Characterization of Litter and Topsoil Under Different Vegetation Cover by Using a Chemometric Approach
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Litter and Topsoil Sampling
2.3. Standard Chemical Analyses of Litters and Topsoils
2.4. Respiration Determination of Litters and Topsoils
2.5. Dissolved Organic Matter (DOM) and Recalcitrant Organic Matter (ROM) Extraction and Determination from Litters and Topsoils
2.6. Spectroscopic Characterization of Litters and Topsoils
2.7. Statistical Analysis
2.8. Calculation of the Evolution Index (EI)
3. Results and Discussion
3.1. Chemical Characteristics of Main Litters and Topsoils
3.2. Respiration Measurement of Litters and Topsoils
3.3. Spectroscopic Characteristics of Litters and Topsoils
3.4. Limitations of the Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alam, S.A.; Kivinen, S.; Kujala, H.; Tanhuanpää, T.; Forsius, M. Integrating carbon sequestration and biodiversity impacts in forested ecosystems: Concepts, cases, and policies. Ambio 2023, 52, 1687–1696. [Google Scholar] [CrossRef] [PubMed]
- Aznar-Sánchez, J.A.; Belmonte-Ureña, L.J.; López-Serrano, M.J.; Velasco-Muñoz, J.G. Forest Ecosystem Services: An Analysis of Worldwide Research. Forests 2018, 8, 453. [Google Scholar] [CrossRef]
- Walkiewicz, A.; Rafalska, A.; Bulak, P.; Bieganowski, A.; Osborne, B. How can litter modify the fluxes of CO2 and CH4 from forest soils?” A Mini-Review. Forests 2021, 12, 1276. [Google Scholar] [CrossRef]
- European Commission. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions. In The European Green Deal; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- FAO. Global Forest Resources Assessment 2020—Key Findings; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Krishna, M.P.; Mohan, M. Litter decomposition in forest ecosystems: A review. Energy Ecol. Environ. 2017, 2, 236–249. [Google Scholar] [CrossRef]
- Wan, Q.; Zhu, G.; Guo, H.; Zhang, Y.; Pan, H.; Yong, L.; Ma, H. Influence of Vegetation Coverage and Climate Environment on Soil Organic Carbon in the Qilian Mountains. Sci. Rep. 2019, 9, 17623. [Google Scholar] [CrossRef]
- Sultana, T.; Jashimuddin, M.; Hasan, M.H. Leaf litter decomposition and associated nutrient release dynamics under varying temperature and precipitation in a south asian tropical forest. J. Soil Plant Environ. 2025, 4, 94–111. [Google Scholar] [CrossRef]
- Cornwell, W.K.; Cornelissen, J.H.C.; Amatangelo, K.; Dorrepaal, E.; Eviner, V.T.; Godoy, O.; Hobbie, S.E.; Hoorens, B.; Kurokawa, H.; Pérez-Harguindeguy, N.; et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. 2008, 11, 1065–1071. [Google Scholar] [CrossRef]
- Ranucci, M.; Perez, M.; Lombardi, D.; Vitale, M. Is the Current Modelling of Litter Decomposition Rates Reliable under Limiting Environmental Conditions Induced by Ongoing Climate Change? Soil Syst. 2022, 6, 81. [Google Scholar] [CrossRef]
- Ball, B.A.; Christenson, L.M.; Wickings, K.G. A cross-system analysis of litter chemical dynamics throughout decomposition. Ecosystems 2022, 25, 1792–1808. [Google Scholar] [CrossRef]
- Zhang, Y.; Zou, J.; Meng, D.; Dang, S.; Zhou, J.; Osborne, B.; Ren, Y.; Liang, T.; Yu, K. Effect of soil microorganisms and labile C availability on soil respiration in response to litter inputs in forest ecosystems: A meta-analysis. Ecol. Evol. 2020, 10, 13602–13612. [Google Scholar] [CrossRef] [PubMed]
