Synergy Effect of Synthetic Wax and Tall Oil Amidopolyamines for Slowing Down the Aging Process of Bitumen
Abstract
1. Introduction
- The addition of low-carbon footprint synthetic wax (SWLC) and tall oil amidopolyamines (TOAs) reduces the aging rate of bitumen.
- The synergy of SWLC and TOAs has a positive effect on the chemical and rheological properties of the binder in the aging process.
2. Materials and Methods
2.1. Materials
2.2. Synthetic Wax LC and Tall Oil Amidopolyamines
2.3. Synthetic Wax LC and Tall Oil Amidopolyamines—Modified Bitumen Preparation
2.4. Aging Procedure
2.5. FTIR Procedure
2.6. Methods for Bitumen Testing
2.7. Design of Experiment
- n—number of variables, du—values of individual desirability.
3. Results and Discussion
3.1. The Effect of the SWLC Synthetic Wax and TOA Amount on the Bitumen Physico-Mechanical Properties
3.2. The Effect of the SWLC and TOA on Long- and Short-Term Bitumen Aging
3.3. FTIR Analysis of SWLC and TOA Modified Bitumen Before and After Aging Process
3.4. Optimization of WMA Additives in Bitumen
3.4.1. Physical and Mechanical Characteristics of the Binder for the Optimal Amount of Additives
3.4.2. FTIR for the Recommended Amount of WMA Additives in Bitumen
3.4.3. Low-Temperature Characteristics of Bitumen for Optimal WMA Additive Compactness
3.4.4. MSCR Analysis
3.4.5. Approximation of CAM Model Parameters
4. Conclusions
- The use of synthetic wax (SWLC) and tall oil amidopolyamine (TOA) in optimal proportions of 1.5% w/w and 0.4% w/w has a positive effect on the physical and mechanical properties of the bitumen. There was a 22% reduction in penetration at 25 °C, a 28% increase in softening temperature, and an 18% reduction in viscosity at 135 °C.
- The synergy of synthetic wax and tall oil amidopoliamine ensures the negative impact of short- and long-term aging on penetration at 25 °C, which is characterized by an increase in the PRRRTFOT index by 22% and PRRRTFOT+PAV by 37%. The softening temperature is characterized by a 20% reduction in the SPIRTFOT index and a 33% reduction in the SPIRTFOT+PAV index, and the dynamic viscosity is characterized by a 36% reduction in the VAIRTFOT index and a 23% reduction in the VAIRTFOT+PAV index.
- Synthetic wax and tall oil amidopolyamine have a positive effect within the recommended dosage range and also allow the original chemical structure of the bitumen components to be preserved by inhibiting oxidation reactions and the formation of polar C=O, S=O, and C=C bonds after both short-term and long-term aging. This is particularly evident in the case of a decrease in IC=C after RTFOT and RTFOT + PAV aging of bitumen with optimal amounts of WMA additive of approximately 10% compared to control bitumen.
- The synergistic effect of SWLC and TOA has a positive impact on the low-temperature properties of the binder, i.e., ensuring a reduction in the temperature range from −10 °C to −28 °C, a reduction in the creep stiffness modulus S before aging in the range of 4% to 19% and after aging in the range of 3% to 28%, and an increase in the creep rate m before aging from 9% to 22% and after aging from 2% to 15%. The advantageous rutting properties of the Jnr 0.1 binder after RTFOT aging changed by about 36%; after RTFOT + PAV by about 21% compared to the control asphalt and Jnr 3.2; after RTFOT aging by about 24%; after RTFOT + PAV by about 30% and R 0.1 and R 3.2 by about 44% and 90%; and after RTFOT and after RTFOT + PAV by 6.5% and 21%, respectively, compared to the control asphalt, as well as the dynamic shear properties (|G*|, sin(δ)) in the oscillatory model, which are also ensured.
- The introduction of WMA additives (SWLC and TOA) to bitumen improved its rheological properties in the unaged state and after short-term aging, increasing the measured phase angles by 3° and 5°, respectively, thus resulting in additional structuring of the bitumen.
- The assessment of rheological properties using the CAM model showed that WMA additives (SWLC and TOA) significantly inhibited changes in the frequency of returns fc and the rheological index Rc, causing bitumen aging, thus making the binders more stable throughout the entire service life of the pavement.
- The effect on the flow characteristics of bitumen at higher temperatures (60 °C and above), quantified by dynamic viscosity measurements in a range of more than two times, was more pronounced in samples subjected to long-term aging, confirming the significance of the anti-aging effect of the investigated formulation.
