Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (103)

Search Parameters:
Keywords = auxiliary power supply system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 3940 KB  
Review
Hydrogen-Enabled Power Systems: Technologies’ Options Overview and Effect on the Balance of Plant
by Furat Dawood, GM Shafiullah and Martin Anda
Hydrogen 2025, 6(3), 57; https://doi.org/10.3390/hydrogen6030057 - 13 Aug 2025
Viewed by 526
Abstract
Hydrogen-based Power Systems (H2PSs) are gaining accelerating momentum globally to reduce energy costs and dependency on fossil fuels. A H2PS typically comprises three main parts: hydrogen production, storage, and power generation, called packages. A review of the literature and Original Equipment Manufacturers (OEM) [...] Read more.
Hydrogen-based Power Systems (H2PSs) are gaining accelerating momentum globally to reduce energy costs and dependency on fossil fuels. A H2PS typically comprises three main parts: hydrogen production, storage, and power generation, called packages. A review of the literature and Original Equipment Manufacturers (OEM) datasheets reveals that no single manufacturer supplies all H2PS components, posing significant challenges in system design, parts integration, and safety assurance. Additionally, both the literature and H2PS projects’ database highlight a gap in a systematic hydrogen equipment and auxiliary sub-systems technology selection process, and how this selection affects the overall H2PS Balance of Plant (BoP). This study addresses that gap by providing a guideline for available technology options and their impact on the H2PS-BoP. The analysis compares packages and auxiliary sub-system technologies to support informed engineering decisions regarding technology and equipment selection. The study finds that each package’s technology influences the selection criteria of the other packages and the associated BoP requirements. Furthermore, the choice of technologies across packages significantly affects overall system integrity and BoP. These interdependencies are illustrated using a cause-and-effect matrix. The study’s significance lies in establishing a structured guideline for engineering design and operations, enhancing the accuracy of feasibility studies, and accelerating the global implementation of H2PS. Full article
(This article belongs to the Special Issue Advances in Hydrogen Production, Storage, and Utilization)
Show Figures

Figure 1

38 pages, 3666 KB  
Systematic Review
A Systematic Literature Review on Li-Ion BESSs Integrated with Photovoltaic Systems for Power Supply to Auxiliary Services in High-Voltage Power Stations
by Sergio Pires Pimentel, Marcelo Nogueira Bousquet, Tiago Alves Barros Rosa, Leovir Cardoso Aleluia Junior, Enes Goncalves Marra, Jose Wilson Lima Nerys and Luciano Coutinho Gomes
Energies 2025, 18(13), 3544; https://doi.org/10.3390/en18133544 - 4 Jul 2025
Viewed by 450
Abstract
The integration of lithium-ion (Li-ion) battery energy storage systems (LiBESSs) with photovoltaic (PV) generation offers a promising solution for powering auxiliary services (ASs) in high-voltage power stations. This study conducts a systematic literature review (SLR) to evaluate the feasibility, benefits, and challenges of [...] Read more.
The integration of lithium-ion (Li-ion) battery energy storage systems (LiBESSs) with photovoltaic (PV) generation offers a promising solution for powering auxiliary services (ASs) in high-voltage power stations. This study conducts a systematic literature review (SLR) to evaluate the feasibility, benefits, and challenges of this integration. The proposed SLR complies with the PRISMA 2020 statement, and it is also registered on the international PROSPERO platform (ID 1073599). The selected methodology includes the following key steps: definition of the research questions; search strategy development; selection criteria of the studies; quality assessment; data extraction and synthesis; and discussion of the results. Through a comprehensive analysis of scientific publications from 2013 to 2024, trends, advancements, and research gaps are identified. The methodology follows a structured review framework, including data collection, selection criteria, and evaluation of technical feasibility. From 803 identified studies, 107 were eligible in accordance with the assessed inclusion criteria. Then, a custom study impact factor (SIF) framework selected 5 out of 107 studies as the most representative and assertive ones on the topics of this SLR. The findings indicate that Li-ion BESSs combined with PV systems enhance reliability, reduce reliance on conventional sources, and improve grid resilience, particularly in remote or constrained environments. The group of reviewed studies discuss optimization models and multi-objective strategies for system sizing and operation, along with practical case studies validating their effectiveness. Despite these advantages, challenges related to cost, regulatory frameworks, and performance variability remain. The study concludes that further experimental validations, pilot-scale implementations, and assessment of long-term economic impacts are necessary to accelerate the adoption of BESS-PV systems in high-voltage power substations. This study was funded by the R&D program of the Brazilian National Electric Energy Agency (ANEEL) via project number PD-07351-0001/2022. Full article
Show Figures