- Giweta, M. Role of litter production and its decomposition, and factors affecting the processes in a tropical forest ecosystem: A review. J. Ecol. Environ. 2020, 44, 11. [Google Scholar] [CrossRef]
- Yang, K.; Zhu, J.; Zhang, W.; Zhang, Q.; Lu, D.; Zhang, Y.; Zheng, X.; Xu, S.; Wang, G. Litter decomposition and nutrient release from monospecific and mixed litters: Comparisons of litter quality, fauna and decomposition site effects. J. Ecol. 2022, 110, 1673–1686. [Google Scholar] [CrossRef]
- Suominen, K.; Kitunen, V.; Smolander, A. Characteristics of dissolved organic matter and phenolic compounds in forest soils under silver birch (Betula pendula), Norway spruce (Picea abies) and Scots pine (Pinus sylvestris). Eur. J. Soil Sci. 2023, 54, 287–293. [Google Scholar] [CrossRef]
- Fengel, D.; Wegener, G. Wood: Chemistry, Ultrastructure, Reactions; De Gruyter: Berlin, Germany, 1983; p. 613. [Google Scholar] [CrossRef]
- Quideau, S.A.; Chadwick, O.A.; Benesi, A.; Graham, R.C.; Anderson, M.A. A direct link between forest vegetation type and soil organic matter composition. Geoderma 2001, 104, 41–60. [Google Scholar] [CrossRef]
- Berardi, D.; Brzostek, E.; Blanc-Betes, E.; Davison, B.; DeLucia, E.H.; Hartman, M.D.; Kent, J.; Parton, W.J.; Saha, D.; Hudiburg, T.W. 21st-century biogeochemical modelling: Challenges for Century-based models and where do we go from here? Glob. Change Biol. Bioenergy 2020, 12, 774–788. [Google Scholar] [CrossRef]
- Papa, G.; Scaglia, B.; Schievano, A.; Adani, F. Nanoscale structure of organic matter could explain litter decomposition. Biogeochemistry 2014, 117, 313–324. [Google Scholar] [CrossRef]
- Nonini, L.; Fiala, M. Estimation of carbon storage of forest biomass for voluntary carbon markets: Preliminary results. J. For. Res. 2021, 32, 329–338. [Google Scholar] [CrossRef]
- Rhoades, J.D. Cation exchange capacity. In Methods of Soil Analysis, Part 2; Page, A.L., Ed.; ASA and SSSA: Madison, WI, USA, 1982; pp. 149–157. [Google Scholar]
- Klute, A. Water Retention: Laboratory Methods. In Methods of Soil Analysis, Part 1, 2nd ed.; Klute, A., Ed.; ASA SSSA: Madison, WI, USA, 1986. [Google Scholar]
- Gee, G.W.; Bauder, J.W. Particle-size analysis. In Methods of Soil Analysis, Part 2; Page, A.L., Ed.; ASA and SSSA: Madison, WI, USA, 1986; pp. 383–441. [Google Scholar]
- Sparks, D.L.; Page, A.L.; Helmke, P.A.; Loeppert, R.H.; Soltanpour, P.N.; Tabatabai, M.A.; Johnston, C.T.; Sumner, M.E. Methods of Soil Analysis: Part 3 Chemical Methods; Soil Science Society of America, Inc.: Madison, WI, USA, 1996. [Google Scholar]
- Van Reeuwijk, L.P. Procedures for Soil Analysis; Technical paper n. 9; International Soil Reference and Information Centre: Wageningen, The Netherlands, 2002. [Google Scholar]
- EPA. Method EPA 3051. In Microwave Assisted Acid Digestion of Sediments, Sludges, Soils and Oils; EPA: Washington, DC, USA, 1998. [Google Scholar]
- ISO 16072; Soil Quality—Laboratory Methods for Determination of Microbial Soil Respiration. International Organization for Standardization: Geneva, Switzerland, 2002.