- The synergistic effect of 1.5% synthetic wax and 0.4% tall oil amidopolyamines most effectively inhibits the destructive aging processes of road bitumens.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SWLC | Synthetic wax low-carbon |
TOA | Tall oil amidoplyamine |
DSR | Dynamic shear rheometer |
MSCR | Multiple stress creep recovery test |
BBR | Bending beam rheometer |
FTIR | Fourier transform infrared spectroscopy |
RTFOT | Rolling thin film oven test |
PAV | Pressure aging vessel |
PRR | Penetration retention ratio |
SPI | Softening temperature increment |
VAI | Viscosity aging index |
References
- Almeida-Costa, A.; Benta, A. Economic and Environmental Impact Study of Warm Mix Asphalt Compared to Hot Mix Asphalt. J. Clean. Prod. 2016, 112, 2308–2317. [Google Scholar] [CrossRef]
- Sukhija, M.; Saboo, N.; Pani, A. Economic and Environmental Aspects of Warm Mix Asphalt Mixtures: A Comparative Analysis. Transp. Res. Part D Transp. Environ. 2022, 109, 103355. [Google Scholar] [CrossRef]
- D’Angelo, J.A.; Harm, E.; Bartoszek, J.; Baumgardner, G.; Corrigan, M.; Cowsert, J.; Harman, T.; Jamshidi, M.; Jones, W.; Newcomb, D.; et al. Warm-Mix Asphalt: European Practice; American Trade Initiatives: Alexandria, VA, USA, 2008; p. 68. [Google Scholar]
- Sheth, N.M. Evaluation of Selected Warm Mix Asphalt Additives. Master’s Thesis, University of Iowa, Iowa City, IA, USA, 2010. [Google Scholar]
- Harder, G.A.; LeGoff, Y.; Loustau, A.; Martineau, Y.; Heritier, B.; Romier, A. Energy and Environmental Gains of Warm and Half-Warm Asphalt Mix: Quantitative Approach; The National Academies of Sciences, Engineering, and Medicine: Washington, DC, USA, 2008. [Google Scholar]
- Butz, T.; Rahimian, I.; Hildebrand, G. Modification of Road Bitumens with the Fischer-Tropsch Paraffin Sasobit. J. Appl. Asph. Bind. Technol. 2001, 1, 70–86. [Google Scholar]
- Silva, H.M.R.D.; Oliveira, J.R.M.; Peralta, J.; Zoorob, S.E. Optimization of Warm Mix Asphalts Using Different Blends of Binders and Synthetic Paraffin Wax Contents. Constr. Build. Mater. 2010, 24, 1621–1631. [Google Scholar] [CrossRef]
- Edwards, Y.; Tasdemir, Y.; Isacsson, U. Influence of Commercial Waxes on Bitumen Aging Properties. Energy Fuels 2005, 19, 2519–2525. [Google Scholar] [CrossRef]
- Nizamuddin, S.; Baloch, H.A.; Jamal, M.; Madapusi, S.; Giustozzi, F. Performance of Waste Plastic Bio-Oil as a Rejuvenator for Asphalt Binder. Sci. Total Environ. 2022, 828, 154489. [Google Scholar] [CrossRef]
- Ragaert, K.; Delva, L.; Van Geem, K. Mechanical and Chemical Recycling of Solid Plastic Waste. Waste Manag. 2017, 69, 24–58. [Google Scholar] [CrossRef]
- Silva, J.D.A.A.E.; Rodrigues, J.K.G.; de Carvalho, M.W.; Lucena, L.C.D.F.L.; Cavalcante, E.H. Mechanical Performance of Asphalt Mixtures Using Polymer-Micronized PET-Modified Binder. Road Mater. Pavement Des. 2018, 19, 1001–1009. [Google Scholar] [CrossRef]
- Al-Omari, A.A.; Khedaywi, T.S.; Khasawneh, M.A. Laboratory Characterization of Asphalt Binders Modified with Waste Vegetable Oil Using SuperPave Specifications. Int. J. Pavement Res. Technol. 2018, 11, 68–76. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, K.; Wu, C.; Liu, K.; Jiang, K. Preparation of Bio-Oil and Its Application in Asphalt Modification and Rejuvenation: A Review of the Properties, Practical Application and Life Cycle Assessment. Constr. Build. Mater. 2020, 262, 120528. [Google Scholar] [CrossRef]
- Iwański, M.; Chomicz-Kowalska, A.; Maciejewski, K.; Iwański, M.M.; Radziszewski, P.; Liphardt, A.; Król, J.B.; Sarnowski, M.; Kowalski, K.J.; Pokorski, P. Warm Mix Asphalt Binder Utilizing Water Foaming and Fluxing Using Bio-Derived Agent. Materials 2022, 15, 8873. [Google Scholar] [CrossRef]
