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Abstract: An asymmetric aza-BODIPY analogue bearing quinoxaline moiety was synthesized via a
titanium tetrachloride-mediated Schiff-base-forming reaction of 6,7-dimethyl-1,4-dihydroquinoxaline-
2,3-dione and benzo[d]thiazol-2-amine. This novel aza-BODIPY analogue forms a complementary
hydrogen-bonded dimer due to the quinoxaline moiety in the crystal structure. It also shows intense
absorption and fluorescence, with fluorescence quantum yields close to unity. The electrochemical
measurements and the DFT calculations revealed the presence of the low-lying HOMO, which
benefits their potential applications as an electron-transporting material.
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1. Introduction

Boron dipyrromethenes (BODIPYs) and their meso-nitrogen-substituted analogues
called aza-BODIPYs have received considerable research attention owing to their fasci-
nating optical properties and potential applications, such as bioimaging [1–7], chemosen-
sors [8–11], laser dyes [12], sensitizers for photodynamic [13–15] and photothermal ther-
apies [16,17], and optoelectronic materials for light-emitting diodes [18–20] and organic
photovoltaics [10,21]. Despite their excellent chemical and photophysical properties, the flu-
orescent emission of most BODIPY derivatives is virtually quenched in the solid state due
to the small Stokes shifts and strong intermolecular π-π stacking interactions enhanced by
the symmetric, planar structure [22–26]. To address these drawbacks, considerable research
efforts have been devoted to developing BODIPY analogues with asymmetric structures,
for which large Stokes shifts can be expected, owing to the structural changes between the
ground and excited states. In addition, asymmetric BODIPY analogues tend to take head-to-
tail stacking patterns in the solid state to minimize dipolar interactions [5,27–39]. However,
compared with the conventional symmetric BODIPYs, there is still a great challenge for the
synthesis of asymmetric BODIPYs.

Recently, we have reported a Schiff-base-forming reaction of azaarylamines and dike-
topyrrolopyrrole, in which the lactam moieties of diketopyrrolopyrrole were successfully
converted to aza-BODIPY structures in the presence of titanium tetrachloride (TiCl4) and
triethylamine (NEt3) [40,41]. A series of asymmetric aza-BODIPYs were also synthesized
from monolactams based on the TiCl4-based method. The asymmetric compounds exhib-
ited moderately high fluorescence quantum yields of 0.13–0.27 (Chart 1, 1a,b) [39]. Lu
et al. revealed that 1,8-naphthalenimide, isoindole-1,3-dione, and their derivatives can also
be converted to asymmetric aza-BODIPYs in simple ethanol reflux with azaarylamines,
followed by boron complexation (Chart 1, 3a,b) [29]. The aza-BODIPYs thus synthesized,
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which have a ketone moiety, showed intense fluorescence in solution and moderate solid-
state emission (ΦF = 0.005–0.22) due to the asymmetric structures. Jiao et al. reported the
synthesis of similar asymmetric aza-BODIPYs from isoindole-1,3-dione based on the TiCl4-
mediated method (Chart 1, 2a–c) [28]. In contrast to conventional symmetric BODIPYs,
these asymmetric aza-BODIPYs exhibited large Stoke shifts and high photostability. The
above-mentioned studies indicate that the Schiff-base-forming reaction is a versatile method
of synthesizing asymmetric aza-BODIPYs with unique optical and electronic properties.
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Chart 1. Structures of asymmetric aza-BODIPYs synthesized via a Schiff-base-forming reaction.

To broaden the scope of the TiCl4-mediated Schiff-base-forming reaction for the synthe-
sis of asymmetric aza-BODIPYs, herein, we investigated the synthesis of novel asymmetric
aza-BODIPYs (4a and 4b) bearing a quinoxaline moiety. The target compounds were syn-
thesized from 6,7-dimethyl-1,4-dihydroquinoxaline-2,3-dione and 2-aminobenzothiazole.
These asymmetric aza-BODIPYs showed intense absorption and fluorescence in solution.
In the crystal structure of 4a, a complementary hydrogen-bonded dimer and the J-type
arrangement of the dimer were observed in the packing diagram.

