Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (131)

Search Parameters:
Keywords = atmospheric anions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4796 KiB  
Article
Hydrogeochemical Characteristics, Formation Mechanisms, and Groundwater Evaluation in the Central Dawen River Basin, Northern China
by Caiping Hu, Kangning Peng, Henghua Zhu, Sen Li, Peng Qin, Yanzhen Hu and Nan Wang
Water 2025, 17(15), 2238; https://doi.org/10.3390/w17152238 - 27 Jul 2025
Viewed by 335
Abstract
Rapid socio-economic development and the impact of human activities have exerted tremendous pressure on the groundwater system of the Dawen River Basin (DRB), the largest tributary in the middle and lower reaches of the Yellow River. Hydrochemical studies on the DRB have largely [...] Read more.
Rapid socio-economic development and the impact of human activities have exerted tremendous pressure on the groundwater system of the Dawen River Basin (DRB), the largest tributary in the middle and lower reaches of the Yellow River. Hydrochemical studies on the DRB have largely centered on the upstream Muwen River catchment and downstream Dongping Lake, with some focusing solely on karst groundwater. Basin-wide evaluations suggest good overall groundwater quality, but moderate to severe contamination is confined to the lower Dongping Lake area. The hydrogeologically complex mid-reach, where the Muwen and Chaiwen rivers merge, warrants specific focus. This region, adjacent to populous areas and industrial/agricultural zones, features diverse aquifer systems, necessitating a thorough analysis of its hydrochemistry and origins. This study presents an integrated hydrochemical, isotopic investigation and EWQI evaluation of groundwater quality and formation mechanisms within the multiple groundwater types of the central DRB. Central DRB groundwater has a pH of 7.5–8.2 (avg. 7.8) and TDSs at 450–2420 mg/L (avg. 1075.4 mg/L) and is mainly brackish, with Ca2+ as the primary cation (68.3% of total cations) and SO42− (33.6%) and NO3 (28.4%) as key anions. The Piper diagram reveals complex hydrochemical types, primarily HCO3·SO4-Ca and SO4·Cl-Ca. Isotopic analysis (δ2H, δ18O) confirms atmospheric precipitation as the principal recharge source, with pore water showing evaporative enrichment due to shallow depths. The Gibbs diagram and ion ratios demonstrate that hydrochemistry is primarily controlled by silicate and carbonate weathering (especially calcite dissolution), active cation exchange, and anthropogenic influences. EWQI assessment (avg. 156.2) indicates generally “good” overall quality but significant spatial variability. Pore water exhibits the highest exceedance rates (50% > Class III), driven by nitrate pollution from intensive vegetable cultivation in eastern areas (Xiyangzhuang–Liangzhuang) and sulfate contamination from gypsum mining (Guojialou–Nanxiyao). Karst water (26.7% > Class III) shows localized pollution belts (Huafeng–Dongzhuang) linked to coal mining and industrial discharges. Compared to basin-wide studies suggesting good quality in mid-upper reaches, this intensive mid-reach sampling identifies critical localized pollution zones within an overall low-EWQI background. The findings highlight the necessity for aquifer-specific and land-use-targeted groundwater protection strategies in this hydrogeologically complex region. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

