Design of Promising aza-BODIPYs for Bioimaging and Sensing
Abstract
:1. Introduction
2. Materials and Methods
- 4,4-difluoro-1,7-diphenyl-3,5-dithienyl-4-boron-3a,4a,8-triaza-s-indacene (1);
- 4,4-difluoro-1,7-diphenyl-3,5-ditolyl-4-boron-3a,4a,8-triaza-s-indacene (2);
- 4,4-difluoro-1,3,5,7-tetrathienyl-4-boron-3a,4a,8-triaza-s-indacene (3).
- X is the physicochemical parameter of the compound in a given solvent;
- X0 is the value of a given physical and chemical property in the gas phase or inert solvent;
- A, B, and C are independent parameters of the solvent, describing various mechanisms of interaction between the solvent and the solute;
- a, b, and c are coefficients characterizing the contribution from the parameters A, B, C of the solvent to the investigated property.
- and are maxima in the absorption and fluorescence spectra, expressed as wavenumbers, cm−1;
- is Stokes’ shift, cm−1;
- is the sensitivity of the fluorophore to the polar environment;
- is the free-term equation.
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, S.; Wu, T.; Fan, J.; Li, Z.; Jiang, N.; Wang, J.; Dou, B.; Sun, S.; Song, F.; Peng, X. A BODIPY-based fluorescent dye for mitochondria in living cells, with low cytotoxicity and high photostability. Org. Biomol. Chem. 2013, 11, 555–558. [Google Scholar] [CrossRef] [PubMed]
- Vodyanova, O.S.O.S.; Kochergin, B.A.B.A.; Usoltsev, S.D.S.D.; Marfin, Y.S.Y.S.; Rumyantsev, E.V.E.V.; Aleksakhina, E.L.E.L.; Tomilova, I.K.I.K. BODIPY dyes in bio environment: Spectral characteristics and possibilities for practical application. J. Photochem. Photobiol. A Chem. 2018, 350, 44–51. [Google Scholar] [CrossRef]
- Marfin, Y.S.; Solomonov, A.V.; Timin, A.S.; Rumyantsev, E.V. Recent advances of individual BODIPY and BODIPY-based functional materials in medical diagnostics and treatment. Curr. Med. Chem. 2017, 24, 2745–2772. [Google Scholar] [CrossRef] [PubMed]
- Mironov, A.F.; Ostroverkhov, P.V.; Tikhonov, S.I.; Pogorilyy, V.A.; Kirin, N.S.; Chudakova, O.O.; Tsygankov, A.A.; Grin, M.A. Amino acid derivatives of natural chlorins as a platform for the creation of targeted photosensitizers in oncology. Fine Chem. Technol. 2021, 15, 16–33. [Google Scholar] [CrossRef]
- Bhate, D.; Penick, C.; Ferry, L.; Lee, C. Classification and Selection of Cellular Materials in Mechanical Design: Engineering and Biomimetic Approaches. Designs 2019, 3, 19. [Google Scholar] [CrossRef] [Green Version]
- Bhasin, D.; McAdams, D. The Characterization of Biological Organization, Abstraction, and Novelty in Biomimetic Design. Designs 2018, 2, 54. [Google Scholar] [CrossRef] [Green Version]
- Nagel, J.; Schmidt, L.; Born, W. Establishing Analogy Categories for Bio-Inspired Design. Designs 2018, 2, 47. [Google Scholar] [CrossRef] [Green Version]