2. Results and Discussion
2.1. Synthesis and Characterization

The Schiff-base-forming reaction of 6,7-dimethyl-1,4-dihydroquinoxaline-2,3-dione
and benzo[d]thiazol-2-amine in the presence of TiCl4 and NEt3 and subsequent boron
complexation provided the target asymmetric aza-BODIPYs, 4a and 4b (Scheme 1). The
aza-BODIPY 4a was obtained in a higher yield of 42% than 4b (27%) despite its lower
solubility than 4b. We characterized 4a and 4b by NMR spectroscopy (Figures S1–S4).
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Scheme 1. Synthesis of 4a and 4b.

The structure of 4a was unambiguously elucidated by X-ray crystallography. In a unit
cell, an acetonitrile molecule was also found as a solvent molecule. The single crystal of 4a
was obtained via the slow diffusion of acetonitrile into a chloroform solution of 4a (Figure 1).
The aza-BODIPY 4a features a highly coplanar structure in the crystal structure. The C9–O1
bond length of 4a (1.228(3) Å) is a typical C=O bond length (ca. 1.22 Å). The longer bond
distance of B1–N3 (1.577(4) Å) than that of B1–N1 (1.543(4) Å) implies the asymmetric
structure of 4a. Similar trends have been reported for the B-N bonds in other asymmetric
amido/imino BF2 complexes [28,29,31,42,43]. In the unit cell, two molecules were stacked
with each other to form π-π stackings (Figure S5). The amide unit of the quinoxaline moiety
formed a hydrogen bond with the neighboring molecule with N–H· · ·O distance of 2.85 Å
(Figure 2). The hydrogen bonds mean that the molecules are nearly parallel to each other.
In the molecular packing diagram, hydrogen-bonded dimers are slip-stacked in a J-type
arrangement. The interplanar distances between the mean planes of the next neighbors are
3.16 and 3.38 Å (Figure 2). The above results indicate that hydrogen bonding is critical for
influencing molecular packing and determining the crystal structure.
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To give a deep insight into the hydrogen-bonding interactions in solution, temperature-
dependent chemical shifts of the 1H NMR spectra of 4a were investigated in 1,1,2,2-
tetrachloroethane-d2. As shown in Figure 3, the downfield shift of the NH proton signal
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from 9.39 to 11.23 ppm, together with significant broadening, was observed when the tem-
perature decreased from 40 ◦C to –40 ◦C due to the formation of intermolecular hydrogen
bonds at low temperatures.
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2.2. Photophysical Properties

The photophysical properties of 4a and 4b were measured in chloroform solution
and film (Figure 4). The details are summarized in Table 1. The aza-BODIPY 4a exhibits
absorption with distinctive vibronic structures comprising the less intense 0-0 band at
449 nm and the 0-1 vibronic band at 423 nm as a main band in the visible region. A similar
absorption spectral profile with the intense 0-1 vibronic band at 460 nm is also observed
for 4b. The molar absorption coefficients are 1.24× 104 M−1cm−1 and 1.97 × 104 M−1cm−1

for 4a and 4b in tetrahydrofuran solution, respectively (Figure S8). Despite the aza-BODIPY-
like structure, the absorption spectra of 4a and 4b exhibit blueshifts from those of the
conventional BODIPY 5 with maximum wavelength (λmax) at 500 nm and aza-BODIPY 6
with λmax at 713 nm [44,45] (Chart 2). As detailed in the following section, the DFT
calculations revealed that the blueshifts can be ascribed to the different frontier molecular
orbital (MO) distribution patterns from those of regular BODIPYs.

Table 1. Summary of optical and electrochemical properties of 4a and 4b.