23 pages, 3008 KiB  
Article
Quantitative Analysis of Sulfur Elements in Mars-like Rocks Based on Multimodal Data
by Yuhang Dong, Zhengfeng Shi, Junsheng Yao, Li Zhang, Yongkang Chen and Junyan Jia
Sensors 2025, 25(14), 4388; https://doi.org/10.3390/s25144388 - 14 Jul 2025
Viewed by 364
Abstract
The Zhurong rover of the Tianwen-1 mission has detected sulfates in its landing area. The analysis of these sulfates provides scientific evidence for exploring past hydration conditions and atmospheric evolution on Mars. As a non-contact technique with long-range detection capability, Laser-Induced Breakdown Spectroscopy [...] Read more.
The Zhurong rover of the Tianwen-1 mission has detected sulfates in its landing area. The analysis of these sulfates provides scientific evidence for exploring past hydration conditions and atmospheric evolution on Mars. As a non-contact technique with long-range detection capability, Laser-Induced Breakdown Spectroscopy (LIBS) is widely used for elemental identification on Mars. However, quantitative analysis of anionic elements using LIBS remains challenging due to the weak characteristic spectral lines of evaporite salt elements, such as sulfur, in LIBS spectra, which provide limited quantitative information. This study proposes a quantitative analysis method for sulfur in sulfate-containing Martian analogs by leveraging spectral line correlations, full-spectrum information, and prior knowledge, aiming to address the challenges of sulfur identification and quantification in Martian exploration. To enhance the accuracy of sulfur quantification, two analytical models for high and low sulfur concentrations were developed. Samples were classified using infrared spectroscopy based on sulfur content levels. Subsequently, multimodal deep learning models were developed for quantitative analysis by integrating LIBS and infrared spectra, based on varying concentrations. Compared to traditional unimodal models, the multimodal method simultaneously utilizes elemental chemical information from LIBS spectra and molecular structural and vibrational characteristics from infrared spectroscopy. Considering that sulfur exhibits distinct absorption bands in infrared spectra but demonstrates weak characteristic lines in LIBS spectra due to its low ionization energy, the combination of both spectral techniques enables the model to capture complementary sample features, thereby effectively improving prediction accuracy and robustness. To validate the advantages of the multimodal approach, comparative analyses were conducted against unimodal methods. Furthermore, to optimize model performance, different feature selection algorithms were evaluated. Ultimately, an XGBoost-based feature selection method incorporating prior knowledge was employed to identify optimal LIBS spectral features, and the selected feature subsets were utilized in multimodal modeling to enhance stability. Experimental results demonstrate that, compared to the BPNN, SVR, and Inception unimodal methods, the proposed multimodal approach achieves at least a 92.36% reduction in RMSE and a 46.3% improvement in R2. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

19 pages, 15843 KiB  
Article
Hydrochemical Characteristics and Formation Mechanisms of Groundwater in the Nanmiao Emergency Groundwater Source Area, Yichun, Western Jiangxi, China
by Shengpin Yu, Tianye Wang, Ximin Bai, Gongxin Chen, Pingqiang Wan, Shifeng Chen, Qianqian Chen, Haohui Wan and Fei Deng
Water 2025, 17(14), 2063; https://doi.org/10.3390/w17142063 - 10 Jul 2025
Viewed by 290
Abstract
The Nanmiao Emergency Groundwater Source Area, rich in H2SiO3, serves as a strategic freshwater reserve zone in western Jiangxi Province. However, the mechanisms underlying groundwater formation in this area remain unclear. This study applied a combination of statistical analysis, [...] Read more.
The Nanmiao Emergency Groundwater Source Area, rich in H2SiO3, serves as a strategic freshwater reserve zone in western Jiangxi Province. However, the mechanisms underlying groundwater formation in this area remain unclear. This study applied a combination of statistical analysis, isotopic tracing, and hydrochemical modeling to reveal the hydrochemical characteristics and origins of groundwater in the region. The results indicate that Na+ and Ca2+ dominate the cations, while HCO3 and Cl dominate the anions. Groundwater from descending springs is characterized by low mineralization and weak acidity, with hydrochemical types of primarily HCO3–Na·Mg and HCO3–Mg·Na·Ca. Groundwater from boreholes is weakly mineralized and neutral, with dominant hydrochemical types of HCO3–Ca·Na and HCO3–Ca·Na·Mg, suggesting a deep circulation hydrogeochemical process. Hydrogen and oxygen isotope analysis indicates that atmospheric precipitation is the primary recharge source. The chemical composition of groundwater is mainly controlled by rock weathering, silicate mineral dissolution, and cation exchange processes. During groundwater flowing, water and rock interactions, such as leaching, cation exchange, and mixing, occur. This study identifies the recharge sources and circulation mechanisms of regional groundwater, offering valuable insights for the sustainable development and protection of the emergency water source area. Full article
(This article belongs to the Special Issue Advances in Surface Water and Groundwater Simulation in River Basin)
Show Figures