Figure 1

22 pages, 1664 KB  
Article
Techno-Economic Assessment of Alternative-Fuel Bus Technologies Under Real Driving Conditions in a Developing Country Context
by Marc Haddad and Charbel Mansour
World Electr. Veh. J. 2025, 16(6), 337; https://doi.org/10.3390/wevj16060337 - 19 Jun 2025
Cited by 1 | Viewed by 825
Abstract
The long-standing need for a modern public transportation system in Lebanon, a developing country of the Middle East with an almost exclusive dependence on costly and polluting passenger cars, has become more pressing in recent years due to the worsening economic crisis and [...] Read more.
The long-standing need for a modern public transportation system in Lebanon, a developing country of the Middle East with an almost exclusive dependence on costly and polluting passenger cars, has become more pressing in recent years due to the worsening economic crisis and the onset of hyperinflation. This study investigates the potential reductions in energy use, emissions, and costs from the possible introduction of natural gas, hybrid, and battery-electric buses compared to traditional diesel buses in local real driving conditions. Four operating conditions were considered including severe congestion, peak, off-peak, and bus rapid transit (BRT) operation. Battery-electric buses are found to be the best performers in any traffic operation, conditional on having clean energy supply at the power plant and significant subsidy of bus purchase cost. Natural gas buses do not provide significant greenhouse gas emission savings compared to diesel buses but offer substantial reductions in the emission of all major pollutants harmful to human health. Results also show that accounting for additional energy consumption from the use of climate-control auxiliaries in hot and cold weather can significantly impact the performance of all bus technologies by up to 44.7% for electric buses on average. Performance of all considered bus technologies improves considerably in free-flowing traffic conditions, making BRT operation the most beneficial. A vehicle mix of diesel, natural gas, and hybrid bus technologies is found most feasible for the case of Lebanon and similar developing countries lacking necessary infrastructure for a near-term transition to battery-electric technology. Full article
(This article belongs to the Special Issue Zero Emission Buses for Public Transport)
Show Figures

Figure 1

17 pages, 5848 KB  
Article
Highly Reliable Power Circuit Configuration with SiC Chopper Module for Hybrid Fuel Cell and Battery Power System for Urban Air Mobility (UAM) Applications
by Moon-Seop Choi and Chong-Eun Kim
Energies 2025, 18(12), 3197; https://doi.org/10.3390/en18123197 - 18 Jun 2025
Viewed by 365
Abstract
This paper proposes a high-reliability power conversion system optimized for Urban Air Mobility (UAM) applications, which utilizes silicon carbide (SiC) chopper modules within a hybrid fuel cell and battery structure. The system features a redundant power configuration that employs both a main and [...] Read more.
This paper proposes a high-reliability power conversion system optimized for Urban Air Mobility (UAM) applications, which utilizes silicon carbide (SiC) chopper modules within a hybrid fuel cell and battery structure. The system features a redundant power configuration that employs both a main and an auxiliary battery to ensure continuous and stable power supply, even under emergency or fault conditions. By integrating SiC-based power converters, the proposed system achieves high efficiency, low switching losses, and enhanced thermal performance, which are crucial for the space- and weight-constrained environment of UAM platforms. Furthermore, a robust control strategy is implemented to enable smooth transitions between multiple power sources, maintaining operational stability and safety. System-level simulations were conducted using PowerSIM to validate the performance and reliability of the proposed architecture. The results demonstrate its effectiveness, making it a strong candidate for future UAM power systems requiring lightweight, efficient, and fault-tolerant power solutions. Full article
Show Figures