- Melnikov, P.V.; Alexandrovskaya, A.Y.; Naumova, A.O.; Popova, N.M.; Spitsyn, B.V.; Zaitsev, N.K.; Yashtulov, N.A. Modified Nanodiamonds as a Means of Polymer Surface Functionalization. From Fouling Suppression to Biosensor Design. Nanomaterials 2021, 11, 2980. [Google Scholar] [CrossRef]
- Alexandrovskaya, A.Y.; Melnikov, P.V.; Safonov, A.V.; Naumova, A.O.; Zaytsev, N.K. A comprehensive study of the resistance to biofouling of different polymers for optical oxygen sensors. The advantage of the novel fluorinated composite based on core-dye-shell structure. Mater. Today Commun. 2020, 23, 100916. [Google Scholar] [CrossRef]
- Melnikov, P.V.; Kozhukhova, A.E.; Naumova, A.O.; Yashtulov, N.A.; Zaitsev, N.K. Optical analyzer for continuous monitoring of dissolved oxygen in aviation fuel and other non-aqueous media. Int. J. Eng. 2019, 32, 641–646. [Google Scholar] [CrossRef] [Green Version]
- Aleksandrovskaya, A.Y.; Melnikov, P.V.; Safonov, A.V.; Abaturova, N.A.; Spitsyn, B.V.; Naumova, A.O.; Zaitsev, N.K. The Effect of Modified Nanodiamonds on the Wettability of the Surface of an Optical Oxygen Sensor and Biological Fouling During Long-Term in Situ Measurements. Nanotechnol. Russ. 2019, 14, 389–396. [Google Scholar] [CrossRef]
- Goncharenko, A.A.; Tarasyuk, I.A.; Marfin, Y.S.; Grzhegorzhevskii, K.V.; Muslimov, A.R.; Bondarenko, A.B.; Lebedev, M.D.; Kuz’min, I.A.; Vashurin, A.S.; Lepik, K.V.; et al. DDAO controlled synthesis of organo-modified silica nanoparticles with encapsulated fluorescent boron dipyrrins and study of their uptake by cancerous cells. Molecules 2020, 25, 3802. [Google Scholar] [CrossRef] [PubMed]
- Marfin, Y.S.; Vodyanova, O.S.O.S.; Merkushev, D.A.D.A.; Usoltsev, S.D.S.D.; Kurzin, V.O.V.O.; Rumyantsev, E.V.E.V. Effect of π-Extended Substituents on Photophysical Properties of BODIPY Dyes in Solutions. J. Fluoresc. 2016, 26, 1975–1985. [Google Scholar] [CrossRef] [PubMed]
- Marfin, Y.S.; Aleksakhina, E.L.; Merkushev, D.A.; Rumyantsev, E.V.; Tomilova, I.K. Interaction of BODIPY Dyes with the Blood Plasma Proteins. J. Fluoresc. 2016, 26, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Qi, S.; Kwon, N.; Yim, Y.; Nguyen, V.N.; Yoon, J. Fine-tuning the electronic structure of heavy-atom-free BODIPY photosensitizers for fluorescence imaging and mitochondria-targeted photodynamic therapy. Chem. Sci. 2020, 11, 6479–6484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prieto-Montero, R.; Prieto-Castañeda, A.; Sola-Llano, R.; Agarrabeitia, A.R.; García-Fresnadillo, D.; López-Arbeloa, I.; Villanueva, A.; Ortiz, M.J.; de la Moya, S.; Martínez-Martínez, V. Exploring BODIPY Derivatives as Singlet Oxygen Photosensitizers for PDT. Photochem. Photobiol. 2020, 96, 458–477. [Google Scholar] [CrossRef]