Solution Film

Compd. Eox
a

[V]
Ered

a

[V]
ELUMO

b

[eV]
Eg

opt c

[eV]
EHOMO

d

[eV]
λabs
[nm]

λem
[nm]

λem
[nm]

4a 1.20 –1.21 –3.66 2.63 –6.29 423 487 500

4b 1.17 –1.25 –3.63 2.53 –6.16 432 505 518
a Determined by DPV (0.1 M TBAP in CH2Cl2 as a supporting electrolyte at a scan rate of 100 mV s−1).
b ELUMO = −(Ered

onset + 4.8) [eV]. c Estimated from absorption spectra. d EHOMO = ELUMO − Eg [eV].
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Chart 2. Structures of BODIPY 5 and aza-BODIPY 6.

The aza-BODIPYs 4a and 4b display intense fluorescence at 458 and 475 nm with small
Stokes shifts of 438 and 687 cm−1, respectively, as a mirror image to the absorption spectra.
The ΦF values are almost unity for 4a (0.93) and 0.72 for 4b. The slightly smaller ΦF value
of 4b is mainly due to the structural flexibility arising from the long alkoxy chain, which
enhances the nonradiative decay processes.

In contrast to the reported asymmetric aza-BODIPYs such as 1a and 1b, which exhibit
moderate quantum yields in the film state (0.27 for 1a and 0.22 for 1b), the fluorescence
of 4a and 4b is virtually quenched in the film state, exhibiting ΦF values as law as ca.
0.03–0.04. In the film state, the 0-0 emission band disappeared due to self-absorption. The
significant overlap of the absorption and emission due to the small Stokes shifts causes the
self-absorption quenching in the solid state.

The impact of pH values on the stability of 4a was also examined (Figure S9). The
absorption and fluorescence spectral profiles of 4a in acetonitrile do not change in the range
from pH = 2 to pH = 11. At a higher pH than pH = 12, both absorption and fluorescence
spectra showed redshifts, and the fluorescence spectra became broad and structureless.
These spectral changes are probably due to the deprotonation of the amide unit of the
quinoxaline moiety. The observed high stability of 4a over the wide range of pH benefits
its use under physiological conditions.

2.3. Electrochemical Properties

Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) measurements
were performed in dichloromethane containing 0.1 M tetrabutylammonium perchlorate
(TBAP) as a supporting electrolyte (Figure 5). Table 1 summarizes the redox potentials
and experimental LUMO and HOMO energy levels estimated from the onset of the first
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reduction waves and the optical band gaps and LUMO values, respectively. The estimated
LUMO (−3.66 eV for 4a and −3.63 eV for 4b) and HOMO (−6.29 eV for 4a and −6.16 eV
for 4b) values are significantly lower than those of the widely used electron-transporting
material, Alq3 (aluminum tris(8-hydroxyquinolinnate)) (−3.0 eV for LUMO and −5.7 eV
for HOMO), implying their potential applications for such a purpose in organic light-
emitting diodes.
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Figure 5. CV (black) and DPV (red) of 4a (top) and 4b (bottom) (0.5 mM) in CH2Cl2 containing 0.1 M
TBAP as a supporting electrolyte (scan rate: 100 mV−1 for CV; pulse amplitude: 0.05 V, pulse width:
0.2 s for DPV).

