Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,301)

Search Parameters:
Keywords = aromatic components

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
42 pages, 3828 KB  
Article
Modification Mechanism of Multipolymer Granulated Modifiers and Their Effect on the Physical, Rheological, and Viscoelastic Properties of Bitumen
by Yao Li, Ke Chao, Qikai Li, Kefeng Bi, Yuanyuan Li, Dongliang Kuang, Gangping Jiang and Haowen Ji
Materials 2025, 18(17), 4182; https://doi.org/10.3390/ma18174182 - 5 Sep 2025
Abstract
Polymer-modified bitumen is difficult to produce and often separates during storage and transport. In contrast, granular bitumen modifiers offer wide applicability, construction flexibility, and ease of transport and storage. This study involved preparing a multipolymer granulated bitumen modifier with a styrene–butadiene–styrene block copolymer, [...] Read more.
Polymer-modified bitumen is difficult to produce and often separates during storage and transport. In contrast, granular bitumen modifiers offer wide applicability, construction flexibility, and ease of transport and storage. This study involved preparing a multipolymer granulated bitumen modifier with a styrene–butadiene–styrene block copolymer, polyethylene, and aromatic oil. To elucidate the modification mechanism of a multipolymer granulated bitumen modifier on bitumen, the elemental composition of bitumen A and B, the micro-morphology of the modifiers, the changes in functional groups, and the distribution state of the polymers in the bitumen were investigated using an elemental analyzer, a scanning electron microscope, Fourier-transform infrared spectroscopy, and fluorescence microscopy. The effects of the multipolymer granulated bitumen modifier on the physical, rheological, and viscoelastic properties of two types of base bituminous binders were investigated at various dosages. The test results show that the ZH/C ratio of base bitumen A is smaller than that of base bitumen B and that the cross-linking effect with the polymer is optimal. Therefore, the direct-feed modified asphalt of A performs better than the direct-feed modified asphalt of B under the same multipolymer granulated bitumen modifier content. The loose, porous surface structure of styrene–butadiene–styrene block copolymer promotes the adsorption of light components in bitumen, and the microstructure of the multipolymer granulated bitumen modifier is highly coherent. When the multipolymer granulated bitumen modifier content is 20%, the physical, rheological, and viscoelastic properties of the direct-feed modified asphalt of A/direct-feed modified asphalt of B and the commodity styrene–butadiene–styrene block copolymer are essentially identical. While the multipolymer granulated bitumen modifier did not significantly improve the performance of bitumen A/B at contents greater than 20%, the mass loss rate of the direct-feed modified asphalt of A to aggregate stabilized, and the adhesion effect reached stability. Image processing determined the optimum mixing temperature and time for multipolymer granulated bitumen modifier and aggregate to be 185–195 °C and 80–100 s, respectively, at which point the dispersion homogeneity of the multipolymer granulated bitumen modifier in the mixture was at its best. The dynamic stability, fracture energy, freeze–thaw splitting strength ratio, and immersion residual stability of bitumen mixtures were similar to those of commodity styrene–butadiene–styrene block copolymers with a 20% multipolymer granulated bitumen modifier mixing amount, which was equivalent to the wet method. The styrene–butadiene–styrene block copolymer bitumen mixture reached the same technical level. Full article
(This article belongs to the Section Construction and Building Materials)
38 pages, 6285 KB  
Article
Synergy Effect of Synthetic Wax and Tall Oil Amidopolyamines for Slowing Down the Aging Process of Bitumen
by Mateusz M. Iwański, Szymon Malinowski, Krzysztof Maciejewski and Grzegorz Mazurek
Materials 2025, 18(17), 4135; https://doi.org/10.3390/ma18174135 - 3 Sep 2025
Abstract
Bitumen ages during production and in asphalt pavements, leading to structural issues and reduced durability of asphalt pavements. The alteration of bitumen’s viscoelastic properties, predominantly attributable to oxidation phenomena, is a hallmark of these processes. This study analyzed the use of a new [...] Read more.
Bitumen ages during production and in asphalt pavements, leading to structural issues and reduced durability of asphalt pavements. The alteration of bitumen’s viscoelastic properties, predominantly attributable to oxidation phenomena, is a hallmark of these processes. This study analyzed the use of a new generation of synthetic wax (SWLC), which was selected for its low carbon footprint, ability to reduce binder viscosity, and ability to enable the production of WMA. Tall oil amidopolyamines (TOAs), a renewable raw material-based adhesive and aging inhibitor, was also used in this study. It compensates for the unfavorable effect of stiffening the binder with synthetic wax. SWLC at concentrations of 1.0%, 1.5%, 2.0%, and 2.5% by mass in bitumen, in conjunction with TOAs at concentrations of 0.0%, 0.2%, 0.4%, and 0.6% by bitumen weight were tested at various concentrations. Short-term and long-term aging effects on penetration, softening point, and viscosity multiple creep and stress recovery tests (MSCR), oscillatory tests for the combined complex modulus |G*| and phase shift angle sin(δ) (DSR), and low-temperature characteristics Sm and mvalue (BBR) were analyzed. The chemical composition of the binders was then subjected to Fourier Infrared Spectroscopy (FTIR) analysis, which enabled the determination of carbonyl, sulfoxide, and aromaticity indexes. These results indicated that the additives used inhibit the oxidation and aromatization reactions of the bitumen components. The optimal SWLC and TOA content determined was 1.5% and 0.4% w/w, respectively. These additives reduce aging and positively affect rheological parameters. Full article
(This article belongs to the Special Issue Advances in Asphalt Materials (Third Volume))
Show Figures