- Iwański, M.M.; Chomicz-Kowalska, A.; Maciejewski, K. Effect of Surface Active Agent (SAA) on 50/70 Bitumen Foaming Characteristics. Materials 2019, 12, 3514. [Google Scholar] [CrossRef]
- Leng, Z.; Gamez, A.; Al-Qadi, I.L. Mechanical Property Characterization of Warm-Mix Asphalt Prepared with Chemical Additives. J. Mater. Civ. Eng. 2014, 26, 304–311. [Google Scholar] [CrossRef]
- Pereira, R.; Almeida-Costa, A.; Duarte, C.; Benta, A. Warm Mix Asphalt: Chemical Additives’ Effects on Bitumen Properties and Limestone Aggregates Mixture Compactibility. Int. J. Pavement Res. Technol. 2018, 11, 285–299. [Google Scholar] [CrossRef]
- Sanchez-Alonso, E.; Vega-Zamanillo, A.; Castro-Fresno, D.; DelRio-Prat, M. Evaluation of Compactability and Mechanical Properties of Bituminous Mixes with Warm Additives. Constr. Build. Mater. 2011, 25, 2304–2311. [Google Scholar] [CrossRef]
- Iwański, M.; Mazurek, G. Rheological Characteristics of Synthetic Wax-Modified Asphalt Binders. Polimery 2012, 57, 661–664. [Google Scholar] [CrossRef]
- Iwański, M.M. Synergistic Effect of F–T Synthetic Wax and Surface-Active Agent Content on the Properties and Foaming Characteristics of Bitumen 50/70. Materials 2021, 14, 300. [Google Scholar] [CrossRef] [PubMed]
- Malinowski, S.; Woszuk, A.; Wróbel, M.; Kwaśniewska, A.; Gładyszewski, G.; Škulteckė, J.; Vaitkus, A.; Franus, W. Anti-Ageing and Rheological Performance of Bitumen Modified with Polyaniline Nanofibres. Constr. Build. Mater. 2024, 437, 136810. [Google Scholar] [CrossRef]
- Tauste, R.; Moreno-Navarro, F.; Sol-Sánchez, M.; Rubio-Gámez, M.C. Understanding the Bitumen Ageing Phenomenon: A Review. Constr. Build. Mater. 2018, 192, 593–609. [Google Scholar] [CrossRef]
- Pei, Z.; Xu, M.; Cao, J.; Feng, D.; Hu, W.; Ren, J.; Jing, R.; Yi, J. Analysis of the Microcharacteristics of Different Kinds of Asphalt Based on Different Aging Conditions. Mater. Struct. 2022, 55. [Google Scholar] [CrossRef]
- Gamarra, A.; Ossa, E.A. Thermo-Oxidative Aging of Bitumen. Int. J. Pavement Eng. 2018, 19, 641–650. [Google Scholar] [CrossRef]
- Gawel, I.; Czechowski, F.; Kosno, J. An Environmental Friendly Anti-Ageing Additive to Bitumen. Constr. Build. Mater. 2016, 110, 42–47. [Google Scholar] [CrossRef]
- Li, X.; Zofka, A.; Marasteanu, M.; Clyne, T.R. Evaluation of Field Aging Effects on Asphalt Binder Properties. Road Mater. Pavement Des. 2006, 7, 57–73. [Google Scholar] [CrossRef]
- Hesami, S.; Mahzari, M.; Sobhi, S.; Bay, M.A. Investigating the Rheological Properties and Microstructural Analysis of Nano-Expanded Perlite Modified Asphalt Binder. Case Stud. Constr. Mater. 2025, 22, e04208. [Google Scholar] [CrossRef]
- Mohammed, A.M.; Abed, A.H. Enhancing Asphalt Binder Performance through Nano-SiO2 and Nano-CaCO3 Additives: Rheological and Physical Insights. Case Stud. Constr. Mater. 2023, 19, e02492. [Google Scholar] [CrossRef]
- Fakhri, M.; Shahryari, E. The Effects of Nano Zinc Oxide (ZnO) and Nano Reduced Graphene Oxide (RGO) on Moisture Susceptibility Property of Stone Mastic Asphalt (SMA). Case Stud. Constr. Mater. 2021, 15, e00655. [Google Scholar] [CrossRef]
- Feng, Z.; Wang, S.; Bian, H.; Guo, Q.; Li, X. FTIR and Rheology Analysis of Aging on Different Ultraviolet Absorber Modified Bitumens. Constr. Build. Mater. 2016, 115, 48–53. [Google Scholar] [CrossRef]
- Kuang, D.; Yu, J.; Feng, Z.; Li, R.; Chen, H.; Guan, Y.; Zhang, Z. Performance Evaluation and Preventive Measures for Aging of Different Bitumens. Constr. Build. Mater. 2014, 66, 209–213. [Google Scholar] [CrossRef]
- Zhang, C.; Dong, H.; Wang, T.; Li, Y.; Xu, S.; Zheng, Y.; Que, Y.; Chen, Y. Effect of Different Organic Layered Double Hydroxides on the Anti-Aging Property of Bitumen. Constr. Build. Mater. 2023, 367, 130316. [Google Scholar] [CrossRef]
