Interpreting Ring Currents from Hückel-Guided σ- and π-Electron Delocalization in Small Boron Rings
Abstract
1. Introduction
2. Computational Details
3. Results and Discussion
3.1. B3− and B3+
3.2. B4 and B42−
3.3. The Case of B42+
3.4. Additional Arguments to Support Two Circuit σ-Delocalization
3.5. Integrating AdNDP, EDDB, and MICD Analyses: Consistency Across the Series
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- von Schleyer, P.R.; Jiao, H. What Is Aromaticity? Pure Appl. Chem. 1996, 68, 209–218. [Google Scholar] [CrossRef]
- von Ragué Schleyer, P. Introduction: Aromaticity. Chem. Rev. 2001, 101, 1115–1118. [Google Scholar] [CrossRef]
- Krygowski, T.M.; Cyrański, M.K. Structural Aspects of Aromaticity. Chem. Rev. 2001, 101, 1385–1420. [Google Scholar] [CrossRef] [PubMed]
- Fernández, I. Aromaticity: Modern Computational Methods and Applications; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar] [CrossRef]
- Zhai, H.; Averkiev, B.B.; Zubarev, D.Y.; Wang, L.; Boldyrev, A.I. δ Aromaticity in [Ta3O3]−. Angew. Chemie. 2007, 119, 4355–4358. [Google Scholar] [CrossRef]
- Zubarev, D.Y.; Averkiev, B.B.; Zhai, H.-J.; Wang, L.-S.; Boldyrev, A.I. Aromaticity and Antiaromaticity in Transition-Metal Systems. Phys. Chem. Chem. Phys. 2008, 10, 257–267. [Google Scholar] [CrossRef]
- Boldyrev, A.I.; Wang, L.-S. All-Metal Aromaticity and Antiaromaticity. Chem. Rev. 2005, 105, 3716–3757. [Google Scholar] [CrossRef]
- Zubarev, D.Y.; Boldyrev, A.I. Developing Paradigms of Chemical Bonding: Adaptive Natural Density Partitioning. Phys. Chem. Chem. Phys. 2008, 10, 5207. [Google Scholar] [CrossRef] [PubMed]
- Rincon, L.; Almeida, R.; Alvarellos, E.; Garcia-aldea, D.; Hasmy, A.; Gonzales, C. The Role Delocalization in Planar Boron Clusters. Dalt. Trans. 2009, 3328–3333. [Google Scholar] [CrossRef]
- Zubarev, D.Y.U.; Boldyrev, A.I. Comprehensive Analysis of Chemical Bonding in Boron Clusters. J. Comput. Chem. 2006, 28, 251–268. [Google Scholar] [CrossRef] [PubMed]
- Alexandrova, A.N.; Boldyrev, A.I.; Zhai, H.-J.; Wang, L.-S. All-Boron Aromatic Clusters as Potential New Inorganic Ligands and Building Blocks in Chemistry. Coord. Chem. Rev. 2006, 250, 2811–2866. [Google Scholar] [CrossRef]
- Aihara, J.; Kanno, H.; Ishida, T. Aromaticity of Planar Boron Clusters Confirmed. J. Am. Chem. Soc. 2005, 127, 13324–13330. [Google Scholar] [CrossRef]
- Barroso, J.; Pan, S.; Merino, G. Structural Transformations in Boron Clusters Induced by Metal Doping. Chem. Soc. Rev. 2022, 51, 1098–1123. [Google Scholar] [CrossRef]
- Pham, H.T.; Lim, K.Z.; Havenith, R.W.A.; Nguyen, M.T. Aromatic Character of Planar Boron-Based Clusters Revisited by Ring Current Calculations. Phys. Chem. Chem. Phys 2016, 18, 11919–11931. [Google Scholar] [CrossRef]
- Tsipis, C.A. Aromaticity/Antiaromaticity in “Bare” and “Ligand-Stabilized” Rings of Metal Atoms. In Metal-Metal Bonding; Springer: Berlin/Heidelberg, Germany, 2010; pp. 217–274. [Google Scholar] [CrossRef]
- Peerless, B.; Schmidt, A.; Franzke, Y.J.; Dehnen, S. φ-Aromaticity in Prismatic {Bi6}−Based Clusters. Nat. Chem. 2023, 15, 347–356. [Google Scholar] [CrossRef]
- Dari, C.; Leyva-Parra, L.; Yang, Y.; Tiznado, W.; Cui, Z. Ga5Li12+: A Doubly Aromatic Ga511– Ring Stabilized by Lithium Cations. Inorg. Chem. 2025, 64, 12429–12434. [Google Scholar] [CrossRef]
