Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (549)

Search Parameters:
Keywords = aromatic–medicinal plant

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 647 KiB  
Article
Effects of Burdock Addition and Different Starters on the Quality and Flavor Improvement of Duck Sausages
by Li Cui, Xuan Zhao, Xingye Song, Wenjing Zhou, Tao Wang, Wuyang Huang and Yuxing Guo
Biology 2025, 14(8), 996; https://doi.org/10.3390/biology14080996 (registering DOI) - 4 Aug 2025
Abstract
Burdock (Arctium lappa L.) is a medicinal and edible homologous plant whose roots contain many bioactive substances such as polysaccharides and phenolics. This study explored the integration of burdock powder and lactic acid bacteria fermentation to enhance the nutritional quality, sensory attributes, [...] Read more.
Burdock (Arctium lappa L.) is a medicinal and edible homologous plant whose roots contain many bioactive substances such as polysaccharides and phenolics. This study explored the integration of burdock powder and lactic acid bacteria fermentation to enhance the nutritional quality, sensory attributes, and flavor profiles of duck sausages. Three bacterial strains, Lacticaseibacillus casei, L. helveticus, and L. plantarum, were selected based on sensory analysis, and their effects on sausage properties were evaluated through combined fermentation trials. The results demonstrated that duck sausages fermented with L. plantarum and L. helveticus and supplemented with 3% burdock powder (PHB group) exhibited > 1.5-fold higher antioxidant activity (ABTS at 85.2 μmol trolox/g and DPPH at 92.7 μmol trolox/g, respectively; p < 0.05) and 15% increase in total phenolic content (8.24 mg gallic acid/g) compared to non-fermented counterparts. The PHB formulation also enhanced color stability (lightness, redness, yellowness), textural characteristics (hardness, springiness, cohesiveness), and sensory acceptability. Volatile compound analysis revealed a reduction in off-odor aldehydes (hexanal, (E)-2-octenal, (E)-2-decenal, and (E,E)-2,4-decadienal) and increased production of desirable aromatic compounds like tetramethyl-pyrazine. These findings highlight the potential of combining lactic acid bacteria fermentation with burdock powder to develop functional duck sausages with improved nutritional and sensory properties. Full article
(This article belongs to the Special Issue Nutraceutical and Bioactive Compounds in Foods)
Show Figures

Figure 1

26 pages, 1790 KiB  
Article
A Hybrid Deep Learning Model for Aromatic and Medicinal Plant Species Classification Using a Curated Leaf Image Dataset
by Shareena E. M., D. Abraham Chandy, Shemi P. M. and Alwin Poulose
AgriEngineering 2025, 7(8), 243; https://doi.org/10.3390/agriengineering7080243 - 1 Aug 2025
Viewed by 176
Abstract
In the era of smart agriculture, accurate identification of plant species is critical for effective crop management, biodiversity monitoring, and the sustainable use of medicinal resources. However, existing deep learning approaches often underperform when applied to fine-grained plant classification tasks due to the [...] Read more.
In the era of smart agriculture, accurate identification of plant species is critical for effective crop management, biodiversity monitoring, and the sustainable use of medicinal resources. However, existing deep learning approaches often underperform when applied to fine-grained plant classification tasks due to the lack of domain-specific, high-quality datasets and the limited representational capacity of traditional architectures. This study addresses these challenges by introducing a novel, well-curated leaf image dataset consisting of 39 classes of medicinal and aromatic plants collected from the Aromatic and Medicinal Plant Research Station in Odakkali, Kerala, India. To overcome performance bottlenecks observed with a baseline Convolutional Neural Network (CNN) that achieved only 44.94% accuracy, we progressively enhanced model performance through a series of architectural innovations. These included the use of a pre-trained VGG16 network, data augmentation techniques, and fine-tuning of deeper convolutional layers, followed by the integration of Squeeze-and-Excitation (SE) attention blocks. Ultimately, we propose a hybrid deep learning architecture that combines VGG16 with Batch Normalization, Gated Recurrent Units (GRUs), Transformer modules, and Dilated Convolutions. This final model achieved a peak validation accuracy of 95.24%, significantly outperforming several baseline models, such as custom CNN (44.94%), VGG-19 (59.49%), VGG-16 before augmentation (71.52%), Xception (85.44%), Inception v3 (87.97%), VGG-16 after data augumentation (89.24%), VGG-16 after fine-tuning (90.51%), MobileNetV2 (93.67), and VGG16 with SE block (94.94%). These results demonstrate superior capability in capturing both local textures and global morphological features. The proposed solution not only advances the state of the art in plant classification but also contributes a valuable dataset to the research community. Its real-world applicability spans field-based plant identification, biodiversity conservation, and precision agriculture, offering a scalable tool for automated plant recognition in complex ecological and agricultural environments. Full article
(This article belongs to the Special Issue Implementation of Artificial Intelligence in Agriculture)
Show Figures