Figure 1

14 pages, 8583 KB  
Article
Geospatial Metabolomics Unravel Regional Disparities in Sedative Compounds and Volatile Profiles of Ziziphi Spinosae Semen Across Chinese Production Areas
by Jia Tian, Shujuan Hou, Hanbing Zhu, Ruirui Dao, Junguang Ning, Peixing Ren, Fuxu Pan, Mengjun Liu and Zhihui Zhao
Plants 2025, 14(17), 2739; https://doi.org/10.3390/plants14172739 - 2 Sep 2025
Viewed by 130
Abstract
Ziziphi Spinosae Semen (ZSS) has significant medicinal value, and its growing environment critically influences medicinal component accumulation. We analyzed 10 ZSS samples from six major Chinese production areas, identifying 2994 metabolites while exploring tranquilizing constituents and volatiles. Lipids and amino acids were the [...] Read more.
Ziziphi Spinosae Semen (ZSS) has significant medicinal value, and its growing environment critically influences medicinal component accumulation. We analyzed 10 ZSS samples from six major Chinese production areas, identifying 2994 metabolites while exploring tranquilizing constituents and volatiles. Lipids and amino acids were the primary nutrients, while terpenoids were the most abundant class of secondary metabolites. Volatile profiling revealed characteristic sour-fruity-herbaceous flavors, with GS-QY samples showing the highest volatile content. HB-XT and LN-CY samples accumulated the most sedative compounds (jujubosides A/B, spinosin). These findings demonstrate production regions significantly influence ZSS’s medicinal/aromatic profiles, supporting targeted product development. Full article
(This article belongs to the Special Issue Advances in Jujube Research, Second Edition)
Show Figures

Figure 1

26 pages, 3046 KB  
Article
Distribution Patterns of Humus and Mineral Composition in Dark-Brown, Meadow, and Paddy Soils in Northeast China
by Donghui Dai, Haihang Sun, Yubao Huang, Jingwei Gao, Bowen Song, Haoyu Gao, Baoyi Lu and Shuai Wang
Agronomy 2025, 15(9), 2108; https://doi.org/10.3390/agronomy15092108 - 31 Aug 2025
Viewed by 340
Abstract
This study aimed to investigate vertical variations in dissolved organic matter (DOM) properties, humus (HS) composition, humic acid (HA) characteristics, and clay mineral dynamics, with a particular focus on the vertical distribution of HS components and mineral composition across Dark-brown, Meadow, and Paddy [...] Read more.
This study aimed to investigate vertical variations in dissolved organic matter (DOM) properties, humus (HS) composition, humic acid (HA) characteristics, and clay mineral dynamics, with a particular focus on the vertical distribution of HS components and mineral composition across Dark-brown, Meadow, and Paddy soil profiles. Results indicated that: (1) DOM in all three soil types was predominantly endogenous, primarily derived from microbial metabolism with minimal contributions from plant residues. (2) Vertical trends in DOM carbon content (CDOM) were specific to soil type: in Dark-brown soil, CDOM slightly increased from the Ap to Bt layer, followed by a sharp increase in the C layer; Meadow soil exhibited a significant decrease in CDOM in the AB layer but remained relatively stable in other layers; Paddy soil showed a consistent decline in CDOM with increasing depth. (3) HS and its fractions exhibited vertical variability: Paddy soil showed higher HS content in surface layers; carbon contents of water-soluble substances, HA, and humic-extracted acid (CWSS, CHA, and CHE) decreased with depth in Dark-brown and Paddy soils, whereas they remained relatively stable in deeper layers of Meadow soil. (4) HA characteristics, including C/N ratio, functional groups, and aromaticity, were influenced by both depth and soil type: the Ap2 layer of Paddy soil effectively restricted the downward movement of organic matter; Fe3+ complexation played a key role in HA stabilization in Dark-brown soil; Meadow soil exhibited transitional HS properties. (5) Clay mineral assemblages were dominated by 2:1 type minerals (illite, smectite, illite–smectite interstratifications), showing distinct vertical weathering patterns: illite content decreased with depth due to hydrolysis, while proton-driven dissolution promoted kaolinite formation in surface layers, particularly in Dark-brown soil 2:1 minerals enhancing organic–mineral complexation in Meadow soil. The findings of this study provided a scientific basis for optimizing soil carbon pool management and offer insights into organic–mineral interactions that can enhance organic matter sequestration in agricultural soils. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