- Feixas, F.; Matito, E.; Poater, J.; Solà, M. Quantifying Aromaticity with Electron Delocalisation Measures. Chem. Soc. Rev. 2015, 44, 6434–6451. [Google Scholar] [CrossRef] [PubMed]
- Báez-Grez, R.; Ruiz, L.; Pino-Rios, R.; Tiznado, W. Which NICS Method Is Most Consistent with Ring Current Analysis? Assessment in Simple Monocycles. RSC Adv. 2018, 8, 13446–13453. [Google Scholar] [CrossRef]
- Inostroza, D.; García, V.; Yañez, O.; Torres-Vega, J.J.; Vásquez-Espinal, A.; Pino-Rios, R.; Báez-Grez, R.; Tiznado, W. On the NICS Limitations to Predict Local and Global Current Pathways in Polycyclic Systems. New J. Chem. 2021, 45, 8345–8351. [Google Scholar] [CrossRef]
- Solà, M. Aromaticity Rules. Nat. Chem. 2022, 14, 585–590. [Google Scholar] [CrossRef] [PubMed]
- Torres-Vega, J.J.; Vásquez-Espinal, A.; Caballero, J.; Valenzuela, M.L.; Alvarez-Thon, L.; Osorio, E.; Tiznado, W. Minimizing the Risk of Reporting False Aromaticity and Antiaromaticity in Inorganic Heterocycles Following Magnetic Criteria. Inorg. Chem. 2014, 53, 3579–3585. [Google Scholar] [CrossRef] [PubMed]
- Schleyer, P.V.R.; Pühlhofer, F. Recommendations for the Evaluation of Aromatic Stabilization Energies. Org. Lett. 2002, 4, 2873–2876. [Google Scholar] [CrossRef]
- George, P.; Trachtman, M.; Bock, C.W.; Brett, A.M. Homodesmotic Reactions for the Assessment of Stabilization Energies in Benzenoid and Other Conjugated Cyclic Hydrocarbons. J. Chem. Soc. Perkin Trans. 2 1976, 11, 1222–1227. [Google Scholar] [CrossRef]
- Mo, Y.; Song, L.; Lin, Y. Block-Localized Wavefunction (BLW) Method at the Density Functional Theory (DFT) Level. J. Phys. Chem. A 2007, 111, 8291–8301. [Google Scholar] [CrossRef]
- Chen, Z.; Wannere, C.S.; Corminboeuf, C.; Puchta, R.; Schleyer, P.V.R. Nucleus-Independent Chemical Shifts (NICS) as an Aromaticity Criterion. Chem. Rev. 2005, 105, 3842–3888. [Google Scholar] [CrossRef]
- Jusélius, J.; Straka, M.; Sundholm, D. Magnetic-Shielding Calculations on Al42− and Analogues. A New Family of Aromatic Molecules? J. Phys. Chem. A 2001, 105, 9939–9944. [Google Scholar] [CrossRef]
- Geuenich, D.; Hess, K.; Köhler, F.; Herges, R. Anisotropy of the Induced Current Density (ACID), a General Method To Quantify and Visualize Electronic Delocalization. Chem. Rev. 2005, 105, 3758–3772. [Google Scholar] [CrossRef]
- Sundholm, D.; Berger, R.J.F.; Fliegl, H. Analysis of the Magnetically Induced Current Density of Molecules Consisting of Annelated Aromatic and Antiaromatic Hydrocarbon Rings. Phys. Chem. Chem. Phys. 2016, 18, 15934–15942. [Google Scholar] [CrossRef] [PubMed]
- Sundholm, D.; Fliegl, H.; Berger, R.J.F. Calculations of Magnetically Induced Current Densities: Theory and Applications. WIREs Comput. Mol. Sci. 2016, 6, 639–678. [Google Scholar] [CrossRef]
- Leyva-Parra, L.; Pino-Rios, R.; Inostroza, D.; Solà, M.; Alonso, M.; Tiznado, W. Aromaticity and Magnetic Behavior in Benzenoids: Unraveling Ring Current Combinations. Chem.–A Eur. J. 2024, 30, e202302415. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Lu, T.; Chen, Q. An Sp-Hybridized All-Carboatomic Ring, Cyclo[18]Carbon: Bonding Character, Electron Delocalization, and Aromaticity. Carbon N. Y. 2020, 165, 468–475. [Google Scholar] [CrossRef]