- Marfin, Y.S.; Banakova, E.A.; Merkushev, D.A.; Usoltsev, S.D.; Churakov, A.V. Effects of Concentration on Aggregation of BODIPY-Based Fluorescent Dyes Solution. J. Fluoresc. 2020, 30, 1611–1621. [Google Scholar] [CrossRef]
- Chen, Y.; Tsao, K.; Acton, S.L.; Keillor, J.W. A Green BODIPY-Based, Super-Fluorogenic, Protein-Specific Labelling Agent. Angew. Chemie Int. Ed. 2018, 57, 12390–12394. [Google Scholar] [CrossRef]
- Bumagina, N.A.; Kritskaya, A.Y.; Antina, E.V.; Berezin, M.B.; V’yugin, A.I. Effect of Alkyl, Aryl, and meso-Aza Substitution on the Thermal Stability of BODIPY. Russ. J. Inorg. Chem. 2018, 63, 1326–1332. [Google Scholar] [CrossRef]
- Wang, M.; Vicente, M.G.H.; Mason, D.; Bobadova-Parvanova, P. Stability of a Series of BODIPYs in Acidic Conditions: An Experimental and Computational Study into the Role of the Substituents at Boron. ACS Omega 2018, 3, 5502–5510. [Google Scholar] [CrossRef]
- Liu, M.; Ma, S.; She, M.; Chen, J.; Wang, Z.; Liu, P.; Zhang, S.; Li, J. Structural modification of BODIPY: Improve its applicability. Chin. Chem. Lett. 2019, 30, 1815–1824. [Google Scholar] [CrossRef]
- Kamkaew, A.; Burgess, K. Aza-BODIPY dyes with enhanced hydrophilicity. Chem. Commun. 2015, 51, 10664–10667. [Google Scholar] [CrossRef] [PubMed]
- Krajcovicova, S.; Stankova, J.; Dzubak, P.; Hajduch, M.; Soural, M.; Urban, M. A Synthetic Approach for the Rapid Preparation of BODIPY Conjugates and their use in Imaging of Cellular Drug Uptake and Distribution. Chem. A Eur. J. 2018, 24, 4957–4966. [Google Scholar] [CrossRef]
- Gayathri, T.; Karnewar, S.; Kotamraju, S.; Singh, S.P. High Affinity Neutral Bodipy Fluorophores for Mitochondrial Tracking. ACS Med. Chem. Lett. 2018, 9, 618–622. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.; Zhao, H.; Cai, Z.; Xu, Y.; Qin, F.G.F.; Zong, Q.; Peng, F.; Fang, Y. BODIPY-based panchromatic chromophore for efficient organic solar cell. Org. Electron. 2018, 61, 215–222. [Google Scholar] [CrossRef]
- Merkushev, D.A.; Usoltsev, S.D.; Marfin, Y.S.; Pushkarev, A.P.; Volyniuk, D.; Grazulevicius, J.V.; Rumyantsev, E.V. BODIPY associates in organic matrices: Spectral properties, photostability and evaluation as OLED emitters. Mater. Chem. Phys. 2016, 187, 104–111. [Google Scholar] [CrossRef]
- Kursunlu, A.N.; Baslak, C. A Bodipy-bearing pillar[5]arene for mimicking photosynthesis: Multi-fluorophoric light harvesting system. Tetrahedron Lett. 2018, 59, 1958–1962. [Google Scholar] [CrossRef]
- Rani, K.; Pandey, U.K.; Sengupta, S. Efficient electron transporting and panchromatic absorbing FRET cassettes based on aza-BODIPY and perylenediimide towards multiple metal FRET-Off sensing and ratiometric temperature sensing. J. Mater. Chem. C 2021, 9, 4607–4618. [Google Scholar] [CrossRef]