- Celauro, C.; Teresi, R.; Dintcheva, N.T.Z. Evaluation of Anti-Aging Effect in Biochar-Modified Bitumen. Sustainability 2023, 15, 10583. [Google Scholar] [CrossRef]
- Xu, S.; Wang, Y.; Jia, X.; Bian, C.; Tighe, S.; Zhang, C.; Ma, H.; Zhang, C. Anti-Aging Performance and Mechanism Analysis of Styrene–Butadiene–Styrene Modified Bitumen Containing Antioxidant/Cinnamic Acid Intercalated Layered Double Hydroxides. Constr. Build. Mater. 2022, 361, 129660. [Google Scholar] [CrossRef]
- Xu, S.; Jia, X.; Huang, R.; Fang, L.; Ma, Z.; Zhang, C.; Que, Y. Preparation and Performance Evaluation of Different Bitumens Modified by Antioxidant/PABA-LDHs Composites. Constr. Build. Mater. 2023, 367, 130286. [Google Scholar] [CrossRef]
- Iwański, M.; Chomicz-Kowalska, A.; Maciejewski, K.; Iwański, M.M.; Radziszewski, P.; Liphardt, A.; Król, J.B.; Sarnowski, M.; Kowalski, K.J.; Pokorski, P. Effects of Laboratory Ageing on the FTIR Measurements of Water-Foamed Bio-Fluxed Asphalt Binders. Materials 2023, 16, 513. [Google Scholar] [CrossRef] [PubMed]
- Somé, S.C.; Gaudefroy, V.; Delaunay, D. Effect of Vegetable Oil Additives on Binder and Mix Properties: Laboratory and Field Investigation. Mater. Struct. 2016, 49, 2197–2208. [Google Scholar] [CrossRef]
- Eskandarsefat, S.; Hofko, B.; Rossi, C.O.; Sangiorgi, C. Fundamental Properties of Bitumen Binders Containing Novel Cellulose-Based Poly-Functional Fibres. Compos. Part B Eng. 2019, 163, 339–350. [Google Scholar] [CrossRef]
- Airey, G. Rheological Properties of Styrene Butadiene Styrene Polymer Modified Road Bitumens⋆. Fuel 2003, 82, 1709–1719. [Google Scholar] [CrossRef]
- Lu, X.; Isacsson, U. Chemical and Rheological Evaluation of Ageing Properties of SBS Polymer Modified Bitumens. Fuel 1998, 77, 961–972. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, H.; Shi, C. Investigation of Aging Performance of SBS Modified Asphalt with Various Aging Methods. Constr. Build. Mater. 2017, 145, 445–451. [Google Scholar] [CrossRef]
- Iwański, M.; Durlej, M.; Janus, K.; Horodecka, R. Efekt Oddziaływania Wosku Syntetycznego i Środka Powierzchniowo Czynnego Na Starzenie Oraz Właściwości Niskotemperaturowe Asfaltu 50/70 Przed i Po Spienianiu. Roads Bridges Drog. I Mosty 2024, 23, 311–329. [Google Scholar] [CrossRef]
- Iwański, M.M.; Janus, K.; Durlej, M. Effect of WMA Additives on Asphalt Ageing—Case Study. J. Pol. Miner. Eng. Soc. 2024, 1. [Google Scholar] [CrossRef]
- Kalantar, Z.N.; Karim, M.R.; Mahrez, A. A Review of Using Waste and Virgin Polymer in Pavement. Constr. Build. Mater. 2012, 33, 55–62. [Google Scholar] [CrossRef]
- Elliot, T.; Carter, A.; Ghattuwar, S.; Levasseur, A. Environmental Impacts of Road Pavement Rehabilitation. Transp. Res. Part D Transp. Environ. 2023, 118, 103720. [Google Scholar] [CrossRef]
- Ishaq, M.A.; Giustozzi, F. Rejuvenator Effectiveness in Reducing Moisture and Freeze/Thaw Damage on Long-Term Performance of 20% RAP Asphalt Mixes: An Australian Case Study. Case Stud. Constr. Mater. 2020, 13, e00454. [Google Scholar] [CrossRef]
- Appiah, J.K.; Berko-Boateng, V.N.; Tagbor, T.A. Use of Waste Plastic Materials for Road Construction in Ghana. Case Stud. Constr. Mater. 2017, 6, 1–7. [Google Scholar] [CrossRef]
- EN1426:2015-08; Bitumen and Bituminous Binders—Determination of Needle Penetration. European Committee for Standardization: Brussels, Belgium, 2015.
- EN1427:2015-08; Bitumen and Bituminous Binders—Determination of the Softening Point—Ring and Ball Method. European Committee for Standardization: Brussels, Belgium, 2015.
- EN 12593:2015; Bitumen and Bituminous Binders—Determination of the Fraass Breaking Point. European Committee for Standardization: Brussels, Belgium, 2015.
- EN 12596:2023; Bitumen and bituminous binders—Determination of dynamic viscosity by vacuum capillary. European Committee for Standardization: Brussels, Belgium, 2023.