Figure 1

14 pages, 831 KB  
Article
Optimizing Container Placement in Data Centers by Deep Reinforcement Learning
by Hyeonjeong Kim and Cheolhoon Lee
Appl. Sci. 2025, 15(10), 5720; https://doi.org/10.3390/app15105720 - 20 May 2025
Viewed by 483
Abstract
As our society becomes increasingly digitized, the demand for computing power provided by data centers continues to grow; consequently, operating costs are increasing exponentially. Data centers supply virtualized servers to customers, primarily in the form of lightweight containers. Since the number of containers [...] Read more.
As our society becomes increasingly digitized, the demand for computing power provided by data centers continues to grow; consequently, operating costs are increasing exponentially. Data centers supply virtualized servers to customers, primarily in the form of lightweight containers. Since the number of containers to be allocated is fixed, they should be optimally placed on physical servers to minimize the number of required servers and reduce costs. However, current data center operations do not prioritize reducing the number of physical servers through optimized container placement. Instead, containers are distributed across existing servers primarily to maintain stability. Therefore, costs associated with servers, auxiliary facilities, and electricity consumption have increased. To address this issue, we propose an optimization method that ensures economic efficiency without compromising system stability. Specifically, we utilize deep reinforcement learning (DRL), which has been widely applied in various fields, to optimize container placement. Our approach outperforms traditional heuristic algorithms and offers the additional advantage of handling fixed-size inputs, enabling flexible operation regardless of the number of containers. Using DRL in container placement has further reduced the number of servers and operating costs while enhancing overall system flexibility. Full article
(This article belongs to the Special Issue Intelligent Computing Systems and Their Applications)
Show Figures

Figure 1

24 pages, 5126 KB  
Article
Creating an Extensive Parameter Database for Automotive 12 V Power Net Simulations: Insights from Vehicle Measurements in State-of-the-Art Battery Electric Vehicles
by Sebastian Michael Peter Jagfeld, Tobias Schlautmann, Richard Weldle, Alexander Fill and Kai Peter Birke
World Electr. Veh. J. 2025, 16(5), 257; https://doi.org/10.3390/wevj16050257 - 2 May 2025
Viewed by 616
Abstract
The automotive 12 V power net is undergoing significant transitions driven by increasing power demand, higher availability requirements, and the aim to reduce wiring harness complexity. These changes are prompting a transformation of the power net architecture. To understand how future power net [...] Read more.
The automotive 12 V power net is undergoing significant transitions driven by increasing power demand, higher availability requirements, and the aim to reduce wiring harness complexity. These changes are prompting a transformation of the power net architecture. To understand how future power net topologies will influence component requirements, electrical simulations are essential. They help with analyzing the transient behavior of the future power net, such as under- and over-voltages, over-currents, and other harmful electrical phenomena. The accurate parametrization of simulation models is crucial in order to obtain reliable results. This study focuses on the wiring harness, specifically its resistance and inductance, as well as the loads within the low-voltage power net, including their power profiles and input capacities. The parameters for this study were derived from vehicle measurements in three selected battery electric vehicles from different segments and were enriched by virtual vehicle analyses. As a result, an extensive database of vehicle parameters was created and is presented in this paper, and it can be used for power net simulations. As a next step, the collected data can be utilized to predict the parameters of various configurations in a zonal architecture setup. Full article
Show Figures