- Kögel-Knabner, I. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol. Biochem. 2002, 34, 139–162. [Google Scholar] [CrossRef]
- Kaiser, H.F. The application of electronic computers to factor analysis. Educ. Psychol. Meas. 1960, 29, 141–151. [Google Scholar] [CrossRef]
- Brejda, J.J.; Mooman, T.B.; Karlen, D.L.; Dao, T.H. Identification of regional soil quality factors and indicators. I. Central and southern high plains. Soil Biol. Biochem. 2000, 64, 2115–2124. [Google Scholar] [CrossRef]
- Scaglia, B.; Tambone, F.; Corno, L.; Orzi, V.; Lazzarini, Y.; Garuti, G.; Adani, F. Potential agronomic and environmental properties of thermophilic anaerobically digested municipal sewage sludge measured by an unsupervised and a supervised chemometric approach. Sci. Tot. Environ. 2018, 637, 791–802. [Google Scholar] [CrossRef]
- Scaglia, B.; Adani, F. An index for quantifying the aerobic reactivity of municipal solid wastes and derived waste products. Sci. Tot. Environ. 2008, 394, 183–191. [Google Scholar] [CrossRef]
- Huang, J.; Hartemink, A.E. Soil and environmental issues in sandy soils. Earth-Sci. Rev. 2020, 208, 103295. [Google Scholar] [CrossRef]
- Gavazov, K.S. Dynamics of alpine plant litter decomposition in a changing climate. Plant Soil 2010, 337, 19–32. [Google Scholar] [CrossRef]
- Sokolova, T.A. Low-Molecular-Weight Organic Acids in Soils: Sources, Composition, Concentrations, and Functions: A Review. Eurasian Soil Sci. 2020, 53, 580–594. [Google Scholar] [CrossRef]
- Isidorov, V.A.; Smolewska, M.; Purzynska-Pugacewicz, A.; Tyszkiewicz, Z. Chemical composition of volatile and extractive compounds of pine and spruce leaf litter in the initial stages of decomposition. Biogeosc. Discuss. 2010, 7, 1727–1750. [Google Scholar] [CrossRef]
- Karapandzova, M.; Stefkova, G.; Cvetkovikja, I.; Stanoevab, J.P.; Stefovab, M.; Kulevanovaa, S. Flavonoids and other phenolic compounds in needles of Pinus peuce and other pine species from the Macedonian flora. Nat. Prod. Commun. 2015, 10, 987–990. [Google Scholar] [CrossRef]
- Blonska, E.; Lasota, J.; Januszekv, K. Variability of enzymatic activity in forest Cambisols and Brunic Arenosols of Polish lowland areas. Soil Sci. Ann. 2013, 64, 82–87. [Google Scholar] [CrossRef]
- Bonnefoy-Claudet, C.; Kaal, J.; Thevenot, M.; Panettieri, M.; Leveque, J.; Mathieu, O. Soil organic matter degradability as a function of forest species, a study based on Py-GC–MS analysis. Geoderma 2025, 459, 117374. [Google Scholar] [CrossRef]