13 pages, 2492 KB  
Article
Interpreting Ring Currents from Hückel-Guided σ- and π-Electron Delocalization in Small Boron Rings
by Dumer S. Sacanamboy, Williams García-Argote, Rodolfo Pumachagua-Huertas, Carlos Cárdenas, Luis Leyva-Parra, Lina Ruiz and William Tiznado
Molecules 2025, 30(17), 3566; https://doi.org/10.3390/molecules30173566 - 31 Aug 2025
Viewed by 315
Abstract
The aromaticity of small boron clusters remains under scrutiny due to persistent inconsistencies between magnetic and electronic descriptors. Here, we reexamine B3, B3+, B4, B42+, and B42− using a multidimensional [...] Read more.
The aromaticity of small boron clusters remains under scrutiny due to persistent inconsistencies between magnetic and electronic descriptors. Here, we reexamine B3, B3+, B4, B42+, and B42− using a multidimensional approach that integrates Adaptive Natural Density Partitioning, Electron Density of Delocalized Bonds, magnetically induced current density, and the z-component of the induced magnetic field. We introduce a model in which σ-aromaticity arises from two distinct delocalization topologies: a radial 2e σ-pathway and a tangential multicenter circuit formed by alternating filled and vacant sp2 orbitals. This framework accounts for the evolution of aromaticity upon oxidation or reduction, preserving coherence between electronic structure and magnetic response. B3 features cooperative radial and tangential σ-delocalization, together with a delocalized 2e π-bond, yielding robust double aromaticity. B3+ retains σ- and π-aromaticity, but only via a tangential 6e σ-framework, leading to a more compact delocalization and slightly attenuated ring currents. In B4, the presence of a radial 2e σ-bond and a 4c–2e π-bond confers partial aromatic character, while the tangential 8e σ-framework satisfies the 4n rule and induces a paratropic current. In contrast, B42+ lacks the radial σ-component but retains a tangential 8e σ-circuit and a 2e 4c–2e π-bond, leading to a σ-antiaromatic and π-aromatic configuration. Finally, B42−, exhibits delocalized π- and σ-circuits, yielding consistent diatropic ring currents, which confirms its fully doubly aromatic nature. Altogether, this analysis underscores the importance of resolving σ-framework topology and demonstrates that, when radial and tangential contributions are correctly distinguished, Hückel’s rule remains a powerful tool for interpreting aromaticity in small boron rings. Full article
(This article belongs to the Special Issue Molecular Magnetic Response and Aromaticity)
Show Figures

Figure 1

23 pages, 6780 KB  
Article
Fermentation of Pea Protein Isolate by Enterococcus faecalis 07: A Strategy to Enhance Flavor and Functionality
by Zhunyao Zhu, Laijing Zhu, Yanli Wang, Ruixue Cao, Yifan Ren and Xiangzhong Zhao
Foods 2025, 14(17), 3065; https://doi.org/10.3390/foods14173065 - 30 Aug 2025
Viewed by 292
Abstract
Pea protein isolate (PPI) is a plant protein with high nutritional value, but its application in food is limited by an unpleasant beany flavor. This study aimed to investigate the feasibility of improving the flavor of PPI through fermentation with Enterococcus faecalis 07. [...] Read more.
Pea protein isolate (PPI) is a plant protein with high nutritional value, but its application in food is limited by an unpleasant beany flavor. This study aimed to investigate the feasibility of improving the flavor of PPI through fermentation with Enterococcus faecalis 07. PPI was subjected to fermentation by E. faecalis 07 for different durations (0 H, 24 H, 48 H, and 72 H). After fermentation, pH, viable cell counts, free amino acid contents, electronic tongue analysis, and volatile organic compounds were determined. The results showed that fermentation significantly reduced the bitterness of PPI and enhanced its umami intensity. A total of 64 volatile organic compounds were identified in the fermented samples, 42 more than in the unfermented sample. Quantitative analysis revealed that hexanal (grass-like odor) decreased by 92% after 72 h of fermentation, 1-octen-3-ol (mushroom-like odor) decreased from 6.94 mg/kg to 1.73 mg/kg, and trans-2-octenal decreased to 0.59 mg/kg; meanwhile, aromatic compounds such as esters and ketones were produced. Along with changes in the physicochemical properties, organic acids, and free amino acid composition of PPI, correlation analysis between electronic tongue data and volatile compounds further indicated that changes in volatile components simultaneously affected the perception of five taste attributes of PPI (bitterness, sourness, sweetness, saltiness, and umami). In conclusion, this study demonstrated the feasibility of fermenting PPI with E. faecalis 07, which effectively improved its sensory attributes and physicochemical properties to a certain extent. Full article
(This article belongs to the Section Food Biotechnology)
Show Figures