Figure 1

26 pages, 5366 KB  
Article
Concepts and Experiments on More Electric Aircraft Power Systems
by Andrzej Gębura, Andrzej Szelmanowski, Ilona Jacyna-Gołda, Paweł Gołda, Magdalena Kalbarczyk and Justyna Tomaszewska
Energies 2025, 18(7), 1653; https://doi.org/10.3390/en18071653 - 26 Mar 2025
Cited by 1 | Viewed by 1875
Abstract
The evolution of aircraft power systems has been driven by increasing electrical demands and advancements in aviation technology. Background: This study provides a comprehensive review and experimental validation of on-board electrical network development, analyzing power management strategies in both conventional and modern aircraft, [...] Read more.
The evolution of aircraft power systems has been driven by increasing electrical demands and advancements in aviation technology. Background: This study provides a comprehensive review and experimental validation of on-board electrical network development, analyzing power management strategies in both conventional and modern aircraft, including the Mi-24 helicopter, F-22 multirole aircraft, and Boeing 787 passenger airplane. Methods: The research categorizes aircraft electrical systems into three historical phases: pre-1960s with 28.5 V DC networks, up to 2000 with three-phase AC networks (3 × 115 V/200 V, 400 Hz), and post-2000 with 270 V DC networks derived from AC generators via transformer–rectifier units. Beyond theoretical analysis, this work introduces experimental findings on hybrid-electric aircraft power solutions, particularly evaluating the performance of the Modular Power System for Aircraft (MPSZE). The More Electric Aircraft (MEA) concept is analyzed as a key innovation, with a focus on energy efficiency, frequency stability, and ground power applications. The study investigates the integration of alternative energy sources, including photovoltaic-assisted power supplies and fuel-cell-based auxiliary systems, assessing their feasibility for aircraft system checks, engine startups, field navigation, communications, and radar operations. Results: Experimental results demonstrate that hybrid energy storage systems, incorporating lithium-ion batteries, fuel cells, and photovoltaic modules, can enhance MEA efficiency and operational resilience under real-world conditions. Conclusions: The findings underscore the importance of MEA technology in the future of sustainable aviation power solutions, highlighting both global and Polish research contributions, particularly from the Air Force Institute of Technology (ITWL). Full article
(This article belongs to the Special Issue Energy-Efficient Advances in More Electric Aircraft)
Show Figures

Figure 1

32 pages, 10352 KB  
Article
Renewable Electricity in German Multi-Family Buildings: Unlocking the Photovoltaic Potential for Small-Scale Landlord-to-Tenant Power Supply
by Mauricio Celi Cortés, Jonas van Ouwerkerk, Jingyu Gong, Jan Figgener, Christian Bußar and Dirk Uwe Sauer
Energies 2025, 18(5), 1213; https://doi.org/10.3390/en18051213 - 1 Mar 2025
Cited by 1 | Viewed by 1375
Abstract
The implementation of photovoltaic and home storage systems in multi-family houses (MFHs) in Germany lags significantly behind their development in single-family houses. The Landlord-to-Tenant (L2T) power supply model is meant to reduce this gap, yet few projects have been implemented to date. In [...] Read more.
The implementation of photovoltaic and home storage systems in multi-family houses (MFHs) in Germany lags significantly behind their development in single-family houses. The Landlord-to-Tenant (L2T) power supply model is meant to reduce this gap, yet few projects have been implemented to date. In this model, the landlord must fulfill the tenants’ power demand through a combination of photovoltaic generation and storage and electricity from the grid, for which the landlord pays an auxiliary electricity price that greatly influences the financial viability of a project. Our contribution focuses on the impact of electricity price variations and recent policy changes on the financial viability of small-scale L2T concepts. We considered component investment costs, building sizes, photovoltaic yields, and future developments. Recent policy changes have improved the financial viability of L2T projects, increasing the maximal auxiliary electricity price for which an investment is viable by 13 ct/kWh for a four-party MFH. Minimal auxiliary electricity prices justifying the installation of home storage systems (HSSs) decreased by 9 ct/kWh from 2020 to 2023. Autarky rates are substantially different across the considered scenarios, with the autarky rate being defined as the percentage of consumption of self-generated energy relative to the total energy consumption. For a 22-party MFH the autarky rate decreases by 17% compared to a 4-party MFH. HSSs have the potential to increase autarky rates while maintaining the financial viability of L2T projects. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