2.4. Theoretical Calculations

Density functional theory (DFT) and time-dependent (TD)DFT calculations on a model
structure of 4 at the B3LYP/6-31G(d) level were conducted to give a detailed insight into the
electronic structures (Figures 6 and 7). The TDDFT calculations assign the main absorption
band as a HOMO–LUMO transition (Table 2). The TDDFT calculations revealed the
wavelength of the S1 excited state at 400 nm with the oscillator strength of 0.46. The S1
state mainly comprises the HOMO-to-LUMO transition. Although the transition energy
is slightly overestimated, the TDDFT calculation reproduced the observed absorption
spectrum. Because of the absence of an s-indacene-like conjugated system in the structure
of 4, the HOMO and LUMO distribution patterns of 4 are different from those of regular
aza-BODIPYs, exhibiting larger MO coefficients of the HOMO on the meso-nitrogen atom
compared with the LUMO. Therefore, the HOMO is more stabilized than the LUMO by
the electron-deficient nitrogen atom at the meso-position. The observed blueshifts of the
absorption spectrum of 4 can be explained by the resultant wide HOMO–LUMO gap.
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Table 2. Summary of the TDDFT calculation of 4a at the B3LYP/6-31G(d) level.

Wavelength (nm) Osc. Strength Major Contribs

400 0.46 HOMO→ LUMO (99%)

344 0.10 H–3→ LUMO (96%)

3. Materials and Methods
3.1. Instrumentation and Measurements

Electronic absorption spectra were recorded on a JASCO V-770 spectrophotometer.
Fluorescence spectra were recorded on an SPEX Fluorolog-3-NIR spectrometer (HORIBA)
with an NIR-PMT R5509 photomultiplier tube (Hamamatsu). Absolute fluorescence quan-
tum yields were measured using a Hamamatsu Photonics C9920-03G calibrated integrat-
ing sphere system with self-absorption correction. The thin films for solid fluorescent
measurement were fabricated via spin-coating a solution of 4a and 4b in CHCl3, respec-
tively. 1H NMR spectra were recorded on a JEOL JNM-ECX500 spectrometer (operating
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at 495 MHz for 1H) using a residual solvent as an internal reference for 1H (δ = 7.26 ppm
for CDCl3). CV and DPV measurements were conducted in a CH2Cl2 solution containing
0.1 M TBAP and 0.1 M samples with a scan rate of 0.1 V s−1 under a nitrogen atmosphere.
A glassy carbon electrode and a platinum wire were used as the working and counter elec-
trodes, respectively. A saturated calomel electrode (SCE) was used as a reference electrode.
The voltammogram display follows the IUPAC convention. Preparative separations were
performed using silica gel column chromatography (KANTO Silica Gel 60 N, spherical,
neutral, 40–50 mm). All reagents and solvents used for reactions were of commercial
reagent grade and were used without further purification unless noted otherwise. All
solvents used in optical measurements were of commercial spectroscopic grade.

3.2. Crystallographic Data Collection and Structure Refinement

Suitable crystals of 4a for X-ray analysis were obtained from the vapor diffusion of
acetonitrile into a chloroform solution of 4a. Data collection was carried out at −173 ◦C on
a Rigaku Saturn724 diffractometer with MoKα radiation. The structure was solved via a
direct method (SHELXT) and refined using a full-matrix least-squares technique (SHELXL).
CCDC 2299504 contains the supplementary crystallographic data for this paper. These
data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif (accessed
on 1 November 2023), or by emailing data_request@ccdc.cam.ac.uk, or by contacting The
Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax:
+44-1223-336033.

3.3. Computational Methods

The Gaussian 16, Revision A.03 [46] software package was used to carry out DFT and
TDDFT calculations at the B3LYP/6-31G(d) level of theory. Structural optimizations were
performed on model compounds.

3.4. Synthesis

4a: 6,7-Dimethyl-1,4-dihydroquinoxaline-2,3-dione (48 mg, 0.25 mmol) and benzo[d]thiazole-
2-amine (169 mg, 1.13 mmol) were added to dry toluene (6 mL), and the mixture was
refluxed at 110 ◦C. Then, titanium tetrachloride (TiCl4) (0.15 mL, 1.38 mmol) and triethy-
lamine (NEt3) (0.5 mL, 3.63 mmol) were added to the reaction mixture. After the imine
formation was confirmed by TLC analysis in ca. 3 h, borontrifluoride etherate (BF3·OEt2)
(0.48 mL, 3.98 mmol) was added. After refluxing for 14 h, the reaction mixture was added
to water and extracted with CHCl3. The combined organic extracts were dried over sodium
sulfate and concentrated in vacuo to provide yellow solids. The crude compound was
chromatographed on a silica gel column using ethyl acetate/hexane = 1:3 to 1:1 (v/v), then
ethyl acetate) to afford 4a as yellow solids (48 mg, 54%).