- Sasol Materials; Sasobit, L.C. Available online: https://www.sasobit.com/files/downloads/PDF_070722/0376SAS-Sasobit-OP-Flyer_en_LR.pdf (accessed on 21 September 2022).
- Środek Adhezyjny do Asfaltów Drogowych WETFIX BE. Available online: https://www.izbudujemy.pl/produkty/18048/Srodek-adhezyjny-do-asfaltow-drogowych-WETFIX-BE (accessed on 18 July 2022).
- EN 12594:2014; Bitumens and Bituminous Binders—Preparation of Test Samples. European Committee for Standardization: Brussels, Belgium, 2014.
- ImageJ 1.54k. Available online: https://imagej.net/ij/links.html (accessed on 19 July 2022).
- EN 12607-1:2014; Bitumen and Bituminous Binders—Determination of the Resistance to Hardening Under Influence of Heat and Air—Part 1: RTFOT Method. European Committee for Standardization: Brussels, Belgium, 2014.
- EN 14769:2023; Bitumen and Bituminous Binders—Accelerated Long-Term Ageing Conditioning by a Pressure Ageing Vessel (PAV). European Committee for Standardization: Brussels, Belgium, 2023.
- ASTM D 4402-02; Standard Test Method for Viscosity Determination of Asphalt at Elevated Temperatures Using a Rotational Viscometer. ASTM International: West Conshohocken, PA, USA, 2012.
- Malinowski, S.; Woszuk, A.; Franus, W. Modern Two-Component Modifiers Inhibiting the Aging Process of Road Bitumen. Constr. Build. Mater. 2023, 409, 133838. [Google Scholar] [CrossRef]
- EN 14771:2023; Bitumen and Bituminous Binders—Determination of the Flexural Creep Stiffness—Bending Beam Rheometer (BBR). European Committee for Standardization: Brussels, Belgium, 2023.
- EN 16659: 2015; Bitumen and Bituminous Binders—Multiple Stress Creep and Recovery Test (MSCRT). European Committee for Standardization: Brussels, Belgium, 2015.
- EN 14770:2012; Bitumen and Bituminous Binders—Determination of Complex Shear Modulus and Phase Angle—Dynamic Shear Rheometer (DSR). European Committee for Standardization: Brussels, Belgium, 2012.
- Marasteanu, M.O.; Anderson, D.A. Improved Model for Bitumen Rheological Characterization; European Bitumen Association: Luxembourg, 1999; Volume 133. [Google Scholar]
- Christensen, D.W.; Anderson, D.A.; Rowe, G.M. Relaxation Spectra of Asphalt Binders and the Christensen–Anderson Rheological Model. Road Mater. Pavement Des. 2017, 18, 382–403. [Google Scholar] [CrossRef]
- Kim, Y.R. (Ed.) Modeling of Asphalt Concrete; McGraw-Hill Construction: Reston, VA, USA; ASCE Press: New York, NY, USA, 2009; ISBN 978-0-07-146462-8. [Google Scholar]
- Montgomery, D.C. Design and Analysis of Experiments, 8th ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2013; ISBN 978-1-118-14692-7. [Google Scholar]
- Piasta, Z.; Lenarcik, A. Methods of Statistical Multi-Criteria Optimization. In Optimization Methods for Material Design of Cement-based Composites; CRC Press: Boca Raton, FL, USA, 1998; pp. 45–59. ISBN 978-1-4822-7176-8. [Google Scholar]
- STATISTICA 13.3. Statsoft. Available online: https://www.statsoft.pl/ (accessed on 20 August 2019).