19 pages, 5967 KB  
Article
Design and Control of the Resonant Auxiliary Circuit for Voltage Regulator Module (VRM) with Fast Load Step Transient
by Yongjia Li, Jianlin Xia, Shen Xu, Encheng Zhu and Weifeng Sun
Electronics 2025, 14(5), 904; https://doi.org/10.3390/electronics14050904 - 25 Feb 2025
Viewed by 645
Abstract
This paper proposes a transient energy auxiliary supply circuit architecture based on resonant switched-capacitor principles, aimed at optimizing the system’s transient response to meet the growing power supply demands. This paper first introduces the relevant principles of resonant switched-capacitor converters. Based on this, [...] Read more.
This paper proposes a transient energy auxiliary supply circuit architecture based on resonant switched-capacitor principles, aimed at optimizing the system’s transient response to meet the growing power supply demands. This paper first introduces the relevant principles of resonant switched-capacitor converters. Based on this, a transient energy path topology based on resonant principles is designed to achieve bidirectional, fast, and low electromagnetic interference energy transmission. Corresponding system coordination control strategies and high-precision switch control based on delay lines are proposed for the designed circuit topology. A circuit model is built in SIMPLIS (V8.20a) software for system simulation, and a prototype is built based on FPGA to verify circuit functionality and performance. Experimental results demonstrate that the resonant energy auxiliary circuit can operate in conjunction with a six-phase Buck circuit prototype. Under test conditions of a 500 kHz operating frequency, 6.5 V input voltage, and 0.75 V output voltage, the overshoot voltage is reduced by more than 17% across the entire operating range. When the load steps from 200 A to 20 A, the overshoot voltage is reduced to only 85 mV, a decrease of 27.97%, while the recovery time is 28.8 µs, a reduction of 37.66%. These results confirm that the auxiliary circuit can significantly improve the system’s transient response under large load steps, meeting the design requirements. Full article
(This article belongs to the Special Issue Digital Control to Power Electronics, 2nd Edition)
Show Figures

Figure 1

22 pages, 15716 KB  
Article
Research on the Design and Application of Multi-Port Energy Routers
by Xianping Zhu, Weibo Li, Kangzheng Huang, Shuai Cao, Boyu Lin, Rentai Li and Wei Xu
Energies 2025, 18(4), 866; https://doi.org/10.3390/en18040866 - 12 Feb 2025
Viewed by 858
Abstract
At present, the development of the global energy internet is occurring in depth and the construction of a distributed power supply is rapid, and the energy router (ER), as a key device for integrating energy flow and information flow, has important application value [...] Read more.
At present, the development of the global energy internet is occurring in depth and the construction of a distributed power supply is rapid, and the energy router (ER), as a key device for integrating energy flow and information flow, has important application value in microgrids. In this paper, a multi-port energy router based on a 710 V DC bus is designed and developed with a modular structure design, including core components such as a total controller, a power converter, a hybrid energy storage system, and an auxiliary power supply. Flexible access and the management of multiple-voltage-level ports (690 V AC, 380 V AC, 220 V DC, and 24 V DC) are realized through rational topology design. The test results of the device show that the system performance indexes meet the design requirements. The operation is stable and reliable, displaying strong practical engineering value, and at the same time provides a technical solution that can be borrowed for other special scenarios such as the microgrid system. Full article
(This article belongs to the Special Issue Advancements in Power Electronics for Power System Applications)
Show Figures

Figure 1

22 pages, 10375 KB  
Article
A Space-Vector Analysis of the Twelve-Pulse Diode Bridge Rectifier Operation for the Auxiliary Circuit Current Determination Providing the Optimal Line Currents’ THD
by Jaroslaw Rolek and Grzegorz Utrata
Energies 2025, 18(1), 90; https://doi.org/10.3390/en18010090 - 29 Dec 2024
Viewed by 1036
Abstract
Three-phase diode bridge rectifiers are widely employed in various industrial applications because of their inherent simplicity, robustness, low electromagnetic interference and good overall performance. However, their use causes harmonic distortion in the electric power network line currents due to their nonlinear nature, which, [...] Read more.
Three-phase diode bridge rectifiers are widely employed in various industrial applications because of their inherent simplicity, robustness, low electromagnetic interference and good overall performance. However, their use causes harmonic distortion in the electric power network line currents due to their nonlinear nature, which, in turn, affects the electric power quality. The fundamental approach to limit the line currents’ total harmonic distortion (THD) introduced by the diode bridge rectification systems is based on increasing the number of steps in their waveform per power supply cycle and drawing them closer to the pure-sine waveforms. This can be achieved by employing the conventional twelve-pulse rectification system composed of two parallel connected six-pulse diode bridge rectifiers, in which the DC circuit is expanded on the auxiliary circuit responsible for adequately shaping the line currents’ waveforms per power supply cycle. When the auxiliary circuit is connected to the interphase reactor (IPR) additional (secondary) winding, the ability of the rectification system to reduce the line current THD depends mainly on the auxiliary circuit current waveform and its parameters. This paper provides a space vector analysis of the twelve-pulse diode bridge rectifier operation. It leads to devising a formula for the auxiliary circuit current related to the phase angle of the rectification system line currents’ space vector and the load current, which has been missing in the literature so far. The formula explicitly defines the auxiliary circuit current waveform that guarantees the optimal line currents’ THD for the twelve-pulse diode bridge rectifier which is expanded with the auxiliary circuit connected to the IPR secondary winding. The theoretical studies are validated through experimental investigations. Full article
(This article belongs to the Special Issue Energy, Electrical and Power Engineering: 3rd Edition)
Show Figures