Figure 1

25 pages, 4500 KiB  
Article
Cost-Effective Bimetallic Catalysts for Green H2 Production in Anion Exchange Membrane Water Electrolyzers
by Sabrina Campagna Zignani, Marta Fazio, Mariarosaria Pascale, Chiara Alessandrello, Claudia Triolo, Maria Grazia Musolino and Saveria Santangelo
Nanomaterials 2025, 15(13), 1042; https://doi.org/10.3390/nano15131042 - 4 Jul 2025
Viewed by 454
Abstract
Green hydrogen production from water electrolysis (WE) is one of the most promising technologies to realize a decarbonized future and efficiently utilize intermittent renewable energy. Among the various WE technologies, the emerging anion exchange membrane (AEMWE) technology shows the greatest potential for producing [...] Read more.
Green hydrogen production from water electrolysis (WE) is one of the most promising technologies to realize a decarbonized future and efficiently utilize intermittent renewable energy. Among the various WE technologies, the emerging anion exchange membrane (AEMWE) technology shows the greatest potential for producing green hydrogen at a competitive price. To achieve this goal, simple methods for the large-scale synthesis of efficient and low-cost electrocatalysts are needed. This paper proposes a very simple and scalable process for the synthesis of nanostructured NiCo- and NiFe-based electrode materials for a zero-gap AEMWE full cell. For the preparation of the cell anode, oxides with different Ni molar fractions (0.50 or 0.85) are synthesized by the sol–gel method, followed by calcination in air at different temperatures (400 or 800 °C). To fabricate the cell cathode, the oxides are reduced in a H2/Ar atmosphere. Electrochemical testing reveals that phase purity and average crystal size significantly influence cell performance. Highly pure and finely grained electrocatalysts yield higher current densities at lower overpotentials. The best performing membrane electrode assembly exhibits a current density of 1 A cm−2 at 2.15 V during a steady-state 150 h long stability test with 1 M KOH recirculating through the cell, the lowest series resistance at any cell potential (1.8 or 2.0 V), and the highest current density at the cut-off voltage (2.2 V) both at the beginning (1 A cm−2) and end of tests (1.78 A cm−2). The presented results pave the way to obtain, via simple and scalable techniques, cost-effective catalysts for the production of green hydrogen aimed at a wider market penetration by AEMWE. Full article
Show Figures

Figure 1

19 pages, 2158 KiB  
Article
Stability of an Ultra-Low-Temperature Water–Gas Shift Reaction SILP Catalyst
by Ferdinand Fischer, Johannes Thiessen, Wolfgang Korth and Andreas Jess
Catalysts 2025, 15(6), 602; https://doi.org/10.3390/catal15060602 - 18 Jun 2025
Viewed by 500
Abstract
For PEM fuel cell operation, high-purity hydrogen gas containing only trace amounts of carbon monoxide is a prerequisite. The water–gas shift reaction (WGSR) is an industrially applied mature operation mode to convert CO with H2O into CO2 (making it easy [...] Read more.
For PEM fuel cell operation, high-purity hydrogen gas containing only trace amounts of carbon monoxide is a prerequisite. The water–gas shift reaction (WGSR) is an industrially applied mature operation mode to convert CO with H2O into CO2 (making it easy to separate, if necessary) and H2. Since the WGS reaction is an exothermic equilibrium reaction, low temperatures (below 200 °C) lead to full CO conversion. Thus, highly active ultra-low-temperature WGSR catalysts have to be applied. A homogeneous Ru SILP (supported ionic liquid phase) catalyst based on the precursor complex [Ru(CO)3Cl2]2 has been identified to operate at such low temperature levels. However, in a hydrogen rich atmosphere, transition metal complexes are prone to form nanoparticles (NPs) when dissolved in ionic liquids (ILs). In this article, the behavior of an anionic SILP WGSR catalyst, i.e., [Ru(CO)3Cl3] dissolved in [BMMIM]Cl, in an H2-rich CO environment is described. The data reveal that during the WGSR, Ru nanoparticles form in the catalyst when very low CO concentrations are reached. The Ru NPs formation has been confirmed by transmission electron microscopy imaging and X-ray diffraction (XRD). Full article
(This article belongs to the Section Catalysis for Sustainable Energy)
Show Figures