- Kruszewski, J.; Krygowski, T.M. Definition of Aromaticity Basing on the Harmonic Oscillator Model. Tetrahedron Lett. 1972, 13, 3839–3842. [Google Scholar] [CrossRef]
- Szczepanik, D.W.; Żak, E.; Dyduch, K.; Mrozek, J. Electron Delocalization Index Based on Bond Order Orbitals. Chem. Phys. Lett. 2014, 593, 154–159. [Google Scholar] [CrossRef]
- Ghosh, S.R.; Halder, S.C.; Mitra, S.; Mondal, R.; Jana, A.D. Evolution of Aromaticity in B3n (n = 2+, 1+, 0, 1−, 2−, 3−) Clusters upon Electron Injection and Abstraction: A Comprehensive Analysis Using ELF, NICS, Ring Current Maps and AdNDP. Comput. Theor. Chem. 2025, 1251, 115349. [Google Scholar] [CrossRef]
- Tai, T.B.; Ceulemans, A.; Nguyen, M.T. Disk Aromaticity of the Planar and Fluxional Anionic Boron Clusters B20−/2−. Chem.—A Eur. J. 2012, 18, 4510–4512. [Google Scholar] [CrossRef]
- Dordević, S.; Solà, M.; Radenković, S. Aromaticity of Singlet and Triplet Boron Disk-like Clusters: A Test for Electron Counting Aromaticity Rules. Inorg. Chem. 2022, 61, 10116–10125. [Google Scholar] [CrossRef]
- Li, X.; Kuznetsov, A.E.; Zhang, H.-F.; Boldyrev, A.I.; Wang, L.-S. Observation of All-Metal Aromatic Molecules. Science 2001, 291, 859–861. [Google Scholar] [CrossRef]
- Adamo, C.; Barone, V. Toward Reliable Density Functional Methods without Adjustable Parameters: The PBE0 Model. J. Chem. Phys. 1999, 110, 6158–6170. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [PubMed]
- Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16; Wallingford Center Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Lu, T.; Chen, F. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Knizia, G.; Klein, J.E.M.N. Electron Flow in Reaction Mechanisms—Revealed from First Principles. Angew. Chem. Int. Ed. 2015, 54, 5518–5522. [Google Scholar] [CrossRef] [PubMed]
- Knizia, G. Intrinsic Atomic Orbitals: An Unbiased Bridge between Quantum Theory and Chemical Concepts. J. Chem. Theory Comput. 2013, 9, 4834–4843. [Google Scholar] [CrossRef]
- Neese, F. Actualización de Software: El Sistema Del Programa ORCA—Versión 5.0. WIREs Comput. Mol. Sci. 2022, 12, e1606. [Google Scholar] [CrossRef]
- Gerald Knizia Group. IboView; Pennsylvania State University: University Park, TX, USA, 2013; Available online: http://iboview.org/ (accessed on 29 August 2025).
- Monaco, G.; Summa, F.F.; Zanasi, R. Program Package for the Calculation of Origin-Independent Electron Current Density and Derived Magnetic Properties in Molecular Systems. J. Chem. Inf. Model. 2021, 61, 270–283. [Google Scholar] [CrossRef]
- Cheeseman, J.R.; Trucks, G.W.; Keith, T.A.; Frisch, M.J. A Comparison of Models for Calculating Nuclear Magnetic Resonance Shielding Tensors. J. Chem. Phys. 1996, 104, 5497–5509. [Google Scholar] [CrossRef]
- Lehtola, S.; Dimitrova, M.; Fliegl, H.; Sundholm, D. Benchmarking Magnetizabilities with Recent Density Functionals. J. Chem. Theory Comput. 2021, 17, 1457–1468. [Google Scholar] [CrossRef]
- Zhai, H.; Wang, L.; Alexandrova, A.N.; Boldyrev, A.I.; Zakrzewski, V.G. Photoelectron Spectroscopy and Ab Initio Study of B3− and B4− Anions and Their Neutrals. J. Phys. Chem. A 2003, 107, 9319–9328. [Google Scholar] [CrossRef]