- Vyšniauskas, A.; Cornell, B.; Sherin, P.S.; Maleckaitė, K.; Kubánková, M.; Izquierdo, M.A.; Vu, T.T.; Volkova, Y.A.; Budynina, E.M.; Molteni, C.; et al. Cyclopropyl Substituents Transform the Viscosity-Sensitive BODIPY Molecular Rotor into a Temperature Sensor. ACS Sensors 2021, 6, 2158–2167. [Google Scholar] [CrossRef]
- Wang, Q.; Ng, D.K.P.; Lo, P.C. Functional aza-boron dipyrromethenes for subcellular imaging and organelle-specific photodynamic therapy. J. Mater. Chem. B 2018, 6, 3285–3296. [Google Scholar] [CrossRef]
- Liu, S.; Shi, Z.; Xu, W.; Yang, H.; Xi, N.; Liu, X.; Zhao, Q.; Huang, W. A class of wavelength-tunable near-infrared aza-BODIPY dyes and their application for sensing mercury ion. Dye. Pigment. 2014, 103, 145–153. [Google Scholar] [CrossRef]
- Strobl, M.; Rappitsch, T.; Borisov, S.M.; Mayr, T.; Klimant, I. NIR-emitting aza-BODIPY dyes-new building blocks for broad-range optical pH sensors. Analyst 2015, 140, 7150–7153. [Google Scholar] [CrossRef] [Green Version]
- Cao, K.J.; Elbel, K.M.; Cifelli, J.L.; Cirera, J.; Sigurdson, C.J.; Paesani, F.; Theodorakis, E.A.; Yang, J. Solvation-Guided Design of Fluorescent Probes for Discrimination of Amyloids. Sci. Rep. 2018, 8, 6950. [Google Scholar] [CrossRef] [Green Version]
- Melo, C.E.A.; Nandi, L.G.; Domínguez, M.; Rezende, M.C.; Machado, V.G. Solvatochromic behavior of dyes with dimethylamino electron-donor and nitro electron-acceptor groups in their molecular structure. J. Phys. Org. Chem. 2015, 28, 250–260. [Google Scholar] [CrossRef]
- Filarowski, A.; Lopatkova, M.; Lipkowski, P.; van der Auweraer, M.; Leen, V.; Dehaen, W. Solvatochromism of BODIPY-Schiff dye. J. Phys. Chem. B 2015, 119, 2576–2584. [Google Scholar] [CrossRef] [PubMed]
- Stock, R.I.; de Melo, C.E.A.; Schramm, A.D.S.; Nicoleti, C.R.; Bortoluzzi, A.J.; Heying, R.d.S.; Machado, V.G.; Rezende, M.C. Structure–behavior study of a family of “hybrid cyanine” dyes which exhibit inverted solvatochromism. Phys. Chem. Chem. Phys. 2016, 18, 32256–32265. [Google Scholar] [CrossRef]
- González-Vera, J.A.; Lv, F.; Escudero, D.; Orte, A.; Guo, X.; Hao, E.; Talavera-Rodriguez, E.M.; Jiao, L.; Boens, N.; Ruedas-Rama, M.J. Unusual spectroscopic and photophysical properties of solvatochromic BODIPY analogues of Prodan. Dye. Pigment. 2020, 182, 108510. [Google Scholar] [CrossRef]
- Duereh, A.; Anantpinijwatna, A.; Latcharote, P. Prediction of solvatochromic polarity parameters for aqueous mixed-solvent systems. Appl. Sci. 2020, 10, 8480. [Google Scholar] [CrossRef]
- Kadam, M.M.L.; Patil, D.; Sekar, N. Carbazole based NLOphoric styryl dyes- synthesis and study of photophysical properties by solvatochromism and viscosity sensitivity. J. Lumin. 2018, 202, 212–224. [Google Scholar] [CrossRef]