Figure 1

18 pages, 4318 KiB  
Article
The Genesis and Hydrochemical Formation Mechanism of Karst Springs in the Central Region of Shandong Province, China
by Yuanqing Liu, Le Zhou, Xuejun Ma, Dongguang Wen, Wei Li and Zheming Shi
Water 2025, 17(12), 1805; https://doi.org/10.3390/w17121805 - 17 Jun 2025
Viewed by 346
Abstract
With the intensification of human activities, the water resource environment in the karst mountainous area of central Shandong has undergone significant changes, directly manifested in the cessation of karst spring flows and the occurrence of karst collapses within the spring basin in the [...] Read more.
With the intensification of human activities, the water resource environment in the karst mountainous area of central Shandong has undergone significant changes, directly manifested in the cessation of karst spring flows and the occurrence of karst collapses within the spring basin in the Laiwu Basin. To support the scientific development and management of karst water, this study utilizes comprehensive analysis and deuterium-oxygen isotope test data from surveys and sampling of 20 typical karst springs conducted between 2016 and 2018. By integrating mathematical statistics, correlation analysis, and ion component ratio methods, the study analyzes the genesis, hydrochemical ion component sources, and controlling factors of typical karst springs in the Laiwu Basin. The results indicate that the genesis of karst springs in the Laiwu Basin is controlled by three factors: faults, rock masses, and lithology, and can be classified into four types: water resistance controlled by lithology, by faults, by basement, and by rock mass. The karst springs are generally weakly alkaline freshwater, with the main ion components being HCO3 and Ca2+, accounting for approximately 55.02% and 71.52% of the anion and cation components, respectively; about 50% of the sampling points have a hydrochemical type of HCO3·SO4-Ca·Mg. Stable isotope (δ18O and δD) results show that atmospheric precipitation is the primary recharge source for karst springs in the Laiwu Basin. There are varying degrees of evaporative fractionation and water–rock interaction during the groundwater flow process, resulting in significantly higher deuterium excess (d-excess) in the sampling points on the southern side of the basin compared to the northern side, indicating clear differentiation. The hydrochemical composition of the karst groundwater system is predominantly governed by water–rock interactions during flow processes and anthropogenic influences. Carbonate dissolution (primarily calcite) serves as the principal source of HCO3, SO42−, Ca2+, and Mg2+, while evaporite dissolution and reverse cation exchange contribute to the slight enrichment of Ca2+ and Mg2+ alongside depletion of Na+ and K+ in spring waters. Saturation indices (SI) reveal that spring waters are saturated with respect to gypsum, aragonite, calcite, and dolomite, but undersaturated for halite. The mixing of urban domestic sewage, agricultural planting activities, and the use of manure also contributes to the formation of Cl and NO3 ions in karst springs. Full article
(This article belongs to the Topic Human Impact on Groundwater Environment, 2nd Edition)
Show Figures

Figure 1

12 pages, 1949 KiB  
Article
Phonon Structure Engineering for Intrinsically Spectrally Selective Emitters by Anion Groups
by Rui Zhang, Enhui Huang, Wenying Zhong and Bo Xu
Photonics 2025, 12(6), 597; https://doi.org/10.3390/photonics12060597 - 11 Jun 2025
Viewed by 804
Abstract
Spectrally selective emitters (SSEs) have attracted considerable attention, because of radiative cooling, which could dissipate the heat from earth to outer space through the atmospheric window without any energy input. Intrinsically inorganic SSEs have significant advantages to other SSEs, such as the low [...] Read more.
Spectrally selective emitters (SSEs) have attracted considerable attention, because of radiative cooling, which could dissipate the heat from earth to outer space through the atmospheric window without any energy input. Intrinsically inorganic SSEs have significant advantages to other SSEs, such as the low fabrication cost due to the extremely simple structures and long life span under solar exposure. However, few inorganic materials can act as intrinsic SSEs due to the limited emissions in the atmospheric window. Here, we propose a strategy to design intrinsic SSEs by complementing the IR-active phonons in atmospheric window with anion groups. Accordingly, we demonstrate borates containing both [BO3]3− and [BO4]5− units can exhibit high emissivity within the whole atmospheric window, because the IR-active phonons of [BO3]3− units usually locate around 8 and 13 μm, while those of [BO4]5− units distribute in 9~11 μm. Furthermore, K3B6O10Cl and BaAlBO4 are selected as two examples to display their near-unity emissivity (>95%) within the whole atmospheric window experimentally. These results not only offer a new strategy for the design of intrinsic SSEs, but also endow wide band-gap borates containing both [BO3]3− and [BO4]5− units with great potential applications for radiative cooling. Full article
(This article belongs to the Special Issue Infrared Optoelectronic Materials and Devices)
Show Figures