1H NMR (495 MHz, CDCl3, 298 K): δ [ppm] = 10.12 (br, 1H), 8.13 (d, J = 9.0 Hz, 1H),
8.07 (s, 1H), 7.78 (d, J = 7.5 Hz, 1H), 7.60 (dt, J1 = 9.0 Hz, J2 = 1.0 Hz, 1H), 7.47 (dt, J1 = 9.0 Hz,
J2 = 1.0 Hz, 1H), 7.02 (s, 1H), 2.40 (s, 3H), 2.35 (s, 3H).

4b: 4b was synthesized and purified in a similar manner to 4a, using 6,7-dimethyl-1,4-
dihydroquinoxaline-2,3-dione (48 mg, 0.25 mmol), 6-((2-octyldodecyl)oxy)benzo[d]thiazol-
2-amine (503 mg, 1.13 mmol), TiCl4 (0.15 mL, 1.38 mmol), NEt3 (0.5 mL, 3.63 mmol), and
BF3·OEt2 (0.48 mL, 3.98 mmol). The crude mixture was chromatographed on silica gel
column (ethyl acetate/hexane = 1:5 (v/v)) to afford 4b as yellow solids (27 mg, 16%).

1H NMR (495 MHz, CDCl3, 298 K): δ [ppm] = 11.33 (br, 1H), 8.05(s, 1H), 8.00 (d,
J = 9.5 Hz, 1H), 7.22 (d, J = 2.0 Hz, 1H), 7.17–7.15 (dd, J1 = 9.5 Hz, J2 = 2.0 Hz, 2H), 7.14 (s,
1H), 3.90 (d, J = 5.5 Hz, 1H), 2.39 (s, 3H), 2.35 (s, 3H), 1.82 (m, 1H), 1.48–1.28 (m, 32H),
0.89–0.86 (m, 6H).

4. Conclusions

In summary, we successfully converted 6,7-dimethyl-1,4-dihydroquinoxaline-2,3-
dione as a bislactam precursor to the asymmetric aza-BODIPYs by the Schiff-base-forming

www.ccdc.cam.ac.uk/data_request/cif
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reaction. The novel aza-BODIPYs exhibit intense fluorescence in solution, whereas the fluo-
rescence emission is nearly quenched in the film state due to the self-absorption. The crystal
structure of 4a and its molecular packing diagram reveal that 4a forms a complementary
hydrogen-bonded dimer with the next neighbor, and the dimer is further assembled into
J-aggregates. The low-lying HOMO based on the electrochemical measurements indicates
the potential applications of 4 as an electron-transporting material. An investigation along
these lines is being intensively carried out in our laboratory.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/molecules28247940/s1, Figures S1–S4. 1H NMR and 1H-
1H COSY spectra of 4a and 4b in CDCl3. Figure S5: (a) Unit cell of the X-ray crystal structure and
(b) hydrogen bonding dimer of 4a in the crystal structure. Hydrogen bonds are shown as dashed
lines. Table S1: Crystallographic data of 4a. Figure S6: X-ray crystal structure of 4a with labels.
Table S2: Bond length for 4a. Table S3: Bond angels for 4a. Figure S7: UV/vis absorption spectra of 4a
in various solvents. Figure S8: UV/vis absorption spectra of 4a (a) and 4b (b) in THF at different
concentrations. Figure S9: UV/vis absorption and fluorescence spectra of 4a at various pH values in
CH3CN solution.
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