Figure 1

20 pages, 1289 KB  
Article
Influence of Thermal Treatments on Textural and Rheological Properties of Different Types of Meatballs
by Luiza-Andreea Tănase (Butnariu), Doina-Georgeta Andronoiu, Oana-Viorela Nistor, Gabriel-Dănuț Mocanu, Livia Pătrașcu and Elisabeta Botez
Processes 2025, 13(8), 2640; https://doi.org/10.3390/pr13082640 - 20 Aug 2025
Viewed by 395
Abstract
Ready-to-eat products are very popular and controversial due to their microbial safety. The main processing steps in obtaining a safe, edible product is heat treatment. The traditional manufacturing of meatballs, which conducts unhealthy compounds related to deep-fat-fried foods like the oil oxidation of [...] Read more.
Ready-to-eat products are very popular and controversial due to their microbial safety. The main processing steps in obtaining a safe, edible product is heat treatment. The traditional manufacturing of meatballs, which conducts unhealthy compounds related to deep-fat-fried foods like the oil oxidation of harmful substances and polycyclic aromatic hydrocarbons, has been replaced with baking (180 °C) and steaming (94 °C). The addition of aqueous extract from two herbs, lemon balm (Melissa officinalis L.) or wild thyme (Thymus serpyllum L.), has led to twelve variants of meatballs, obtained from the tenderloin of three different animal species (pork, turkey, and beef). During processing, the food components go through conformational changes that affect the texture of the final product. In this study, differential scanning calorimetry for detecting and characterizing the thermal changes in meatballs was used. In addition, the influence of heat treatments on the textural and rheological parameters of meatballs was evaluated using instrumental methods. The cooking yield registered values of 61.21 ± 0.25% for steamed beef samples and 81.36 ± 0.86% for steamed turkey samples. The latest samples also showed the lowest firmness value, 3.41 ± 0.79 N. In this study, the addition of aqueous extracts did not considerably affect the texture and rheological behavior, which were influenced mainly by the heat treatment and meat type. Generally, steaming determined a firmer texture compared to baking. Full article
(This article belongs to the Section Food Process Engineering)
Show Figures

Figure 1

15 pages, 1674 KB  
Article
Characterization of Litter and Topsoil Under Different Vegetation Cover by Using a Chemometric Approach
by Fulvia Tambone, Anna Masseroli, Paolo Beccarelli, Luca Breno, Marco Zuccolo, Gigliola Borgonovo, Stefania Mazzini, Alex Golinelli and Barbara Scaglia
Forests 2025, 16(8), 1349; https://doi.org/10.3390/f16081349 - 19 Aug 2025
Viewed by 368
Abstract
Leaf litter conservation practices in forests can contribute to increasing CO2 storage in natural soils as organic matter; however, this process depends on the type of vegetation cover. This study, using different approaches, aimed to assess this process starting from the characteristics [...] Read more.
Leaf litter conservation practices in forests can contribute to increasing CO2 storage in natural soils as organic matter; however, this process depends on the type of vegetation cover. This study, using different approaches, aimed to assess this process starting from the characteristics of three different types of litters and topsoil (0–5 cm depth) originating from chestnut, beech, and pine in various forest locations within the territory of Edolo (Camonica Valley, Central Italian Alps). Both labile (DOM) and recalcitrant (ROM) organic matter fractions were considered. Microbial degradation activity was strongly influenced by DOM (DOM vs. Respiration mg CO2 g−1 dry matter: r = 0.96), and NMR spectroscopy showed that aromatic C and polymethylene C in long-chain aliphatic structures (e.g., lipids, cutin) became more evident from litters to topsoils due to a concentration effect. Finally, chemometric elaboration of quantitative and qualitative data identified two principal component (PC) profiles, explaining 88% of the total variance, in which litter and the topsoil samples were spatially separated, indicating that significant changes occurred during the decomposition process. An Evolution Index (EI) calculated highlighted greater changes for chestnut (0.90) followed by pine (0.60) and beech (0.48), in agreement with chemical (degradation rates of 14.21%, 49.11%, and 48% for beech, chestnut, and pine litter, respectively) and spectroscopic data. Beech litter appears to be more efficient at conserving organic carbon. These findings underscore the importance of understanding litter characteristics for forest management, suggesting which species are most effective in promoting soil carbon storage. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