Figure 1

32 pages, 16345 KiB  
Article
Surface Ion-Imprinted Polypropylene Fibers for Selective and Rapid Adsorption of Borate Ions: Preparation, Characterization, and Performance Study
by Hui Jiang, Xinchi Zong, Zhengwei Luo, Wenhua Geng and Jianliang Zhu
Polymers 2025, 17(10), 1368; https://doi.org/10.3390/polym17101368 - 16 May 2025
Viewed by 332
Abstract
This study presents a novel ion-imprinted fiber material, I-(PP-g-GMA-NMDG), designed for the rapid and selective adsorption of borate ions. Leveraging low-temperature plasma graft polymerization, polypropylene (PP) melt-blown fibers were functionalized with glycidyl methacrylate (GMA) and N-methyl-D-glucamine (NMDG) to introduce tailored [...] Read more.
This study presents a novel ion-imprinted fiber material, I-(PP-g-GMA-NMDG), designed for the rapid and selective adsorption of borate ions. Leveraging low-temperature plasma graft polymerization, polypropylene (PP) melt-blown fibers were functionalized with glycidyl methacrylate (GMA) and N-methyl-D-glucamine (NMDG) to introduce tailored recognition sites. Systematic optimization of plasma parameters (100 W discharge power, O2 atmosphere) and liquid-phase grafting conditions (28.5% GMA, 85 °C, 2.5 h) achieved a grafting rate of 203.26%. The imprinted fibers exhibited exceptional adsorption performance, with a maximum capacity of 35.85 mg/g at pH 9, reaching 90% saturation within 60 min. Adsorption kinetics adhered to a pseudo-second-order model, while the Freundlich isotherm indicated multilayer adsorption. Competitive ion experiments demonstrated high selectivity for B(OH)4 over anions (SO42− and Cl) and cations (Na+, K+, Ca2+, and Mg2+), which was attributed to the precise spatial and charge complementarity of the imprinted cavities. Characterization via FT-IR, XRD, and SEM confirmed successful synthesis and structural stability. The material retained 78.1% adsorption efficiency after five regeneration cycles, showcasing its practicality for boron recovery from wastewater. This work advances boron-selective adsorption technology by combining plasma modification with ion imprinting, offering a sustainable solution for industrial and environmental applications. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

18 pages, 4165 KiB  
Article
Using Geochemistry, Stable Isotopes and Statistical Tools to Estimate the Sources and Transformation of Nitrate in Groundwater in Jinan Spring Catchment, China
by Kairan Wang, Mingyuan Fan, Zhen Wu, Xin Zhang, Hongbo Wang, Xuequn Chen and Mingsen Wang
Toxics 2025, 13(5), 393; https://doi.org/10.3390/toxics13050393 - 14 May 2025
Viewed by 456
Abstract
Nitrate (NO3) pollution resulting from anthropogenic activities represents one of the most prevalent environmental issues in karst spring catchments of northern China. In June 2021, a comprehensive study was conducted in the Jinan Spring Catchment (JSC), where 30 groundwater and [...] Read more.
Nitrate (NO3) pollution resulting from anthropogenic activities represents one of the most prevalent environmental issues in karst spring catchments of northern China. In June 2021, a comprehensive study was conducted in the Jinan Spring Catchment (JSC), where 30 groundwater and surface water samples were collected. The sources and spatial distribution of nitrate pollution were systematically investigated through hydrochemical analysis combined with dual-isotope tracing techniques (δ15NNO3 and δ18ONO3). Analytical results revealed that the predominant anion and cation sequences were HCO3 > SO42− > Cl > NO3 and Ca2+ > Na+ > Mg2+ > K+, respectively, with HCO3·SO4-Ca identified as the primary hydrochemical type. Notably, the average NO3 concentration in groundwater (46.62 mg/L) significantly exceeded that in surface water (4.96 mg/L). Among the water samples, 11 locations exhibited substantial nitrate pollution, demonstrating an exceedance rate of 42%. Particularly, the NO3-N concentrations in both the upstream recharge area and downstream drainage area were markedly higher than those in the runoff area. The spatial distribution of NO3 concentrations was primarily influenced by mixing processes, with no significant evidence of denitrification observed. The isotopic compositions ranged from −1.42‰ to 12.79‰ for δ15NNO3 and 0.50‰ to 15.63‰ for δ18ONO3. Bayesian isotope mixing model (MixSIAR) analysis indicated that domestic sewage and manure constituted the principal nitrate sources, contributing 37.1% and 56.9% to groundwater and surface water, respectively. Secondary sources included soil organic nitrogen, rainfall and fertilizer NH4+, and chemical fertilizers, while atmospheric deposition showed the lowest contribution rate. Additionally, potential mixing of soil organic nitrogen with chemical fertilizer was identified. Full article
Show Figures