- Sot, J.; Esnal, I.; Monasterio, B.G.; León-Irra, R.; Niko, Y.; Goñi, F.M.; Klymchenko, A.; Alonso, A. Phase-selective staining of model and cell membranes, lipid droplets and lipoproteins with fluorescent solvatochromic pyrene probes. Biochim. Biophys. Acta Biomembr. 2021, 1863, 183470. [Google Scholar] [CrossRef]
- Telegin, F.Y.; Marfin, Y.S. New insights into quantifying the solvatochromism of BODIPY based fluorescent probes. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 255, 119683. [Google Scholar] [CrossRef]
- Zhang, D.; Xu, N.; Xian, L.; Ge, H.; Fan, J.; Du, J.; Peng, X. A BODIPY-based Fluorescent Probe for Thiophenol. Chin. J. Chem. 2018, 36, 119–123. [Google Scholar] [CrossRef]
- Aleksakhina, E.L.; Pakhrova, O.A.; Tomilova, I.K.; Merkushev, D.A.; Molchanov, E.E.; Usoltsev, S.D.; Vodyanova, O.S.; Marfin, Y.S. Comparative In Vitro Analysis Of Cytotoxicity Of Bodipy-Luminophers As Potential Fluorescent Sensors For Biological Systems. ChemChemTech 2021, 64, 13–23. [Google Scholar] [CrossRef]
- Marfin, Y.; Merkushev, D.; Khalabudin, D. Fast Synthesis of Tetra-Aryl-Substituted Aza-BODIPYs. Proc. J. Phys. Conf. Ser. 2021, 1822, 012004. [Google Scholar] [CrossRef]
- Gresser, R.; Hartmann, H.; Wrackmeyer, M.; Leo, K.; Riede, M. Synthesis of thiophene-substituted aza-BODIPYs and their optical and electrochemical properties. Tetrahedron 2011, 67, 7148–7155. [Google Scholar] [CrossRef]
- Kamlet, M.J.; Abboud, J.L.M.; Abraham, M.H.; Taft, R.W. Linear Solvation Energy Relationships. 23. A Comprehensive Collection of the Solvatochromic Parameters, π, α, and β, and Some Methods for Simplifying the Generalized Solvatochromic Equation. J. Org. Chem. 1983, 48, 2877–2887. [Google Scholar] [CrossRef]
- Catalán, J. Toward a generalized treatment of the solvent effect based on four empirical scales: Dipolarity (SdP, a new scale), polarizability (SP), acidity (SA), and basicity (SB) of the medium. J. Phys. Chem. B 2009, 113, 5951–5960. [Google Scholar] [CrossRef]
- Solomonov, A.; Marfin, Y. Self-assembling triton-based micellar clusters: Formation features and modification strategies for new functional materials creation. In Proceedings of the 42nd Congress of the Federation-of-European-Biochemical-Societies (FEBS) on From Molecules to Cells and Back, Jerusalem, Israel, 10–14 September 2017. [Google Scholar]
- Koch, A.; Kumar, S.; Ravikanth, M. Synthesis and Properties of B(Ph)(OR) Complexes of Azadipyrrin. Eur. J. Org. Chem. 2018, 2018, 4277–4283. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, H.; Xiao, Y. 2012 Replacing phenyl ring with thiophene an approach to longer wavelength aza-dipyrromethene boron difluoride (Aza-BODIPY) dyes. J. Org. Chem. 2012, 77, 669–673. [Google Scholar] [CrossRef]
- Loudet, A.; Burgess, K. BODIPY Dyes and Their Derivatives: Syntheses and Spectroscopic Properties. Chem. Rev. 2007, 107, 4891–4932. [Google Scholar] [CrossRef]