15 pages, 1596 KB  
Article
Volatile Compound Profiling and Antibacterial Efficacy of Heyang Fragrance: Bridging Cultural Heritage with Modern Scientific Analysis
by Binghui Liang, Qirui Ma, Xianglei Gong, Guohang Hu and Hongwu Chen
Compounds 2025, 5(3), 33; https://doi.org/10.3390/compounds5030033 - 18 Aug 2025
Viewed by 345
Abstract
Heyang Fragrance, a traditional incense dating back to the Eastern Han Dynasty (25–220 AD), was recently inscribed on China’s national list of intangible cultural heritage. This study aimed to systematically analyze three variants of Heyang Fragrance (Aicao, Qinqiang, and Jianjia) through integrated methodologies [...] Read more.
Heyang Fragrance, a traditional incense dating back to the Eastern Han Dynasty (25–220 AD), was recently inscribed on China’s national list of intangible cultural heritage. This study aimed to systematically analyze three variants of Heyang Fragrance (Aicao, Qinqiang, and Jianjia) through integrated methodologies including electronic nose analysis, headspace solid-phase microextraction coupled with gas chromatography–mass spectrometry (HS-SPME-GC-MS), and antimicrobial activity assays. We selected Escherichia coli, Bacillus subtilis, and Candida glabrata for the antimicrobial activity assays. Comparative analysis revealed significant compositional differences between pre- and post-combustion volatile profiles. Upon ignition, sensor response values increased by 50–100% relative to baseline measurements, with sulfides, terpenes, and short-chain alkanes emerging as dominant components. Qinqiang demonstrated the highest odor activity values (OAVs), particularly through carvacrol (OAV = 6676.60) and eugenol (OAV = 2720.84), which collectively contributed to its complex aromatic characteristics. Antimicrobial assessments revealed concentration-dependent efficacy, with Qinqiang exhibiting broad antimicrobial activity against Escherichia coli (11.33 mm inhibition zone) and Bacillus subtilis (15.00 mm), while Jianjia showed maximal effectiveness against Bacillus subtilis (17.67 mm). These findings underscore the dual significance of Heyang Fragrance in cultural conservation and its prospective applications in aroma therapeutic and antimicrobial contexts. Full article
Show Figures

Figure 1

19 pages, 1165 KB  
Article
Integrated (Statistical) Analysis of Honey Enriched with Aromatic Herbs: Phenolic Profile, Heavy Metal and NIR Spectroscopy
by Berat Durmishi, Vesna Knights, Tamara Jurina, Smajl Rizani, Gorica Pavlovska, Valbonë Mehmeti, Ana Jurinjak Tušek, Maja Benković, Davor Valinger and Jasenka Gajdoš Kljusurić
Processes 2025, 13(8), 2598; https://doi.org/10.3390/pr13082598 - 17 Aug 2025
Viewed by 400
Abstract
Honey is recognized as a nutritionally rich and functional option, often used as a natural sweetener due to its content of glucose, fructose, vitamins, minerals, enzymes and antioxidants. Its antioxidant, antibacterial and anti-inflammatory properties are well known. Recently, interest has grown in functional [...] Read more.
Honey is recognized as a nutritionally rich and functional option, often used as a natural sweetener due to its content of glucose, fructose, vitamins, minerals, enzymes and antioxidants. Its antioxidant, antibacterial and anti-inflammatory properties are well known. Recently, interest has grown in functional honey enriched with bioactive plant components, such as extracts of rosemary, lavender, oregano, and sage, which can enhance phenolic content and antioxidant capacity. However, such enrichment may alter honey’s sensory characteristics and introduce contaminants, including heavy metals, necessitating comprehensive quality assessment. This study aimed to evaluate the chemical and functional quality of honey enriched with aromatic plant extracts from Kosovo, Albania, and North Macedonia, using an integrated approach. The research included the quantification of total phenolic compounds (TPCs), analysis of heavy metal content, and the application of near-infrared (NIR) spectroscopy with two devices (laboratory and portable). The results showed that geographical origin and herbal additions significantly affect TPC and heavy metal concentrations. Honey from Kosovo had the highest TPC, while Albanian honey showed higher concentrations of iron and nickel. Enrichment with oregano and rosemary significantly increased TPC and, levels of heavy metals such as lead and nickel. These findings underscore both the nutritional potential and safety considerations of enriched honey products. Accurate, non-destructive techniques like NIR spectroscopy offer valuable tools for quality control; however, further work is needed to evaluate sensory acceptance and long-term safety of enriched honey. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