Figure 1

16 pages, 1430 KiB  
Article
Plasma-Activated Water Against Carbapenem-Resistant Klebsiella pneumoniae and Vancomycin-Resistant Enterococcus faecalis
by Dragana Vuković, Maja Miletić, Boško Toljić, Nikola Milojević, Olivera Jovanović, Jovana Kuzmanović Pfićer, Nikola Škoro and Nevena Puač
Pathogens 2025, 14(5), 410; https://doi.org/10.3390/pathogens14050410 - 24 Apr 2025
Cited by 1 | Viewed by 610
Abstract
The scope of the antibacterial effects of plasma-activated water (PAW) is not yet fully comprehended. We investigated the activity of PAW produced by the in-house 3-pin atmospheric pressure plasma jet against carbapenem-resistant Klebsiella pneumoniae and vancomycin-resistant Enterococcus faecalis, with a focus on [...] Read more.
The scope of the antibacterial effects of plasma-activated water (PAW) is not yet fully comprehended. We investigated the activity of PAW produced by the in-house 3-pin atmospheric pressure plasma jet against carbapenem-resistant Klebsiella pneumoniae and vancomycin-resistant Enterococcus faecalis, with a focus on PAW’s potential to promote susceptibility to conventional antibiotics in these bacteria. Bacterial inactivation was determined by the colony count after 15 and 60 min PAW treatments. Minimum inhibitory concentrations (MICs) measured following repeated exposures to PAW across multiple generations of bacteria enabled the assessment of changes in susceptibility to antibiotics. The PAW’s efficacy was also analyzed through the detection of intracellular reactive oxygen and nitrogen species in treated bacteria. Time-dependent significant inactivation efficiency against K. pneumoniae was observed (log reduction 6.92 ± 0.24 after 60 min exposure), while effects on E. faecalis were limited. PAW demonstrated potential to decrease the MICs of crucial antibiotics. Namely, a 50 to 62.5% decrease in the MICs of colistin against K. pneumoniae and a 25% reduction in the MICs of vancomycin against enterococci were recorded. We found a significant increase in the superoxide anion concentration in K. pneumoniae and E. faecalis cells after PAW treatments. This study indicates that PAW’s inactivating efficacy coupled with the capacity for the potentiation of antibiotic effects is a promising combination against multidrug-resistant bacteria. Full article
(This article belongs to the Section Bacterial Pathogens)
Show Figures

Figure 1

16 pages, 8643 KiB  
Article
Tuning the Surface Oxophilicity of PdAu Alloy Nanoparticles to Favor Electrochemical Reactions: Hydrogen Oxidation and Oxygen Reduction in Anion Exchange Membrane Fuel Cells
by Maria V. Pagliaro, Lorenzo Poggini, Marco Bellini, Lorenzo Fei, Tailor Peruzzolo and Hamish A. Miller
Catalysts 2025, 15(4), 306; https://doi.org/10.3390/catal15040306 - 24 Mar 2025
Viewed by 481
Abstract
Anion exchange membrane fuel cells (AEMFCs) are versatile power generation devices that can be fed by both gaseous (H2) and liquid fuels. The development of sustainable, efficient, and stable catalysts for the oxidation of hydrogen (HOR) and oxygen reduction (ORR) under [...] Read more.
Anion exchange membrane fuel cells (AEMFCs) are versatile power generation devices that can be fed by both gaseous (H2) and liquid fuels. The development of sustainable, efficient, and stable catalysts for the oxidation of hydrogen (HOR) and oxygen reduction (ORR) under alkaline conditions remains a challenge currently facing AEMFC technology. Reducing the loading of PGMs is essential for reducing the overall cost of AEMFCs. One strategy involves exploiting the synergistic effects of two metals in bimetallic nanoparticles (NPs). Here, we report that the activity for the HOR and the ORR can be finely tuned through surface engineering of carbon-supported PdAu-PVA NPs. The activity for both ORR and HOR can be adjusted by subjecting the material to heat treatment. Specifically, heat treatment at 500 °C under an inert atmosphere increases the crystallinity and oxophilicity of the nanoparticles, thereby enhancing anodic HOR performance. On the contrary, heat treatment significantly lowers ORR activity, highlighting how reduced surface oxophilicity plays a major role in increasing active sites for ORR. The tailored activity in these catalysts translates into high power densities when employed in AEMFCs (up to 1.1 W cm−2). Full article
Show Figures