Solvent | Kamlet–Taft Parameters | Catalan Parameters | |||||
---|---|---|---|---|---|---|---|
π | Β | α | SP | SPP | SA | SB | |
Acetone | 0.71 | 0.48 | 0.08 | 0.651 | 0.907 | 0.000 | 0.475 |
Benzene | 0.59 | 0.10 | 0.00 | 0.793 | 0.270 | 0.000 | 0.124 |
Hexane | −0.08 | 0.00 | 0.00 | 0.616 | 0.000 | 0.000 | 0.056 |
Dimethyl sulfoxide | 1.00 | 0.76 | 0.00 | 0.830 | 1.000 | 0.072 | 0.647 |
Dimethylformamide | 0.88 | 0.69 | 0.00 | 0.759 | 0.977 | 0.031 | 0.613 |
Dichloromethane | 0.82 | 0.00 | 0.30 | 0.761 | 0.769 | 0.040 | 0.178 |
Methanol | 0.60 | 0.62 | 0.93 | 0.608 | 0.904 | 0.605 | 0.545 |
Propanol | 0.52 | 0.90 | 0.78 | 0.658 | 0.748 | 0.367 | 0.782 |
Tetrachloromethane | 0.28 | 0.00 | 0.00 | 0.768 | 0.000 | 0.000 | 0.044 |
Toluene | 0.54 | 0.11 | 0.00 | 0.782 | 0.284 | 0.000 | 0.128 |
Chloroform | 0.58 | 0.00 | 0.44 | 0.783 | 0.614 | 0.047 | 0.071 |
Cyclohexane | 0.00 | 0.00 | 0.00 | 0.683 | 0.000 | 0.000 | 0.073 |
Ethanol | 0.54 | 0.77 | 0.83 | 0.633 | 0.783 | 0.400 | 0.658 |
Ethyl acetate | 0.55 | 0.45 | 0.00 | 0.656 | 0.603 | 0.000 | 0.542 |
aza-BODIPY 1 | |||||
λabs, nm | λfl, nm | Δλ, nm | τ, ns | Φ | |
Acetone | 678.0 | 722.0 | 44.0 | 0.97 | 0.016 |
Benzene | 684.0 | 719.0 | 35.0 | 0.97 | 0.028 |
Hexane | 674.0 | 704.0 | 30.0 | 0.98 | 0.026 |
Dimethyl sulfoxide | 693.0 | 733.0 | 40.0 | 1.07 | 0.015 |
Dimethylformamide | 688.0 | 731.0 | 43.0 | 0.80 | 0.014 |
Dichloromethane | 681.0 | 720.0 | 39.0 | 1.02 | 0.017 |
Methanol | 678.0 | 717.0 | 39.0 | 0.64 | 0.030 |
Propanol | 679.0 | 716.0 | 37.0 | 0.98 | 0.022 |
Tetrachloromethane | 680.0 | 713.0 | 33.0 | 1.09 | 0.027 |
Toluene | 685.0 | 717.0 | 32.0 | 1.05 | 0.030 |
Chloroform | 682.0 | 717.0 | 35.0 | 1.08 | 0.025 |
Cyclohexane | 674.0 | 709.0 | 35.0 | 0.73 | 0.024 |
Ethanol | 678.0 | 718.0 | 40.0 | 1.06 | 0.020 |
aza-BODIPY 2 | |||||
λabs, nm | λfl, nm | Δλ, nm | τ, ns | Φ | |
Acetone | 650.0 | 673.0 | 23.0 | 0.65 | 0.036 |
Benzene | 656.0 | 678.0 | 22.0 | 1.39 | 0.085 |
Hexane | 646.0 | 667.0 | 21.0 | 0.97 | 0.062 |
Dimethyl sulfoxide | 662.0 | 686.0 | 24.0 | 0.91 | 0.050 |
Dimethylformamide | 656.0 | 681.0 | 25.0 | 0.81 | 0.094 |
Dichloromethane | 652.0 | 675.0 | 23.0 | 0.87 | 0.054 |
Methanol | 648.0 | 672.0 | 24.0 | 0.67 | 0.101 |
Propanol | 648.0 | 671.0 | 23.0 | 0.78 | 0.064 |
Tetrachloromethane | 652.0 | 674.0 | 22.0 | 1.30 | 0.080 |
Toluene | 656.0 | 679.0 | 23.0 | 1.61 | 0.096 |
Chloroform | 654.0 | 675.0 | 21.0 | 1.71 | 0.116 |
Cyclohexane | 648.0 | 670.0 | 22.0 | 1.02 | 0.068 |
aza-BODIPY 3 | |||||
λabs, nm | λfl, nm | Δλ, nm | τ, ns | Φ | |
Acetone | 735.0 | 749.0 | 14.0 | 1.77 | 0.114 |
Benzene | 743.0 | 759.0 | 16.0 | 1.97 | 0.291 |
Hexane | 730.0 | 742.0 | 12.0 | 1.85 | 0.121 |
Dimethyl sulfoxide | 753.0 | 768.0 | 15.0 | 1.79 | 0.086 |
Dimethylformamide | 748.0 | 762.0 | 14.0 | 1.61 | 0.098 |