28 pages, 2543 KB  
Article
Chemical Fractions of Soil Organic Matter and Their Interactions with Cu, Zn, and Mn in Vineyards in Southern Brazil
by Guilherme Wilbert Ferreira, Samya Uchoa Bordallo, Lucas Dupont Giumbelli, Zayne Valéria Santos Duarte, Gustavo Brunetto, George Wellington Bastos de Melo, Deborah Pinheiro Dick, Tadeu Luis Tiecher, Tales Tiecher and Cledimar Rogério Lourenzi
Agronomy 2025, 15(8), 1937; https://doi.org/10.3390/agronomy15081937 - 12 Aug 2025
Viewed by 405
Abstract
This study aimed to evaluate the impact of vineyard cultivation time and the use of metal-based fungicides on the chemical fractions of soil organic matter (SOM) as well as their interactions with Cu, Zn, and Mn in vineyard soils from Southern Brazil with [...] Read more.
This study aimed to evaluate the impact of vineyard cultivation time and the use of metal-based fungicides on the chemical fractions of soil organic matter (SOM) as well as their interactions with Cu, Zn, and Mn in vineyard soils from Southern Brazil with varying histories of fungicide application. Soil samples were collected in 2017 from vineyards aged 35, 37, and 39 years in the Serra Gaúcha region and 13, 19, and 36 years in the Campanha Gaúcha. In each region, samples were also collected from a non-anthropized reference area. In the oldest vineyards, sampling was conducted both within and between the rows of planting. Chemical fractionation of SOM was performed: non-humic substances (nHSs), particulate organic matter (POM), fulvic acid (FA), humic acid (HA), and humin (Hu). Fourier-transform infrared (FTIR) spectra were obtained for the HA, from which the aromaticity index (AI) and relative intensities (RIs) were calculated. In each SOM fraction, total organic carbon and the concentrations of Cu, Zn, and Mn were determined. Changes in land use alter the forms and distribution of soil organic carbon (SOC) and, consequently, of metals. Elemental and spectroscopic analyses of HS revealed that HA in the reference areas (forest and native grassland) was more aliphatic and had higher concentrations of polysaccharides, indicating fractions with a lower degree of stabilization. However, in vineyard areas, HA exhibited greater humification and aromaticity. Increasing cultivation time gradually increased soil carbon content, indicating that viticultural agroecosystems can sequester carbon in the soil over time, reaching levels similar to those observed in the reference areas. When comparing vineyard areas alone, with row collections and inter-row collections, we observed an increase in SOC levels in areas managed with cover crops, demonstrating the importance of conservation management in these areas. When evaluating the distribution of metals in these soils, we could observe the high affinity of Cu for the functional groups of SOM, with FA and HA responsible for the complexation of these elements in the soil. For Zn and Mn, the greatest accumulations were observed in the Hu fraction due to their greater affinity for soil clay minerals. This shows that soil organic matter is a key component in the complexation of metals in soils, reducing their availability and potential toxicity to cultivated plants. Full article
(This article belongs to the Special Issue Soil Organic Matter and Tillage)
Show Figures