- Harrington, E.C. The Desirability Function. Ind. Qual. Control 1965, 21, 494–498. [Google Scholar]
- Iwański, M.; Mazurek, G.; Buczyński, P. Bitumen Foaming Optimisation Process on the Basis of Rheological Properties. Materials 2018, 11, 1854. [Google Scholar] [CrossRef]
- Soenen, H.; Lu, X.; Laukkanen, O.-V. Oxidation of Bitumen: Molecular Characterization and Influence on Rheological Properties. Rheol Acta 2016, 55, 315–326. [Google Scholar] [CrossRef]
- Lei, Z.; Bahia, H.; Yi-qiu, T. Effect of Bio-Based and Refined Waste Oil Modifiers on Low Temperature Performance of Asphalt Binders. Constr. Build. Mater. 2015, 86, 95–100. [Google Scholar] [CrossRef]
- Guan, M.; Guo, M.; Tan, Y.; Du, X. Study on the Effect of Aging on Cracking Resistance of Virgin Asphalt Binder and Its Evolution Model. Constr. Build. Mater. 2023, 407, 133443. [Google Scholar] [CrossRef]
- Saboo, N.; Kumar, R.; Kumar, P.; Gupta, A. Ranking the Rheological Response of SBS- and EVA-Modified Bitumen Using MSCR and LAS Tests. J. Mater. Civ. Eng. 2018, 30, 04018165. [Google Scholar] [CrossRef]
- Škulteckė, J.; Vaitkus, A.; Šernas, O. Creep and Recovery of SBS Modified Bitumen Depending on the Properties of Base Bitumen and Polymer. In Proceedings of the International Conference on Road and Rail Infrastructure, Cavtat, Croatia, 15–17 May 2024; Volume 8, pp. 579–585. [Google Scholar]
- D’Angelo, J.A. The Relationship of the MSCR Test to Rutting. Road Mater. Pavement Des. 2009, 10, 61–80. [Google Scholar] [CrossRef]
- Pasetto, M.; Baliello, A.; Giacomello, G.; Pasquini, E. Mechanical Feasibility of Asphalt Materials for Pavement Solar Collectors: Small-Scale Laboratory Characterization. Appl. Sci. 2022, 13, 358. [Google Scholar] [CrossRef]
- Chapra, S.C.; Canale, R.P. Numerical Methods for Engineers, 6th ed.; McGraw-Hill Higher Education: Boston, MA, USA, 2010; ISBN 978-0-07-340106-5. [Google Scholar]
- Kleizienė, R.; Vaitkus, A.; Čygas, D. Influence of Asphalt Visco-Elastic Properties on Flexible Pavement Performance. Balt. J. Road Bridge Eng. 2016, 11, 313–323. [Google Scholar] [CrossRef]
- Poulikakos, L.D.; Wang, D.; Porot, L.; Hofko, B. Impact of Asphalt Aging Temperature on Chemo-Mechanics. RSC Adv. 2019, 9, 11602–11613. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Liu, X.; Apostolidis, P.; Van De Ven, M.; Erkens, S.; Skarpas, A. Effect of Laboratory Aging on Chemistry and Rheology of Crumb Rubber Modified Bitumen. Mater. Struct. 2020, 53, 26. [Google Scholar] [CrossRef]
Property | Standard | Unit | Mean Value |
---|---|---|---|
Penetration at 25 °C | EN 1426 [48] | 0.1 mm | 60.1 |
Softening point TR&B | EN 1427 [49] | °C | 49.6 |
Fraass breaking point | EN 12593 [50] | °C | −16.0 |
Dynamic viscosity at 60 °C | EN 12596 [51] | Pa·s | 370.5 |
Dynamic viscosity at 135 °C | EN 12596 [51] | Pa·s | 0.617 |
Property | Unit | Additive SWLC | Additive TOA |
---|---|---|---|
Appearance | - | Solid pellets, white or yellowish | Viscous liquid, brown |
Flash point | °C | 285 | >218 |
Solidification point | °C | 95 | <0 |
Density at 25 °C | Mg/m3 | 0.9 | |
Density at 20 °C | Mg/m3 | 0.88–0.98 | |
Viscosity at 135 °C | Pa·s | 12 | |
Viscosity at 20 °C Brookfield spindle SC 4-183 | m Pas | 3000 | |
Molecular weight | g/mol | ca. 1000 |
Effect | Pen25 (0.1 mm); R2 = 0.929; MSE = 4.985 | TR&B (°C); R2 = 0.967; MSE = 0.776 | η135 (mPa·s); R2 = 0.951; MSE = 47.924 | ||||||
---|---|---|---|---|---|---|---|---|---|