Dichloromethane | 742.0 | 758.0 | 16.0 | 1.91 | 0.128 |
Methanol | 739.0 | 751.0 | 12.0 | 1.18 | 0.091 |
Propanol | 738.0 | 750.0 | 12.0 | 1.46 | 0.087 |
Tetrachloromethane | 737.0 | 752.0 | 15.0 | 2.16 | 0.117 |
Toluene | 743.0 | 757.0 | 14.0 | 1.83 | 0.143 |
Chloroform | 741.0 | 756.0 | 15.0 | 1.99 | 0.102 |
Cyclohexane | 731.0 | 744.0 | 13.0 | 1.68 | 0.153 |
Ethanol | 739.0 | 751.0 | 12.0 | 1.34 | 0.093 |
aza-BODIPY 1 | aza-BODIPY 2 | aza-BODIPY 3 | ||||
---|---|---|---|---|---|---|
λdet, nm | τ, ns | λdet, nm | τ, ns | λdet, nm | τ, ns | |
Hexane | 699.0 | 0.75 | 660.0 | 0.99 | 734.0 | 1.67 |
709.0 | 0.73 | 670.0 | 1.02 | 744.0 | 1.68 | |
729.0 | 0.77 | 690.0 | 0.99 | 764.0 | 1.67 | |
Methanol | 707.0 | 0.64 | 662.0 | 0.67 | 741.0 | 1.19 |
717.0 | 0.64 | 672.0 | 0.67 | 751.0 | 1.18 | |
737.0 | 0.64 | 692.0 | 0.68 | 771.0 | 1.20 | |
Toluene | 707.0 | 1.11 | 669.0 | 1.60 | 747.0 | 1.83 |
717.0 | 1.05 | 679.0 | 1.61 | 757.0 | 1.83 | |
737.0 | 1.07 | 699.0 | 1.60 | 777.0 | 1.83 |
aza-BODIPY 1 | 0.430 ± 0.042 | 0.570 ± 0.042 | 0.140 ± 0.083 | 0.755 ± 0.091 |
aza-BODIPY 2 | 0.488 ± 0.017 | 0.512 ± 0.017 | 0.024 ± 0.035 | 0.954 ± 0.047 |
aza-BODIPY 3 | 0.476 ± 0.014 | 0.524 ± 0.014 | 0.048 ± 0.028 | 0.908 ± 0.036 |
Kamlet–Taft Parameters’ Regression | |||||
π | Β | α | R2 | ||
aza-BODIPY 1 | 0.133 ± 0.172 | −0.106 ± 0.171 | −0.034 ± 0.148 | 0.101 | |
aza-BODIPY 2 | 0.248 ± 0.353 | −0.755 ± 0.357 | −0.006 ± 0.319 | 0.425 | |
aza-BODIPY 3 | 0.238 ± 0.168 | −0.494 ± 0.168 | −0.332 ± 0.145 | 0.767 | |
Catalan Parameters’ Regression | |||||
SP | SPP | SA | SB | R2 | |
aza-BODIPY 1 | 0.702 ± 0.762 | −0.054 ± 0.206 | −0.152 ± 0.342 | 0.097 ± 0.312 | 0.234 |
aza-BODIPY 2 | 3.126 ± 1.138 | −0.211 ± 0.309 | 0.588 ± 0.516 | −0.709 ± 0.471 | 0.743 |
aza-BODIPY 3 | 1.078 ± 0.628 | −0.019 ± 0.170 | −0.639 ± 0.282 | −0.331 ± 0.257 | 0.860 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merkushev, D.; Vodyanova, O.; Telegin, F.; Melnikov, P.; Yashtulov, N.; Marfin, Y. Design of Promising aza-BODIPYs for Bioimaging and Sensing. Designs 2022, 6, 21. https://doi.org/10.3390/designs6020021
Merkushev D, Vodyanova O, Telegin F, Melnikov P, Yashtulov N, Marfin Y. Design of Promising aza-BODIPYs for Bioimaging and Sensing. Designs. 2022; 6(2):21. https://doi.org/10.3390/designs6020021
Chicago/Turabian StyleMerkushev, Dmitry, Olga Vodyanova, Felix Telegin, Pavel Melnikov, Nikolay Yashtulov, and Yuriy Marfin. 2022. "Design of Promising aza-BODIPYs for Bioimaging and Sensing" Designs 6, no. 2: 21. https://doi.org/10.3390/designs6020021
APA StyleMerkushev, D., Vodyanova, O., Telegin, F., Melnikov, P., Yashtulov, N., & Marfin, Y. (2022). Design of Promising aza-BODIPYs for Bioimaging and Sensing. Designs, 6(2), 21. https://doi.org/10.3390/designs6020021