- Nigam, S.; Majumder, C.; Kulshreshtha, S.K. Theoretical Study of Aromaticity in Inorganic Tetramer Clusters. J. Chem. Sci. 2006, 118, 575–578. [Google Scholar] [CrossRef]
- Corminboeuf, C.; Heine, T.; Weber, J. Evaluation of Aromaticity: A New Dissected NICS Model Based on Canonical Orbitals. Phys. Chem. Chem. Phys. 2003, 5, 246–251. [Google Scholar] [CrossRef]
- Ranjan, S.; Charan, S.; Mitra, S.; Mondal, R.; Dipankar, A. Journal of Molecular Graphics and Modelling Unravelling the Effect of Successive Electron Injection into the Smallest Cyclic Boron Cluster, Bn Structure Analysis. J. Mol. Graph. Model. 2025, 137, 108998. [Google Scholar] [CrossRef]
- Zhao, D.; He, X.; Li, M.; Wang, B.; Guo, C.; Rong, C.; Chattaraj, P.K.; Liu, S. Density Functional Theory Studies of Boron Clusters with Exotic Properties in Bonding, Aromaticity and Reactivity. Phys. Chem. Chem. Phys. 2021, 23, 24118–24124. [Google Scholar] [CrossRef] [PubMed]
- Becke, A.D.; Edgecombe, K.E. A Simple Measure of Electron Localization in Atomic and Molecular Systems. J. Chem. Phys. 1990, 92, 5397–5403. [Google Scholar] [CrossRef]
- Tian, L.; Chen, F.W. Meaning and Functional Form of the Electron Localization Function. Acta Phys.-Chim. Sin. 2011, 27, 2786–2792. [Google Scholar] [CrossRef]
Scheme | NICS | CMO | RCS | Agreement | |||
---|---|---|---|---|---|---|---|
σ | π | σ | π | Total | |||
B3− | −73.6 [10] (0.0 Å) −57.9 [10] (0.5 Å) −28.2 [10] (1.0 Å) | 4n + 2 [10,14] | 4n + 2 [10,14] | 12.1 | 3.9 | 16.0 | ✓ |
B3+ | −66.3 [10] (0.0 Å) −46.3 [10] (0.5 Å) −15.9 [10] (1.0 Å) | __ | 4n + 2 [10,14] | 7.4 | 3.8 | 11.2 | ✕ |
B4 | −35.6 [10](0.0 Å) −24.5 [10] (0.5 Å) 7.7 [10] (1.0 Å) | 4n + 2 [10] | 4n + 2 [10,14] | −5.1 | 3.9 | −1.2 | ✕ |
B42− | −29.5 [53] (0.0 Å) −3.0 [53] (1.25 Å) | 4n + 2 [14,27] | 4n + 2 [14,27] | 17.8 | 3.8 | 21.6 | ✓ |
C6H6 | −8.2 [26,54] (0.0 Å) −9.8 [26,54] (0.5 Å) −10.2 [26,54] (1.0 Å) | __ | 4n + 2 [26,54] | 0.3 | 11.9 | 12.2 | ✓ |
C4H4 | +21.5 [26,54] (0.0 Å) +13.3 [26,54] (1.0 Å) | __ | 4n [26,54] | −5.4 | −15.6 | −21.0 | ✓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sacanamboy, D.S.; García-Argote, W.; Pumachagua-Huertas, R.; Cárdenas, C.; Leyva-Parra, L.; Ruiz, L.; Tiznado, W. Interpreting Ring Currents from Hückel-Guided σ- and π-Electron Delocalization in Small Boron Rings. Molecules 2025, 30, 3566. https://doi.org/10.3390/molecules30173566
Sacanamboy DS, García-Argote W, Pumachagua-Huertas R, Cárdenas C, Leyva-Parra L, Ruiz L, Tiznado W. Interpreting Ring Currents from Hückel-Guided σ- and π-Electron Delocalization in Small Boron Rings. Molecules. 2025; 30(17):3566. https://doi.org/10.3390/molecules30173566
Chicago/Turabian StyleSacanamboy, Dumer S., Williams García-Argote, Rodolfo Pumachagua-Huertas, Carlos Cárdenas, Luis Leyva-Parra, Lina Ruiz, and William Tiznado. 2025. "Interpreting Ring Currents from Hückel-Guided σ- and π-Electron Delocalization in Small Boron Rings" Molecules 30, no. 17: 3566. https://doi.org/10.3390/molecules30173566
APA StyleSacanamboy, D. S., García-Argote, W., Pumachagua-Huertas, R., Cárdenas, C., Leyva-Parra, L., Ruiz, L., & Tiznado, W. (2025). Interpreting Ring Currents from Hückel-Guided σ- and π-Electron Delocalization in Small Boron Rings. Molecules, 30(17), 3566. https://doi.org/10.3390/molecules30173566