- Bi, R.; Lu, Q.; Yu, W.; Yuan, Y.; Zhou, S. Electron transfer capacity of soil dissolved organic matter and its potential impact on soil respiration. J. Soils Sedim. 2013, 13, 1553–1560. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, Z. Recalcitrant carbon controls the magnitude of soil organic matter mineralization in temperate forests of northern China. Forest Ecosyst. 2018, 5, 17. [Google Scholar] [CrossRef]
- Margesin, R.; Minerbi, S.; Schinner, F. Litter decomposition at two forest sites in the Italian Alps: A field study. Arct. Antarct. Alp. Res. 2016, 48, 127–138. [Google Scholar] [CrossRef]
- Duboc, O.; Zehetner, F.; Djukic, I.; Tatzber, M.; Berger, T.W.; Gerzabek, M.H. Decomposition of European beech and Black pine foliar litter along an Alpine elevation gradient: Mass loss and molecular characteristics. Geoderma 2012, 189-190, 522–531. [Google Scholar] [CrossRef]
Sample | Vegetation Cover | Site Coordinates | Elevation (m a.s.l.) |
---|---|---|---|
CS and CL (Topsoil and Litter) | Forest mainly composed of Castanea sativa | 46.17238° N, 10.31864° E | 754 |
FS and FL (Topsoil and Litter) | Forest mainly composed of Fagus sylvatica L. | 46.16986° N, 10.31755° E | 883 |
PS and PL (Topsoil and Litter) | Forest mainly composed of Pinus sylvestris | 46.15897° N, 10.33336° E | 1200 |
Sample | pH | EC | OM | TOC | TKN | C/N | P2O5tot. | CEC |
---|---|---|---|---|---|---|---|---|
µS cm−1 | g kg−1 | g kg−1 | cmol+ kg−1 | |||||
FL | 5.50 ±0.04 cB a | 458 ± 3 dB | 874 ± 3 eB | 507 ± 2 eB | 10.3 ± 1.2 bA | 49.5 | 0.56 ± 0.03 bA | 166 ± 4 bB |
FS | 4.58 ±0.12 bA | 378 ± 5 cA | 750 ± 2 dA | 435 ± 1 dA | 15.4 ± 1 cB | 28.2 | 0.75 ± 0.01 cB | 197 ± 6 A |
CL | 4.72 ±0.03 bB | 370 ± 7 cB | 879 ± 3 eB | 510 ± 2 eB | 9.53 ± 0.28 bA | 53.5 | 0.76 ± 0.05 cA | 182 ± 1 cA |
CS | 4.41 ±0.03 aA | 289 ± 2 ba | 448 ± 0 bA | 260 ± 0 bA | 11.6 ± 0 bB | 22.5 | 0.67 ± 0.04 cA | 126 ± 9 aB |
PL | 4.83 ±0.14 bA | 441 ± 4 dB | 640 ± 0 cB | 371 ± 0 cB | 5.70 ± 0.19 aA | 65.1 | 0.33 ± 0.01 aA | 107 ± 8 aA |
PS | 5.47 ±0.02 cB | 225 ± 2 aA | 333 ± 2 aA | 193 ± 1 aA | 11.1 ± 0.6 bB | 17.4 | 0.50 ± 0.02 bB | 101 ± 6 aA |
Sample | Texture | Sand | Silt | Clay | WHC |
---|---|---|---|---|---|
USDA Classification | g kg−1 | g 100 g−1 | |||
FS | Sandy/Loamy | 892 ± 7 a a | 76 ± 4 a | 32 ± 9 b | 21.8 ± 1.3 a |
CS | Sandy/Loamy | 852 ± 11 a | 131 ± 12 b | 17 ± 7 a | 30.8 ± 0.9 b |
PS | Sandy/Loamy | 711 ± 6 a | 254 ± 13 b | 35 ± 5 b | 41.8 ± 2.1 c |
Sample | TOCDOM | TOCROM | TOCDOM | TOCROM |
---|---|---|---|---|
g kg−1 | % TOC | |||
FL | 14.5 ± 1.2 dB a | 176 ± 4 dB | 2.86 | 34.7 |
FS | 9.89 ± 0.12 cA | 147 ± 2 cA | 2.27 | 33.8 |
CL | 22.9 ± 0.9 eB | 197 ± 7 eB | 4.49 | 38.6 |
CS | 7.78 ± 0.47 bA | 119 ± 5 bA | 2.99 | 45.8 |
PL | 13.8 ± 1.1 dB | 141 ± 6 cB | 3.72 | 38.1 |
PS | 6.10 ± 0.62 aA | 94.9 ± 1.9 aA | 3.16 | 49.2 |