Figure 1

25 pages, 3727 KB  
Article
Improved Soft-Starting Method for Doubly Fed Induction Machines Based on Standstill Rotor-Side Synchronization
by Kumar Mahtani, José M. Guerrero, José A. Sánchez and Carlos A. Platero
Electronics 2025, 14(1), 48; https://doi.org/10.3390/electronics14010048 - 26 Dec 2024
Viewed by 832
Abstract
This paper addresses the challenge of developing a cost-effective and efficient soft-starting method for doubly fed induction machines (DFIMs), a critical requirement for various industrial applications, such as pumped-storage hydropower. The research aims to improve a previously developed starting method by introducing a [...] Read more.
This paper addresses the challenge of developing a cost-effective and efficient soft-starting method for doubly fed induction machines (DFIMs), a critical requirement for various industrial applications, such as pumped-storage hydropower. The research aims to improve a previously developed starting method by introducing a rotor-side synchronization technique at standstill conditions, which simplifies the starting process and eliminates the need for additional equipment such as autotransformers, resistors, or auxiliary converters. The proposed method begins with the stator winding being fed directly from the power system, while the rotor-side converter adjusts the voltage and frequency to achieve synchronization. Once synchronized, the rotor frequency is gradually reduced by the converter, resulting in a smooth acceleration of the machine. The methodology is validated through a combination of simulations and experimental testing, demonstrating the effectiveness of the proposed approach. The results reveal smooth startup dynamics, with significant reductions in electrical stress, operational complexity, and converter sizing requirements compared to existing methods. Notably, the magnetizing current is supplied directly by the power system through the stator, reducing the burden on the rotor converter by 60% compared to the previous method. The conclusions highlight the method’s robustness and its potential as a superior alternative to existing DFIM starting techniques. Full article
Show Figures

Figure 1

25 pages, 9795 KB  
Article
Research on the Integrated Converter and Its Control for Fuel Cell Hybrid Electric Vehicles with Three Power Sources
by Yuang Ma and Wenguang Luo
Electronics 2025, 14(1), 29; https://doi.org/10.3390/electronics14010029 - 25 Dec 2024
Cited by 1 | Viewed by 1128
Abstract
Separate DC-DC converters for each energy source are typically configured in fuel-cell hybrid vehicles. This results in a complex control structure of the powertrain system, low energy density of the converter, and high cost due to the large number of components. Conducting research [...] Read more.
Separate DC-DC converters for each energy source are typically configured in fuel-cell hybrid vehicles. This results in a complex control structure of the powertrain system, low energy density of the converter, and high cost due to the large number of components. Conducting research on DC-DC converters with good energy flow management and high integration is a trend to solve such problems. Based on the analysis of the basic functional structure of the converter, this paper designs a buffering unit circuit with energy collection and distribution functions and appropriately connects it with the pulse unit circuit of the converter. Through device optimization reuse and power transmission path integration, a class of non-isolated four-port DC-DC converters is constructed, which consists of an auxiliary energy charging module, input energy source control module, braking energy feedback module and forward bootstrap boost circuit. This converter has two bi-directional ports, a uni-directional input and a bi-directional output, for separate connection to the power batteries, supercapacitors, fuel cells and DC bus. It can adapt to the fluctuation of the vehicle’s driving condition while achieving dynamic and flexible regulation of power flow and can flexibly allocate power according to the load current and voltage level of energy. It can realize a total of 14 operation modes, including six output power supply operation modes, five auxiliary power charging operation modes, and three braking energy regeneration operation modes. Furthermore, the mathematical model of this converter is constructed using the state-average method and the small-signal modeling method in order to achieve the responsiveness and stability of switching multiple operating modalities. The PI control parameters are optimized using the particle swarm optimization algorithm to achieve optimized control of the converter. The simulation system is set up using MATLAB R2024a to verify that the proposed converter topology and algorithm can dynamically allocate appropriate current paths to manipulate the power flow under various operating conditions, effectively improving the utilization rate and efficiency of energy. The converter has the characteristics of high gain and high power density, which is suitable for three-energy fuel cell hybrid electric vehicles. Full article
Show Figures

