworkers regarding aza-BODIPYs [18]. The
general trend was found to be B > Ga > Al > In with bis(phenolate) aza-BODIPYs 1a-b
exhibiting the most bathochromically shifted absorption spectra which fits well with prior
observations found by Nabeshima and co-workers [23].
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2.4.2. Electronic Emission Spectra

The emission spectra for 1a-b, 2a-b, 3a-b and 4a-b in DMSO are shown in Figure 7
and listed in Table 1. Unlike the absorption data, the general emission trend stands at
Ga > Al > B > In with bis(phenolate) aza-GADIPYs 2a-b exhibiting the most bathochromi-
cally shifted spectra. As found with the observations originally made by both Nabeshima
and Burgess [18,23], methyl functionalized derivatives exhibited bathochromically shifted
emission maxima when compared to their methoxy functionalized derivatives. With respect
to Stokes shifts, the general trend stands at Ga > In > Al > B; this observation is reasoned to
be due to the difference between the octahedral geometry of 2a-b, 3a-b, and 4a-b compared
to the tetrahedral geometry of 1a-b. Quantum yields for 1a-b, 2a-b, 3a-b, and 4a-b were
also measured in MeOH using an internal integrating sphere and their values are given in
Table 1. It was found that quantum yields increased from 1a-b to 2a-b but then decreased
as a function of increasing metal size.
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3. Materials and Methods
3.1. General Considerations

Unless otherwise noted, solvents and reagents were purchased from either Thermo
Fisher or Sigma Aldrich and used as received. Flash chromatography was performed using
P60 silica purchased from SiliCycle. THF was distilled from sodium/benzophenone under
a nitrogen atmosphere. Bis(phenolate) aza-BODIPY 7b and their precursors, 5b and 6b,
were synthesized by their previously reported methods [18,23].

NMR spectra were recorded using a JEOL JMN-ECSZ400R 400 MHz (1H: 399.78 MHz;
13C: 100.52 MHz) spectrometer at room temperature. Chemical shifts (δ) are expressed in
ppm relative to the residual chloroform (1H: 7.27 ppm; 13C: 77.2 ppm) or DMSO-d6 (1H:
2.50 ppm; 13C: 39.5 ppm) in solution. Coupling constants are expressed in hertz. UV-Visible
spectra were recorded on a Cary 100 UV-Vis spectrometer. Fluorescence spectra were
recorded on a PTI HORIBA QM-40 spectrofluorometer and quantum yields were obtained
using a KSPHERE petite integrating sphere. Single crystal XRD measurements were col-
lected from a Bruker Smart Apex II CCD diffractometer using graphite-monochromated
Mo-K (λα = 0.71073 Å) radiation. Molecular crystal structure images were processed
through CrystalMaker. HRMS-ESI measurements were taken on an Agilent 6530 high
resolution quadrupole time of flight spectrometer (QTOF) utilizing an Agilent 1100 liq-
uid chromatography system with model G1212A binary pump and G1367 autosampler.
Samples were introduced via direct injection rather than isolating species with column
chromatography to monitor changing levels of starting material as well as any potential
side reactions which were ionized using a Dual Agilent Jet Stream G1958-66268 electrospray
ionization source. Immediately prior to sample introduction, the QTOF was calibrated in
the 50–1700 mass range for the 4 GHz high resolution mode. A mobile phase of HPLC
acetone was utilized to reduce instrument noise related to the solvent and to ensure the
analyte would stay in solution until ionized. Acetone was utilized as a needle wash to
reduce contamination of samples. Samples were analyzed in the positive mode with a
dragging gas temperature of 300 ◦C, a drying gas flow rate of 8 L/min, a nebulizer pressure
of 35 psi, a sheath gas temperature of 350 ◦C, a sheath gas flow rate of 11 L/min, and a
capillary voltage of 3500 V.