RC | SE | p Value | RC | SE | p Value | RC | SE | p Value | |
Intercept | 98.260 | 2.295 | 0.000 | 45.559 | 0.905 | 0.000 | 620.031 | 7.118 | 0.000 |
(1) SWLC (L) | −59.804 | 2.663 | 0.000 | 6.767 | 1.050 | 0.000 | −70.736 | 8.259 | 0.000 |
SWLC (Q) | 13.205 | 0.744 | 0.000 | 0.802 | 0.293 | 0.007 | 5.288 | 2.307 | 0.023 |
(2) TOA (L) | 22.082 | 3.907 | 0.000 | 2.694 | 1.541 | 0.082 | −116.35 | 12.114 | 0.000 |
TOA (Q) | −36.388 | 4.651 | 0.000 | 6.434 | 1.835 | 0.000 | 16.986 | 14.422 | 0.240 |
1Lx2L | 7.224 | 1.488 | 0.000 | −4.236 | 0.587 | 0.000 | 21.565 | 4.6151 | 0.000 |
Effect | PRRRTFOT (%); R2 = 0.560; MSE = 33.354 | PRRRTFOT+PAV (%); R2 = 0.700; MSE = 11.023 | ||||
---|---|---|---|---|---|---|
Reg. Coeffic. | Std. Error | p Value | Reg. Coeffic. | Std. Error | p Value | |
Intercept | 34.6172 | 5.93828 | <0.001 | 7.3427 | 3.413788 | 0.033 |
(1) SWLC (L) | 42.1955 | 6.89019 | <0.001 | 45.1188 | 3.961017 | <0.001 |
SWLC (Q) | −10.1663 | 1.92511 | <0.001 | −10.8946 | 1.106706 | <0.001 |
(2) TOA (L) | 15.2219 | 10.10685 | 0.134 | 13.9837 | 5.810204 | 0.017 |
TOA (Q) | −25.3985 | 12.03196 | 0.036 | −14.3825 | 6.916910 | 0.039 |
1Lx2L | 7.2852 | 3.85023 | 0.060 | 0.0347 | 2.213411 | 0.987 |
Effect | SPIRTFOT (°C); R2 = 0.501; MSE = 0.741 | SPIRTFOT+PAV (°C); R2 = 0.801; MSE = 0.743 | ||||
---|---|---|---|---|---|---|
Reg. Coeffic. | Std. Error | p Value | Reg. Coeffic. | Std. Error | p Value | |
Intercept | 7.026 | 0.886 | <0.001 | 9.005 | 0.886 | <0.001 |
(1) SWLC (L) | 0.612 | 1.028 | 0.552 | 7.027 | 1.028 | <0.001 |
SWLC (Q) | −0.857 | 0.2873 | 0.003 | −2.833 | 0.287 | <0.001 |
(2) TOA (L) | −9.731 | 1.508 | <0.001 | −11.487 | 1.508 | <0.001 |
TOA (Q) | 3.869 | 1.795 | 0.032 | 14.643 | 1.795 | <0.001 |
1Lx2L | 4.231 | 0.574 | <0.001 | 1.2627 | 0.574 | 0.029 |
Effect | VAIRTFOT (%); R2 = 0.413; MSE = 31.817 | VAIRTFOT+PAV (%); R2 = 0.525; MSE = 171.467 | ||||
---|---|---|---|---|---|---|
Reg. Coeffic. | Std. Error | p Value | Reg. Coeffic. | Std. Error | p Value | |
Intercept | 58.374 | 5.799 | <0.001 | 170.289 | 13.4641 | <0.001 |
(1) SWLC (L) | −15.906 | 6.729 | 0.019 | 0.434 | 15.622 | 0.977 |
SWLC (Q) | 4.810 | 1.880 | 0.011 | −4.862 | 4.364 | 0.267 |
(2) TOA (L) | −23.668 | 9.871 | 0.017 | −73.160 | 22.915 | 0.001 |
TOA (Q) | 36.1730 | 11.751 | 0.002 | −31.706 | 27.280 | 0.247 |
1Lx2L | −4.236 | 3.760 | 0.261 | 22.408 | 8.729 | 0.011 |
Effect | IC=O; R2 = 0.246; MSE = 0.0000002 | ΔIC=O RTFOT; R2 = 0.317; MSE = 0.0000002 | ΔIC=O RTFOT + PAV; R2 = 0.493; MSE = 0.000003 | ||||||
---|---|---|---|---|---|---|---|---|---|
RC | SE | p Value | RC | SE | p Value | RC | SE | p Value | |
Intercept | 0.00216 | 0.0007 | 0.002 | 0.00104 | 0.0006 | 0.088 | 0.00300 | 0.0007 | 0.000 |
(1) SWLC (L) | −0.00133 | 0.0007 | 0.095 | 0.00033 | 0.0007 | 0.635 | 0.00159 | 0.0008 | 0.062 |
SWLC (Q) | 0.00051 | 0.0002 | 0.021 | −0.00024 | 0.0002 | 0.223 | −0.0008 | 0.0002 | 0.005 |
(2) TOA (L) | −0.00042 | 0.0011 | 0.709 | 0.00193 | 0.0010 | 0.062 | 0.00286 | 0.0012 | 0.023 |
TOA (Q) | 0.00285 | 0.0013 | 0.038 | −0.00472 | 0.0012 | 0.000 | −0.0077 | 0.0014 | 0.000 |
1Lx2L | −0.00107 | 0.0004 | 0.016 | 0.000762 | 0.0004 | 0.054 | 0.00161 | 0.0004 | 0.001 |
Effect | IS=O; R2 = 0.316; MSE = 0.0000001 | ΔIS=O RTFOT; R2 = 0.311; MSE = 0.0000003 | ΔIS=O RTFOT + PAV; R2 = 0.991; MSE = 0.0000013 | ||||||
---|---|---|---|---|---|---|---|---|---|
RC | SE | p Value | RC | SE | p Value | RC | SE | p Value | |
