Environmental Applications of Novel Nanocatalytic Materials

A special issue of Catalysts (ISSN 2073-4344). This special issue belongs to the section "Environmental Catalysis".

Deadline for manuscript submissions: closed (31 October 2024) | Viewed by 1555

Special Issue Editor


E-Mail Website
Guest Editor
National Research and Development Institute for Cryogenic and Isotopic Technologies-ICSI Ramnicu Valcea, 240050 Ramnicu Valcea, Romania
Interests: analytical chemistry; environment; heterogeneous catalysis; life science; nanocatalysts; nanomaterials; nanotechnology
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Nanocatalytic materials have recently made great progress in environmental applications and energy technologies. Great efforts have been made by researchers and scientists to create novel nanocatalysts with interesting properties for catalytic applications in energy and the environment.

This Special Issue focuses on the state-of-the-art routes for nanostructure design and detailed characterization techniques for the comprehensive understanding of the nanostructured materials' behavior and their future perspectives in the environmental research field. Here, we invite the scientific community to contribute in the form of original research or review articles that explore the optimized design, study, understanding, and optimization of materials with application in the environment.

Dr. Violeta Niculescu
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Catalysts is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • environment
  • energy
  • nanocatalytic materials
  • nanostructured
  • nanomaterials

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

17 pages, 12083 KiB  
Article
Accelerated Electrons Transfer and Synergistic Interplay of Co and Ge Atoms (111 Crystal Plane) Activated by Anchoring Nano Spinel Structure Co2GeO4 onto Carbon Cloth Composite Electrocatalyst for Highly Enhanced Hydrogen Evolution Reaction
by Chen Chen, Jiarui Zhu, Ting Cheng, Fei Wu, Jun Xie, Dawei He, Youzhi Dai, Xiao Zhang, Le Zhao and Zhongsheng Wei
Catalysts 2024, 14(10), 664; https://doi.org/10.3390/catal14100664 - 25 Sep 2024
Viewed by 735
Abstract
The electrochemical hydrogen evolution reaction (HER) was considered to be a promising strategy for future clean energy. In this work, a composite electrocatalyst (designated as CGO36@CC) was synthesized through anchoring of nano spinel structure Co2GeO4 onto carbon cloth fibers and [...] Read more.
The electrochemical hydrogen evolution reaction (HER) was considered to be a promising strategy for future clean energy. In this work, a composite electrocatalyst (designated as CGO36@CC) was synthesized through anchoring of nano spinel structure Co2GeO4 onto carbon cloth fibers and exhibited outstanding electrocatalytic performance for HERs in an alkaline medium. The characterization outcome established that, after 36 h of hydrothermal reaction, nano spinel structure Co2GeO4 particles (exposed abundant 111 crystal planes) were stably loaded onto a carbon cloth fiber surface, and this structural configuration facilitated the electrons transferring between each other. In addition, the electrochemical analysis revealed that the incorporation of nano spinel structure Co2GeO4 and carbon cloth significantly augmented the electrochemical activity value of the composite and efficiently enhanced the HER performance. Notably, the overpotential was merely 96 mV at 10 mA·cm−2 current density, and the Tafel slope was only 48.9 mV·dec−1. Moreover, CGO36@CC displayed remarkable catalytic activity and sustained HER catalytic stability. The theoretical catalytic prowess of CGO36@CC stemmed from the collaborative influence of germanium and cobalt atoms within the exposed 111 crystal plane of the Co2GeO4 molecular framework. The amalgamation of Co2GeO4 with carbon cloth fiber conferred upon the composite electrocatalyst both superior theoretical catalytic activity and enhanced electron transfer capability. This work provides a novel strategy for exploring a highly efficient composite electrocatalyst combined transition metal with carbon material to accelerate the HER activity. Full article
(This article belongs to the Special Issue Environmental Applications of Novel Nanocatalytic Materials)
Show Figures

Figure 1

Review

Jump to: Research

31 pages, 14620 KiB  
Review
A Short Review of Layered Double Oxide-Based Catalysts for NH3-SCR: Synthesis and NOx Removal
by Tao Sun, Xin Wang, Jinshan Zhang, Lan Wang, Xianghai Song, Pengwei Huo and Xin Liu
Catalysts 2024, 14(11), 755; https://doi.org/10.3390/catal14110755 - 26 Oct 2024
Viewed by 508
Abstract
Nitrogen oxides are one of the main atmospheric pollutants and pose a threat to the ecological environment and human health. Selective catalytic reduction (NH3-SCR) is an effective way of removing nitrogen oxides, with the catalyst being the key to this technology. [...] Read more.
Nitrogen oxides are one of the main atmospheric pollutants and pose a threat to the ecological environment and human health. Selective catalytic reduction (NH3-SCR) is an effective way of removing nitrogen oxides, with the catalyst being the key to this technology. Two-dimensional nanostructured layered double oxide (LDO) has attracted increasing attention due to the controllability of cations in the layers and the exchangeability of anions between layers. As a derivative of layered double hydroxide (LDH), LDO not only inherits the controllability and diversity inherent in the LDH structure but also exhibits excellent performance in the catalytic field. This article contains three main sections. It begins with a brief discussion of the development of LDO catalysts and analyzes the advantages of the LDO structure. The later section introduces the synthesis methods of LDH, clarifies the conversion relationship between LDH and LDO, and summarizes the modification impacts of the properties of LDO catalysts. The application of LDO catalysts used in NH3-SCR under wild temperature conditions is discussed, and the different types, reaction processes, and mechanisms of LDO catalysts are described in the third section. Finally, future research directions and outlooks are also offered to assist the development of LDO catalysts and overcome the difficult points related to NH3-SCR. Full article
(This article belongs to the Special Issue Environmental Applications of Novel Nanocatalytic Materials)
Show Figures

Graphical abstract

Back to TopTop