Figure 1

13 pages, 3031 KB  
Article
An Isolated Modular Multilevel DC Converter with Unipolar-to-Bipolar Conversion
by Haiqing Cai, Jingpeng Yue, Ranran An, Haohan Gu and Zihan Zhang
Electronics 2024, 13(24), 4993; https://doi.org/10.3390/electronics13244993 - 19 Dec 2024
Viewed by 1109
Abstract
Deep-sea offshore wind power generation has gained increasing attention in the past decade. The low cost and high efficiency of the DC grid system make it more competitive when the transmission distance is over 100 km. As the key enabler of the DC [...] Read more.
Deep-sea offshore wind power generation has gained increasing attention in the past decade. The low cost and high efficiency of the DC grid system make it more competitive when the transmission distance is over 100 km. As the key enabler of the DC grids, DC converters are necessitated to interconnect the DC lines with different voltage levels. Instead of using auxiliary circuits, this paper proposes a low-cost isolated modular multilevel DC converter (IMMDC) with unipolar-to-bipolar conversion topology to fit into the DC grids with different configurations. Moreover, the proposed DC-current-injection-based fault-tolerant scheme can maintain around 50% power transmission capability even under single pole open-circuit fault conditions for a certain period, enhancing the power supply continuity. The modularity and scalability of the proposed IMMDC topology can fit into different DC grid systems. The effectiveness and feasibility of the proposed topology and control strategy are verified using a 50 kV/±300 kV/100 MW MATLAB/Simulink 2022b simulation model. Full article
Show Figures

Figure 1

17 pages, 6890 KB  
Article
An Inherent Decoupled Triple-Active Bridge Converter for All-Electric Aircraft DC Power Systems
by Giuseppe Bossi, Nicola Campagna, Mauro Boi, Rosario Miceli and Alfonso Damiano
Energies 2024, 17(24), 6368; https://doi.org/10.3390/en17246368 - 18 Dec 2024
Viewed by 1009
Abstract
This paper focuses on a power conditioning system for an all-electric aircraft (AEA) powered by a single battery pack. The research project aims to identify a multi-port DC/DC converter topology that adequately supplies the two DC buses connected to the propulsion system and [...] Read more.
This paper focuses on a power conditioning system for an all-electric aircraft (AEA) powered by a single battery pack. The research project aims to identify a multi-port DC/DC converter topology that adequately supplies the two DC buses connected to the propulsion system and auxiliary equipment, respectively. To achieve this, a triple-active bridge (TAB) in its inherently decoupled configuration has been investigated, prototyped, and experimentally verified. The TAB voltage control system was designed, simulated, and experimentally validated. Specifically, start-up, steady-state and step-load performances were evaluated by the simulation study and then experimentally validated on a scaled prototype. The results assess the feasibility of using an inherently decoupled TAB as a power conditioning system for interconnecting the AEA battery pack with the electric propulsion and auxiliary systems. In particular, the developed TAB configuration secures the decoupled power transfer between the two output ports providing at the same time good dynamic performance in terms of voltage control during step-load variation. Full article
(This article belongs to the Special Issue Design and Control Strategies for Wide Input Range DC-DC Converters)
Show Figures

Figure 1

Back to TopTop