Figure 1

22 pages, 1637 KB  
Article
Phytochemistry and Bioactivity of Essential Oil and Methanolic Extracts of Origanum vulgare L. from Central Italy
by Francesca Fantasma, Marco Segatto, Mayra Colardo, Francesca Di Matteo, Maria Giovanna Chini, Maria Iorizzi and Gabriella Saviano
Plants 2025, 14(16), 2468; https://doi.org/10.3390/plants14162468 - 9 Aug 2025
Viewed by 507
Abstract
Origanum vulgare L. is an important aromatic plant traditionally used in folk medicine since ancient times. Its growing interest for the scientific community is mainly attributed to its distinctive chemical profile, which includes bioactive compounds, such as polyphenols (phenolic acids and flavonoids) and [...] Read more.
Origanum vulgare L. is an important aromatic plant traditionally used in folk medicine since ancient times. Its growing interest for the scientific community is mainly attributed to its distinctive chemical profile, which includes bioactive compounds, such as polyphenols (phenolic acids and flavonoids) and volatile compounds (essential oil). These components collectively contribute to oregano’s wide spectrum of biological activities. In this study, the volatile components of the essential oil (WEO_OR) and the polyphenolic fraction of the methanolic extract (ME_OR) obtained from leaves and inflorescences of wild Origanum vulgare collected in central Italy were characterized using GC-MS and UHPLC-DAD, respectively. Carvacrol was identified as the major compound in the essential oil, while rosmarinic acid was predominant in the methanolic extract. A comparative analysis was also carried out with a commercially available essential oil (CEO_OR), aiming to evaluate potential differences in chemical composition and antioxidant activity (DPPH, ABTS, and FRAP assays). ME_OR showed the strongest antioxidant activity (DPPH IC50 = 0.052 mg mL−1; ABTS = 3.94 mg TE mL−1; FRAP = 30.58 mg TE g−1), followed by CEO_OR (DPPH IC50 = 0.45 mg mL−1; ABTS = 9.57 mg TE mL−1; FRAP = 7.33 mg TE g−1), while WEO_OR displayed the lowest values (DPPH IC50 = 1.54 mg mL−1; ABTS = 0.10 mg TE mL−1). Furthermore, ME_OR and WEO_OR were tested in vitro using the human hepatoblastoma cell line HepG2 to assess their potential biological activities related to cell survival and oxidative stress. The results indicated that at the tested doses, neither the ME nor the EO showed significant toxicity, as evidenced by the unchanged proliferation rate of HepG2 cells. However, the ME at low doses (50 and 100 μg mL−1) and the EO (0.005%), administered as a pre-treatment, exhibited a protective effect against oxidative stress, as inferred from the reduction in 8-OHdG levels, a marker of oxidative damage to nucleic acids. Full article
Show Figures

Figure 1

29 pages, 3173 KB  
Article
Graph Neural Networks for Sustainable Energy: Predicting Adsorption in Aromatic Molecules
by Hasan Imani Parashkooh and Cuiying Jian
ChemEngineering 2025, 9(4), 85; https://doi.org/10.3390/chemengineering9040085 - 6 Aug 2025
Viewed by 577
Abstract
The growing need for rapid screening of adsorption energies in organic materials has driven substantial progress in developing various architectures of equivariant graph neural networks (eGNNs). This advancement has largely been enabled by the availability of extensive Density Functional Theory (DFT)-generated datasets, sufficiently [...] Read more.
The growing need for rapid screening of adsorption energies in organic materials has driven substantial progress in developing various architectures of equivariant graph neural networks (eGNNs). This advancement has largely been enabled by the availability of extensive Density Functional Theory (DFT)-generated datasets, sufficiently large to train complex eGNN models effectively. However, certain material groups with significant industrial relevance, such as aromatic compounds, remain underrepresented in these large datasets. In this work, we aim to bridge the gap between limited, domain-specific DFT datasets and large-scale pretrained eGNNs. Our methodology involves creating a specialized dataset by segregating aromatic compounds after a targeted ensemble extraction process, then fine-tuning a pretrained model via approaches that include full retraining and systematically freezing specific network sections. We demonstrate that these approaches can yield accurate energy and force predictions with minimal domain-specific training data and computation. Additionally, we investigate the effects of augmenting training datasets with chemically related but out-of-domain groups. Our findings indicate that incorporating supplementary data that closely resembles the target domain, even if approximate, would enhance model performance on domain-specific tasks. Furthermore, we systematically freeze different sections of the pretrained models to elucidate the role each component plays during adaptation to new domains, revealing that relearning low-level representations is critical for effective domain transfer. Overall, this study contributes valuable insights and practical guidelines for efficiently adapting deep learning models for accurate adsorption energy predictions, significantly reducing reliance on extensive training datasets. Full article
Show Figures