3.2. Synthesis and Characterization
3.2.1. 1,4-Product 6a

Chalcone 5a (6.00 g, 25.2 mmol) was dissolved in EtOH (150 mL) where diethylamine
(13.0 mL, 126 mmol) and nitromethane (6.80 mL, 126 mmol) were added and the reaction
mixture was heated to reflux and allowed to stir overnight. Upon cooling, the resulting
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mixture was evaporated to dryness and 1,4-product 6a (7.17 g, 95%) was obtained as a tan
brown oil. 1H NMR (CDCl3): δ 11.99 (s, 1H), 7.73 (dd, J = 1.6, 7.2 Hz, 1H), 7.48 (dt, J = 1.6,
7.6 Hz, 1H), 7.17 (m, 4H), 6.98 (d, J = 9.2 Hz), 6.91 (t, J = 8.4 Hz), 4.74 (m, 1H), 4.68 (m,
1H), 4.20 (quintet, 1H), 3.48 (m, 2H), 2.33 (s, 3H). 13C NMR (CDCl3): δ 202.9, 162.7, 138.0,
137.0, 135.7, 130.0, 129.7, 127.4, 119.3, 119.2, 118.9, 79.9, 41.3, 39.0, 21.3. HRMS (ESI) for
C17H17NO4 [M + Na]+: calcd 322.1050, found 322.1090.

3.2.2. 1,4-Product 6b

Chalcone 5b (5.00 g, 19.7 mmol) was dissolved in EtOH (150 mL) where diethylamine
(10.1 mL, 98.3 mmol) and nitromethane (5.26 mL, 98.3 mmol) were added and the reaction
mixture was heated to reflux and allowed to stir overnight. Upon cooling, the resulting
mixture was evaporated to dryness and 1,4-product 6b (6.03 g, 97%) was obtained as a tan
brown oil. The compound’s 1H NMR spectrum matched the known spectrum [18].

3.2.3. Bis(phenolate) Aza-DIPY 7a

1,4–Product 6a (5.00 g, 16.7 mmol) and ammonium acetate (40.0 g, 519 mmol) were
dissolved in 1-butanol (75 mL). The reaction mixture was heated to reflux and allowed to
stir overnight. Upon cooling to room temperature, the resulting precipitate was collected
over filter paper, washed with H2O (200 mL) and EtOH (200 mL), and the solid was allowed
to dry in the oven at 85 ◦C to obtain 7a (1.57 g, 37%) as a brown iridescent solid. 1H NMR
(DMSO-d6): δ 8.09 (d, J = 7.6 Hz, 2H), 7.97 (d, J = 8.0 Hz, 4H), 7.70 (s, 2H), 7.38 (dt, J = 1.6,
7.6 Hz, 2H), 7.27 (d, J = 8.0 Hz, 4H), 7.12 (d, J = 8.0 Hz, 2H), 7.03 (t, J = 7.6 Hz, 2H), 2.40
(s, 6H). Due to insolubility, a 13C NMR spectrum could not be obtained. HRMS (ESI) for
C34H27N3O2 [M + H]+: calcd 510.2176, found 510.2169.

3.2.4. Bis(phenolate) Aza-DIPY 7b

1,4–Product 6b (5.00 g, 15.9 mmol) and ammonium acetate (40.0 g, 519 mmol) were
dissolved in 1-butanol (75 mL). The reaction mixture was heated to reflux and allowed to
stir overnight. Upon cooling to room temperature, the resulting precipitate was collected
over filter paper, washed with H2O (200 mL) and EtOH (200 mL), and the solid was allowed
to dry in the oven at 85 ◦C to obtain 7b (1.60 g, 37%) as a brown iridescent solid. The
compound’s 1H NMR spectrum matched the known spectrum [18].