Intercept | 0.00189 | 0.00037 | 0.000 | 0.00110 | 0.00071 | 0.121 | 0.00473 | 0.00155 | 0.003 |
(1)SWLC (L) | −0.00087 | 0.00043 | 0.049 | 0.00019 | 0.00082 | 0.817 | 0.00322 | 0.00180 | 0.078 |
SWLC (Q) | 0.00033 | 0.00012 | 0.007 | −0.00001 | 0.00023 | 0.957 | −0.0016 | 0.00050 | 0.002 |
(2) TOA (L) | 0.00239 | 0.00064 | 0.000 | −0.00137 | 0.00120 | 0.259 | −0.0038 | 0.00265 | 0.160 |
TOA (Q) | −0.00270 | 0.00076 | 0.000 | 0.00253 | 0.00143 | 0.081 | −0.0046 | 0.00315 | 0.150 |
1Lx2L | −0.00043 | 0.00024 | 0.078 | −0.00083 | 0.00046 | 0.072 | 0.00422 | 0.00101 | 0.000 |
Effect | IC=C; R2 = 0.603; MSE = 0.0000004 | ΔIC=C RTFOT; R2 = 0.306; MSE = 0.0000015 | ΔIC=C RTFOT + PAV; R2 = 0.277; MSE = 0.0000003 | ||||||
---|---|---|---|---|---|---|---|---|---|
RC | SE | p Value | RC | SE | p Value | RC | SE | p Value | |
Intercept | 0.01241 | 0.00092 | 0.000 | 0.00367 | 0.00167 | 0.030 | 0.00302 | 0.00072 | 0.000 |
(1)SWLC(L) | −0.00013 | 0.00106 | 0.906 | −0.0041 | 0.00193 | 0.039 | −0.0015 | 0.00083 | 0.083 |
SWLC (Q) | 0.00031 | 0.00029 | 0.299 | 0.00121 | 0.00054 | 0.028 | 0.00029 | 0.00023 | 0.208 |
(2)TOA(L) | −0.00104 | 0.00156 | 0.509 | 0.00788 | 0.00284 | 0.007 | −0.0006 | 0.00122 | 0.624 |
TOA (Q) | 0.00427 | 0.00186 | 0.024 | −0.0008 | 0.00338 | 0.818 | −0.0008 | 0.00145 | 0.610 |
1Lx2L | −0.00263 | 0.00059 | 0.000 | −0.0033 | 0.00108 | 0.003 | 0.00033 | 0.00046 | 0.484 |
Bitumen | Additives (%) | Aging Process | CAM Model Parameters | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SWLC | TOA | Gg | k | me | fc | C1 | C2 | Rc | R2 | ||
50/70 | 0.0 | 0.0 | Unaged | 7.49 × 106 | 0.095 | 1.571 | 11.555 | 10.7 | 138.9 | 3.17 | 0.974 |
0.0 | 0.0 | RTFOT | 7.49∙× 106 | 0.088 | 1.670 | 0.415 | 14.1 | 168.8 | 3.41 | 0.966 | |
0.0 | 0.0 | RTFOT + PAV | 7.49∙× 106 | 0.079 | 1.938 | 0.001 | 15.6 | 175.0 | 3.83 | 0.971 | |
1.5 | 0.0 | Unaged | 7.49∙× 106 | 0.092 | 1.468 | 11.332 | 11.7 | 14.5 | 3.26 | 0.945 | |
1.5 | 0.0 | RTFOT | 7.49∙× 106 | 0.093 | 1.393 | 10.547 | 14.2 | 165.5 | 3.24 | 0.922 | |
1.5 | 0.0 | RTFOT + PAV | 7.49∙× 106 | 0.080 | 1.797 | 0.004 | 16.4 | 178.0 | 3.77 | 0.928 | |
1.5 | 0.4 | Unaged | 7.49∙× 106 | 0.090 | 1.443 | 11.480 | 11.9 | 140.7 | 3.34 | 0.964 | |
1.5 | 0.4 | RTFOT | 7.49∙× 106 | 0.093 | 1.397 | 11.740 | 14.1 | 162.2 | 3.24 | 0.933 | |
1.5 | 0.4 | RTFOT + PAV | 7.49∙× 106 | 0.081 | 1.817 | 0.006 | 15.3 | 167.9 | 3.72 | 0.949 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iwański, M.M.; Malinowski, S.; Maciejewski, K.; Mazurek, G. Synergy Effect of Synthetic Wax and Tall Oil Amidopolyamines for Slowing Down the Aging Process of Bitumen. Materials 2025, 18, 4135. https://doi.org/10.3390/ma18174135
Iwański MM, Malinowski S, Maciejewski K, Mazurek G. Synergy Effect of Synthetic Wax and Tall Oil Amidopolyamines for Slowing Down the Aging Process of Bitumen. Materials. 2025; 18(17):4135. https://doi.org/10.3390/ma18174135
Chicago/Turabian StyleIwański, Mateusz M., Szymon Malinowski, Krzysztof Maciejewski, and Grzegorz Mazurek. 2025. "Synergy Effect of Synthetic Wax and Tall Oil Amidopolyamines for Slowing Down the Aging Process of Bitumen" Materials 18, no. 17: 4135. https://doi.org/10.3390/ma18174135
APA StyleIwański, M. M., Malinowski, S., Maciejewski, K., & Mazurek, G. (2025). Synergy Effect of Synthetic Wax and Tall Oil Amidopolyamines for Slowing Down the Aging Process of Bitumen. Materials, 18(17), 4135. https://doi.org/10.3390/ma18174135