Samples | Aliphatic C Bonded to Other Aliphatic Chain or to H | O-CH3 or N-alkyl O-alkyl C di-O-alkyl C | Aromatic C Phenol or Phenyl Ether C | Carboxyl C Keto C |
---|---|---|---|---|
0–47 | 47–115 | 115–160 | 160–210 | |
ppm | ||||
FL | 17.14 | 67.53 | 10.67 | 4.66 |
FS | 22.79 | 58.87 | 11.98 | 6.36 |
CL | 13.36 | 74.15 | 8.74 | 3.75 |
CS | 23.38 | 60.06 | 10.85 | 5.71 |
PL | 14.56 | 73.72 | 9.16 | 2.56 |
PS | 23.54 | 59.97 | 11.37 | 5.12 |
ROM | DOM | |||||
---|---|---|---|---|---|---|
Samples | H in Straight-Chain, Branched, and Cyclic Alkanes, CH3COOR | H in O-CH3 or N-alkyl/O-alkyl | Aromatic/Olefinic | H in Straight-Chain/Branched/Cyclic Alkanes, CH3COOR | H in O-CH3/N-alkyl/O-alkyl | Aromatic/Olefinic |
0.6–2.9 | 2.9–6.2 | 6.2–9.0 | 0.6–2.9 | 2.9–6.2 | 6.2–9.0 | |
ppm | ||||||
FL | 50.09 | 41.52 | 7.38 | 31.02 | 70.08 | - |
FS | 47.51 | 44.11 | 8.38 | 17.38 | 83.92 | - |
CL | 45.39 | 46.52 | 8.07 | 20.62 | 80.09 | - |
CS | 40.06 | 41.27 | 9.66 | 22.96 | 80.30 | - |
PL | 67.18 | 28.37 | 4.43 | 44.17 | 57.08 | - |
PS | 56.98 | 33.18 | 9.81 | 17.76 | 83.55 | - |
C | P | F | ||
---|---|---|---|---|
OM | Total | 0.90 | 0.60 | 0.48 |
quality | 0.69 | 0.47 | 0.41 | |
quantity | 0.21 | 0.13 | 0.07 | |
DOM | Total | 0.82 | 0.75 | 0.67 |
quality | 0.38 | 0.53 | 0.57 | |
quantity | 0.44 | 0.22 | 0.10 | |
ROM | Total | 0.64 | 0.56 | 0.35 |
quality | 0.17 | 0.40 | 0.18 | |
quantity | 0.47 | 0.16 | 0.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tambone, F.; Masseroli, A.; Beccarelli, P.; Breno, L.; Zuccolo, M.; Borgonovo, G.; Mazzini, S.; Golinelli, A.; Scaglia, B. Characterization of Litter and Topsoil Under Different Vegetation Cover by Using a Chemometric Approach. Forests 2025, 16, 1349. https://doi.org/10.3390/f16081349
Tambone F, Masseroli A, Beccarelli P, Breno L, Zuccolo M, Borgonovo G, Mazzini S, Golinelli A, Scaglia B. Characterization of Litter and Topsoil Under Different Vegetation Cover by Using a Chemometric Approach. Forests. 2025; 16(8):1349. https://doi.org/10.3390/f16081349
Chicago/Turabian StyleTambone, Fulvia, Anna Masseroli, Paolo Beccarelli, Luca Breno, Marco Zuccolo, Gigliola Borgonovo, Stefania Mazzini, Alex Golinelli, and Barbara Scaglia. 2025. "Characterization of Litter and Topsoil Under Different Vegetation Cover by Using a Chemometric Approach" Forests 16, no. 8: 1349. https://doi.org/10.3390/f16081349
APA StyleTambone, F., Masseroli, A., Beccarelli, P., Breno, L., Zuccolo, M., Borgonovo, G., Mazzini, S., Golinelli, A., & Scaglia, B. (2025). Characterization of Litter and Topsoil Under Different Vegetation Cover by Using a Chemometric Approach. Forests, 16(8), 1349. https://doi.org/10.3390/f16081349