3.2.5. Bis(phenolate) Aza-BODIPY 1a

To a degassed (30 min) solution of THF, bis(phenolate) aza-DIPY 7a (0.050 g, 0.098 mmol)
was added along with N,N-diisopropylethylamine (0.26 mL, 1.5 mmol). BF3·OEt2 (0.24 mL,
2.0 mmol) was added carefully and the mixture was allowed to stir at reflux overnight.
After completion by NMR, the mixture was evaporated to dryness and subsequently
chromatographed on silica (CH2Cl2) to afford the appropriate bis(phenolate) aza-BODIPY
1a (0.023 g, 45%) as an iridescent green powder. 1H NMR (DMSO-d6): δ 8.14 (d, J = 8.0 Hz,
4H), 8.09 (d, J = 8.0 Hz, 2H), 7.82 (s, 2H), 7.48 (t, J = 8.0 Hz, 2H), 7.39 (d, J = 8.0 Hz, 4H), 7.20
(t, J = 8.4 Hz, 2H), 6.99 (d, J = 8.0 Hz, 2H), 2.41 (s, 6H). 13C NMR (DMSO–d6): δ 155.4, 149.5,
144.0, 141.2, 139.7, 133.9, 129.7, 129.1, 128.7, 127.3, 121.3, 119.7, 118.4, 113.9, 21.1. 11B NMR
(DMSO–d6): δ -3.36. HRMS (ESI) for C34H24BN3O2 [M + EtOH + NH4]+: calcd 581.2178,
found 581.2717.

3.2.6. Bis(phenolate) Aza-BODIPY 1b

To a degassed (30 min) solution of THF, bis(phenolate) aza-DIPY 7b (0.050 g, 0.092 mmol)
was added along with N,N-diisopropylethylamine (0.24 mL, 1.4 mmol). BF3·OEt2 (0.23 mL,
1.8 mmol) was added carefully and the mixture was allowed to stir at reflux overnight.
After completion by NMR, the mixture was evaporated to dryness and subsequently
chromatographed on silica (CH2Cl2) to afford the appropriate bis(phenolate) aza-BODIPY
1b (0.023 g, 52%) as an iridescent green powder. The compound’s 1H NMR spectrum
matched the known spectrum [18].
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3.2.7. Bis(phenolate) Aza-ALDIPY 2a

To a solution of pyridine (15 mL), bis(phenolate) aza-DIPY 7a (0.150 g, 0.294 mmol)
and Al(acac)3 (0.146 g, 0.441 mmol) were added and the mixture was heated to reflux
overnight. Upon cooling to room temperature, hexanes (30 mL) was added to the mixture
and cooled to 0 ◦C. Once cold, the resulting precipitate was collected over filter paper,
washed with additional hexanes (30 mL) and evaporated from dryness to afford 2a (0.212 g,
72%) as a dark green solid. 1H NMR (DMSO-d6): δ 8.58 (m, 4H), 7.97 (d, J = 8.0 Hz), 7.78
(m, 2H), 7.70 (dd, J = 2.0, 8.2 Hz, 2H), 7.38 (m, 4H), 7.37 (s, 2H), 7.23 (d, J = 8.0 Hz), 7.11 (dt,
J = 0.8, 7.8 Hz, 2H), 6.69 (dd, J = 0.8, 7.8 Hz, 2H), 2.38 (s, 6H). 13C NMR (DMSO-d6): δ 163.8,
156.5, 149.6, 147.0, 140.3, 136.8, 136.1, 131.5, 131.3, 128.6, 128.0, 123.9, 121.0, 119.1, 115.2,
114.2, 20.9. HRMS (ESI) for C34H24AlN3O2 [M + 3H]+: calcd 536.1913, found 536.1911.