Graphical abstract

21 pages, 4425 KiB  
Article
Transition of CO2 from Emissions to Sequestration During Chemical Weathering of Ultramafic and Mafic Mine Tailings
by Xiaolin Zhang, Long-Fei Gou, Liang Tang, Shen Liu, Tim T. Werner, Feng Jiang, Yinger Deng and Amogh Mudbhatkal
Minerals 2025, 15(1), 68; https://doi.org/10.3390/min15010068 - 12 Jan 2025
Viewed by 1354
Abstract
Weather-enhanced sulphide oxidation accelerates CO2 release into the atmosphere. However, over extended geological timescales, ultramafic and mafic magmatic minerals may transition from being sources of CO2 emissions to reservoirs for carbon sequestration. Ultramafic and mafic mine tailings present a unique opportunity [...] Read more.
Weather-enhanced sulphide oxidation accelerates CO2 release into the atmosphere. However, over extended geological timescales, ultramafic and mafic magmatic minerals may transition from being sources of CO2 emissions to reservoirs for carbon sequestration. Ultramafic and mafic mine tailings present a unique opportunity to monitor carbon balance processes, as mine waste undergoes instantaneous and rapid chemical weathering, which shortens the duration between CO2 release and absorption. In this study, we analysed 30 vanadium-titanium magnetite mine tailings ponds with varying closure times in the Panxi region of China, where ~60 years of mineral excavation and dressing have produced significant outcrops of mega-mine waste. Our analysis of anions, cations, saturation simulations, and 87Sr/86Sr; δ13C and δ34S isotopic fingerprints from mine tailings filtrates reveals that the dissolution load of mine tailings may depend significantly on early-stage sulphide oxidation. Despite the abundance of ultramafic and mafic minerals in tailings, dolomite dominates chemical weathering, accounting for ~79.2% of the cationic load. Additionally, due to sulphuric-carbonate weathering, the filtrates undergo deacidification along with sulphide depletion. The data in this study suggest that pristine V-Ti-Fe tailings ponds undergo CO2 emissions in the first two years but subsequently begin to absorb atmospheric CO2 along with the filtrates. Our results provide valuable insights into monitoring weathering transitions and carbon balance in ultramafic and mafic rocks. Full article
(This article belongs to the Special Issue CO2 Mineralization and Utilization)
Show Figures

Graphical abstract

14 pages, 6155 KiB  
Article
Oxometallate-Based Ionic Liquid Catalyzed CO2-Promoted Hydration of Propargylic Alcohols for α-Hydroxy Ketones Synthesis
by Yuankun Wang, Chongli Wang, Weidong Lin, Qin Wang, Baisong Li, Cheng Chen, Ye Yuan and Francis Verpoort
Int. J. Mol. Sci. 2025, 26(1), 62; https://doi.org/10.3390/ijms26010062 - 25 Dec 2024
Viewed by 796
Abstract
α-Hydroxy ketones are a crucial class of organic compounds prevalent in natural products and pharmaceutical molecules. The CO2-promoted hydration of propargylic alcohols is an efficient method for the synthesis of α-hydroxy ketones. Herein, an ionic liquid (IL) was designed to catalyze [...] Read more.
α-Hydroxy ketones are a crucial class of organic compounds prevalent in natural products and pharmaceutical molecules. The CO2-promoted hydration of propargylic alcohols is an efficient method for the synthesis of α-hydroxy ketones. Herein, an ionic liquid (IL) was designed to catalyze this reaction individually under atmospheric CO2 pressure, volatile organic solvents, and additives. This IL, constructed from the molybdate anion, can be recycled from industrial (NH4)2MoO4 production wastewater, demonstrating its high tolerance to catalytic environments and significant potential for practical applications. To our knowledge, this is the first instance of an oxometallate-based IL catalyst being utilized for the CO2-promoted hydration of propargylic alcohols. Further mechanistic studies revealed the bifunctionality of this IL in activating both CO2 and substrates. Full article
(This article belongs to the Special Issue Design, Synthesis and Applications of the Task-Specific Molecules)
Show Figures