Figure 1

19 pages, 847 KB  
Article
Characterization and Selection of Lycium barbarum Cultivars Based on Physicochemical, Bioactive, and Aromatic Properties
by Juan Carlos Solomando González, María José Rodríguez Gómez, María Ramos García, Noelia Nicolás Barroso and Patricia Calvo Magro
Horticulturae 2025, 11(8), 924; https://doi.org/10.3390/horticulturae11080924 - 5 Aug 2025
Viewed by 363
Abstract
Goji berries (Lycium barbarum L.) are considered a functional food due to their high content of bioactive compounds with demonstrated health benefits. This study evaluated four cultivars (G3, G4, G5, and G7) grown under Mediterranean climate conditions, focusing on their physicochemical properties [...] Read more.
Goji berries (Lycium barbarum L.) are considered a functional food due to their high content of bioactive compounds with demonstrated health benefits. This study evaluated four cultivars (G3, G4, G5, and G7) grown under Mediterranean climate conditions, focusing on their physicochemical properties (total soluble solids, titratable acidity, and pH), bioactive compound (sugars and organic acids, total and individual phenolic and carotenoid compounds, and antioxidant activities (DPPH and CUPRAC assay)), and aromatic profiles (by GC-MS) to assess their suitability for fresh consumption or incorporation into food products. G4 exhibited the most favorable physicochemical characteristics, with the highest total soluble solids (20.2 °Brix) and sugar content (92.8 g 100 g−1 dw). G5 stood out for its lower titratable acidity (0.34%) and highest ripening index (54.8), indicating desirable flavor attributes. Concerning bioactive compounds, G3 and G4 showed the highest total phenolic content (17.9 and 19.1 mg GAE g−1 dw, respectively), with neochlorogenic acid being predominant. G4 was notable for its high carotenoid content, particularly zeaxanthin (1722.6 μg g−1 dw). These compounds significantly contributed to antioxidant activity. Volatile organic compound (VOC) profiles revealed alcohols and aldehydes as the dominant chemical families, with hexanal being the most abundant. G5 and G7 exhibited the highest total VOC concentrations. Principal component analysis grouped G3 and G4 based on their high sugar and phenolic content, while G5 and G7 were characterized by their complex aromatic profiles. Therefore, G3 and G4 are promising candidates for fresh consumption and potential functional applications, while G5 and G7 are particularly suitable for new product development due to their nutraceutical and aromatic value. Full article
(This article belongs to the Section Postharvest Biology, Quality, Safety, and Technology)
Show Figures

Figure 1

17 pages, 5591 KB  
Article
Pharmacological Investigation of Tongqiao Jiuxin Oil Against High-Altitude Hypoxia: Integrating Chemical Profiling, Network Pharmacology, and Experimental Validation
by Jiamei Xie, Yang Yang, Yuhang Du, Xiaohua Su, Yige Zhao, Yongcheng An, Xin Mao, Menglu Wang, Ziyi Shan, Zhiyun Huang, Shuchang Liu and Baosheng Zhao
Pharmaceuticals 2025, 18(8), 1153; https://doi.org/10.3390/ph18081153 - 2 Aug 2025
Viewed by 472
Abstract
Background: Acute mountain sickness (AMS) is a prevalent and potentially life-threatening condition caused by rapid exposure to high-altitude hypoxia, affecting pulmonary and neurological functions. Tongqiao Jiuxin Oil (TQ), a traditional Chinese medicine formula composed of aromatic and resinous ingredients such as sandalwood, [...] Read more.
Background: Acute mountain sickness (AMS) is a prevalent and potentially life-threatening condition caused by rapid exposure to high-altitude hypoxia, affecting pulmonary and neurological functions. Tongqiao Jiuxin Oil (TQ), a traditional Chinese medicine formula composed of aromatic and resinous ingredients such as sandalwood, agarwood, frankincense, borneol, and musk, has been widely used in the treatment of cardiovascular and cerebrovascular disorders. Clinical observations suggest its potential efficacy against AMS, yet its pharmacological mechanisms remain poorly understood. Methods: The chemical profile of TQ was characterized using UHPLC-Q-Exactive Orbitrap HRMS. Network pharmacology was applied to predict the potential targets and pathways involved in AMS. A rat model of AMS was established by exposing animals to hypobaric hypoxia (~10% oxygen), simulating an altitude of approximately 5500 m. TQ was administered at varying doses. Physiological indices, oxidative stress markers (MDA, SOD, GSH), histopathological changes, and the expression of hypoxia- and apoptosis-related proteins (HIF-1α, VEGFA, EPO, Bax, Bcl-2, Caspase-3) in lung and brain tissues were assessed. Results: A total of 774 chemical constituents were identified from TQ. Network pharmacology predicted the involvement of multiple targets and pathways. TQ significantly improved arterial oxygenation and reduced histopathological damage in both lung and brain tissues. It enhanced antioxidant activity by elevating SOD and GSH levels and reducing MDA content. Mechanistically, TQ downregulated the expression of HIF-1α, VEGFA, EPO, and pro-apoptotic markers (Bax/Bcl-2 ratio, Caspase-3), while upregulated Bcl-2, the anti-apoptotic protein expression. Conclusions: TQ exerts protective effects against AMS-induced tissue injury by improving oxygen homeostasis, alleviating oxidative stress, and modulating hypoxia-related and apoptotic signaling pathways. This study provides pharmacological evidence supporting the potential of TQ as a promising candidate for AMS intervention, as well as the modern research method for multi-component traditional Chinese medicine. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

Back to TopTop