3.2.8. Bis(phenolate) Aza-ALDIPY 2b

To a solution of pyridine (15 mL), bis(phenolate) aza-DIPY 7b (0.150 g, 0.277 mmol)
and Al(acac)3 (0.124 g, 0.415 mmol) were added and the mixture was heated to reflux
overnight. Upon cooling to room temperature, hexanes (30 mL) was added to the mixture
and cooled to 0 ◦C. Once cold, the resulting precipitate was collected over filter paper,
washed with additional hexanes (30 mL) and evaporated from dryness to afford 1b (0.134 g,
67%) as a dark green solid. 1H NMR (DMSO-d6): δ 8.57 (m, 4H), 8.00 (d, J = 8.8 Hz, 4H),
7.78 (m, 2H), 7.69 (dd, J = 1.2, 7.8Hz, 2H), 7.39 (m, 4H), 7.32 (s, 2H), 7.10 (dt, J = 1.2, 7.8 Hz,
2H), 6.99 (d, J = 8.8 Hz, 4H), 6.68 (d, J = 8.0 Hz, 2H), 6.56 (t, J = 8.0 Hz, 2H), 3.83 (s, 6H).
13C NMR (DMSO-d6): δ 163.8, 158.9, 156.5, 149.7, 149.9, 140.2, 139.2, 131.5, 130.1, 128.1,
126.8, 123.9, 121.1, 119.2, 115.2, 113.6, 55.2. HRMS (ESI) for C34H24AlN3O4 [M + 4H]+: calcd
569.1890, found 569.1899.

3.2.9. Bis(phenolate) Aza-GADIPY 3a

To a solution of pyridine (15 mL), bis(phenolate) aza-DIPY 7a (0.150 g, 0.294 mmol)
and Ga(acac)3 (0.162 g, 0.441 mmol) were added and the mixture was heated to reflux
overnight. Upon cooling to room temperature, hexanes (30 mL) was added to the mixture
and cooled to 0 ◦C. Once cold, the resulting precipitate was collected over filter paper,
washed with additional hexanes (30 mL) and evaporated from dryness to afford 3a (0.156 g,
72%) as a dark green solid. 1H NMR (DMSO-d6): δ 8.57 (m, 2H), 7.97 (d, J = 8.0 Hz, 4H),
7.79 (m, 2H), 7.74 (dt, J = 2.0, 8.2 Hz, 2H), 7.46 (s, 2H), 7.39 (m, 4H), 7.24 (d, J = 8.0 Hz, 4H),
7.12 (dt, J = 2.0, 7.2 Hz, 2H), 6.73 (dd, J = 1.2, 8.2 Hz, 2H), 6.59 (dt, 1.2, 7.4 Hz, 2H), 2.39
(s, 6H). 13C NMR (DMSO-d6): δ 165.8, 157.0, 149.6, 146.3, 140.4, 137.1, 136.2, 131.6, 131.1,
128.8, 128.7, 128.6, 123.9, 121.9, 117.7, 115.4, 114.4, 21.0. HRMS (ESI) for C34H24GaN3O2
[M + 3H]+: calcd 578.1354, found 578.1347.

3.2.10. Bis(phenolate) Aza-GADIPY 3b

To a solution of pyridine (15 mL), bis(phenolate) aza-DIPY 7b (0.150 g, 0.277 mmol)
and Ga(acac)3 (0.152 g, 0.415 mmol) were added and the mixture was heated to reflux
overnight. Upon cooling to room temperature, hexanes (30 mL) was added to the mixture
and cooled to 0 ◦C. Once cold, the resulting precipitate was collected over filter paper,
washed with additional hexanes (30 mL) and evaporated from dryness to afford 3b (0.151 g,
71%) as a dark green solid. 1H NMR (DMSO-d6): δ 8.57 (m, 4H), 8.00 (d, J = 9.2 Hz, 4H),
7.79 (m, 2H), 7.73 (dt, J = 1.2, 8.2 Hz, 2H), 7.39 (m, 6H), 7.11 (dt, J = 1.6, 7.8 Hz, 2H), 7.00
(d, J = 9.2 Hz, 4H), 6.73 (d, J = 8.0 Hz, 2H), 6.58 (t, J = 8.0 Hz, 2H), 3.84 (s, 6H). 13C NMR
(DMSO-d6): δ 165.8, 159.1, 157.0, 149.6, 146.2, 140.3, 136.3, 136.2, 131.6, 130.2, 128.6, 126.5,
124.0, 121.9, 117.8, 115.4, 113.7, 113.6, 55.2. HRMS (ESI) for C34H24GaN3O4 [M + 3H]+:
calcd 610.1252, found 610.1278.