Graphical abstract

27 pages, 4897 KiB  
Article
Preparation, Optical, and Heat Resistance Properties of Phenyl-Modified Silicone Gel
by Xueming Chen, Xuan Wu, Chen Jin, Leiyu Hou, Shuting Zhang, Yipin Zhang, Hong Dong, Yanjiang Song, Zhirong Qu and Chuan Wu
Polymers 2025, 17(1), 9; https://doi.org/10.3390/polym17010009 - 24 Dec 2024
Viewed by 1265
Abstract
A series of Si-H- or Si-Vi-terminated, branched and linear oligomers containing Me2SiO segments were prepared by equilibrium polymerization or non-equilibrium polymerization initiated by living anions, respectively. These oligomers were used to improve the defects of concentrated crosslinking points and the high [...] Read more.
A series of Si-H- or Si-Vi-terminated, branched and linear oligomers containing Me2SiO segments were prepared by equilibrium polymerization or non-equilibrium polymerization initiated by living anions, respectively. These oligomers were used to improve the defects of concentrated crosslinking points and the high hardness of crosslinked products when using phenyltris(dimethylsiloxy)silane or 1,1,5,5-tetramethyl-3,3-diphenyl trisiloxane as crosslinking agents in the preparation of silicone gel. NMR, FT-IR, and GPC characterized the structure and molecular weight information of the prepared oligomers. The effects of equilibrium polymerization and the anionic non-equilibrium ring-opening polymerization methods on the structure of oligomers were investigated in detail, together with the structure, the molar ratio of SiH to SiVi, and the phenyl content on the thermal properties and the transmittance retention yield of the silicone gel. The introduction of phenyl groups increases the glass transition temperature of silicone gel from −121.29 °C to −117.71 °C when the phenyl content increased from 0.88 wt% to 3.17 wt%. Meanwhile, the thermal decomposition temperature of silicone gel at 10% weight loss in the N2 atmosphere increased from 440.5 °C to 480.0 °C. When the SiH/SiVi molar ratio is close to 1.0, the transmittance retention yield of the prepared silicone gel using Si-Vi-terminated phenyl T-shaped polysiloxane as the matrix and α, ω-dimethylsiloxyl-terminated PDMS as the crosslinking agent could reach 88.9% after 25 min of UV irradiation. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

31 pages, 14620 KiB  
Review
A Short Review of Layered Double Oxide-Based Catalysts for NH3-SCR: Synthesis and NOx Removal
by Tao Sun, Xin Wang, Jinshan Zhang, Lan Wang, Xianghai Song, Pengwei Huo and Xin Liu
Catalysts 2024, 14(11), 755; https://doi.org/10.3390/catal14110755 - 26 Oct 2024
Cited by 3 | Viewed by 2425
Abstract
Nitrogen oxides are one of the main atmospheric pollutants and pose a threat to the ecological environment and human health. Selective catalytic reduction (NH3-SCR) is an effective way of removing nitrogen oxides, with the catalyst being the key to this technology. [...] Read more.
Nitrogen oxides are one of the main atmospheric pollutants and pose a threat to the ecological environment and human health. Selective catalytic reduction (NH3-SCR) is an effective way of removing nitrogen oxides, with the catalyst being the key to this technology. Two-dimensional nanostructured layered double oxide (LDO) has attracted increasing attention due to the controllability of cations in the layers and the exchangeability of anions between layers. As a derivative of layered double hydroxide (LDH), LDO not only inherits the controllability and diversity inherent in the LDH structure but also exhibits excellent performance in the catalytic field. This article contains three main sections. It begins with a brief discussion of the development of LDO catalysts and analyzes the advantages of the LDO structure. The later section introduces the synthesis methods of LDH, clarifies the conversion relationship between LDH and LDO, and summarizes the modification impacts of the properties of LDO catalysts. The application of LDO catalysts used in NH3-SCR under wild temperature conditions is discussed, and the different types, reaction processes, and mechanisms of LDO catalysts are described in the third section. Finally, future research directions and outlooks are also offered to assist the development of LDO catalysts and overcome the difficult points related to NH3-SCR. Full article
(This article belongs to the Special Issue Environmental Applications of Novel Nanocatalytic Materials)
Show Figures

Graphical abstract

Back to TopTop