3.2.11. Bis(phenolate) Aza-INDIPY 4a

To a solution of pyridine (15 mL), bis(phenolate) aza-DIPY 7a (0.150 g, 0.294 mmol)
and In(acac)3 (0.182 g, 0.441 mmol) were added and the mixture was heated to reflux



Molecules 2022, 27, 8256 11 of 13

overnight. Upon cooling to room temperature, hexanes (30 mL) was added to the mixture
and cooled to 0 ◦C. Once cold, the resulting precipitate was collected over filter paper,
washed with additional hexanes (30 mL) and evaporated from dryness to afford 4a (0.149 g,
65%) as a dark green solid. 1H NMR (DMSO–d6): δ 8.57 (m, 4H), 7.94 (d, J = 8.4 Hz, 4H),
7.84 (dd, J = 1.6, 8.0 Hz, 2H), 7.79 (m, 2H), 7.59 (s, 2H), 7.38 (m, 4H), 7.23 (d, J = 8.0 Hz, 4H),
7.14 (dt, J = 1.6, 7.6 Hz, 2H), 6.78 (d, J = 8.0 Hz, 2H), 6.61 (dt, J = 0.8, 7.4 Hz, 2H), 2.39 (s,
6H). 13C NMR (DMSO–d6): δ 167.2, 158.7, 149.6, 146.0, 141.6, 137.1, 136.2, 131.3, 131.2, 129.9,
129.0, 128.7, 123.9, 123.2, 118.4, 116.0, 115.4, 21.0. HRMS (ESI) for C34H24InN3O2 [M + 3H]+:
calcd 624.1137, found 624.1128.

3.2.12. Bis(phenolate) Aza-INDIPY 4b

To a solution of pyridine (15 mL), bis(phenolate) aza-DIPY 7b (0.150 g, 0.277 mmol)
and In(acac)3 (0.171 g, 0.415 mmol) were added and the mixture was heated to reflux
overnight. Upon cooling to room temperature, hexanes (30 mL) was added to the mixture
and cooled to 0 ◦C. Once cold, the resulting precipitate was collected over filter paper,
washed with additional hexanes (30 mL) and evaporated from dryness to afford 4b (0.157 g,
70%) as a dark green solid. 1H NMR (DMSO-d6): δ 8.57 (m, 4H), 7.98 (d, J = 8.0 Hz, 4H),
7.83 (dd, J = 1.6, 8.0 Hz, 2H), 7.79 (m, 2H), 7.53 (s, 2H), 7.38 (m, 4H), 7.13 (dt, J = 1.6, 7.6 Hz,
2H), 6.99 (d, J = 8.8 Hz, 4H), 6.78 (dd, J = 0.8, 8.0 Hz, 2H), 6.61 (dt, J = 0.8, 7.6 Hz, 2H), 3.84
(s, 6H). 13C NMR (DMSO-d6): δ 167.2, 159.1, 158.6, 149.6, 145.9, 141.4, 136.2, 131.2, 130.5,
129.8, 126.7, 123.9, 123.2, 118.5, 115.4, 115.2, 113.6, 55.2. HRMS (ESI) for C34H24InN3O4
[M + 2H]+: calcd 655.0957, found 655.0953.

4. Conclusions

The synthesis and characterization of stable NIR absorbing and emitting bis(phenolate)
aza-BODIPYs 1a-b, aza-ALDIPYs 2a-b, aza-GADIPYs, 3a-b, and aza-INDIPYs 4a-b are
reported. Single crystal X-ray diffraction data was able to elucidate that heavier group
13 analogues are able to exist as octahedral complexes that can support either THF or
pyridine groups as coordinating ligands. Combined, these experimental results lead to the
conclusion that the bis(phenolate) aza-DIPY core is a viable choice for chelating elements
beyond boron. Future work will explore the structural consequences of chelating the
bis(phenolate) aza-DIPY core to both main group and transition metals.
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