Figure 1

27 pages, 4169 KiB  
Article
Biostimulatory Effects of Foliar Application of Silicon and Sargassum muticum Extracts on Sesame Under Drought Stress Conditions
by Soukaina Lahmaoui, Rabaa Hidri, Hamid Msaad, Omar Farssi, Nadia Lamsaadi, Ahmed El Moukhtari, Walid Zorrig and Mohamed Farissi
Plants 2025, 14(15), 2358; https://doi.org/10.3390/plants14152358 - 31 Jul 2025
Viewed by 473
Abstract
Sesame (Sesamum indicum L.) is widely cultivated for its valuable medicinal, aromatic, and oil-rich seeds. However, drought stress remains one of the most significant abiotic factors influencing its development, physiological function, and overall output. This study investigates the potential of foliar applications [...] Read more.
Sesame (Sesamum indicum L.) is widely cultivated for its valuable medicinal, aromatic, and oil-rich seeds. However, drought stress remains one of the most significant abiotic factors influencing its development, physiological function, and overall output. This study investigates the potential of foliar applications of silicon (Si), Sargassum muticum (Yendo) Fensholt extracts (SWE), and their combination to enhance drought tolerance and mitigate stress-induced damage in sesame. Plants were grown under well-watered conditions (80% field capacity, FC) versus 40% FC (drought conditions) and were treated with foliar applications of 1 mM Si, 10% SWE, or both. The results showed that the majority of the tested parameters were significantly (p < 0.05) lowered by drought stress. However, the combined application of Si and SWE significantly (p < 0.05) enhanced plant performance under drought stress, leading to improved growth, biomass accumulation, water status, and physiological traits. Gas exchange, photosynthetic pigment content, and photosystem activity (PSI and PSII) all increased significantly when SWE were given alone; PSII was more significantly affected. In contrast, Si alone had a more pronounced impact on PSI activity. These findings suggest that Si and SWE, applied individually or in combination, can effectively alleviate drought stress’s negative impact on sesame, supporting their use as promising biostimulants for enhancing drought tolerance. Full article
(This article belongs to the Special Issue The Role of Exogenous Silicon in Plant Response to Abiotic Stress)
Show Figures

Figure 1

20 pages, 2015 KiB  
Article
Origanum majorana Extracts: A Preliminary Comparative Study on Phytochemical Profiles and Bioactive Properties of Valuable Fraction and By-Product
by Simone Bianchi, Rosaria Acquaviva, Claudia Di Giacomo, Laura Siracusa, Leeyah Issop-Merlen, Roberto Motterlini, Roberta Foresti, Donata Condorelli and Giuseppe Antonio Malfa
Plants 2025, 14(15), 2264; https://doi.org/10.3390/plants14152264 - 23 Jul 2025
Viewed by 299
Abstract
Origanum majorana L. (O. majorana) (Lamiaceae) is an aromatic Mediterranean plant widely used in food, cosmetics, and traditional medicine due to its aroma and rich content of bioactive compounds. While its leaves and flowers are commonly utilized, lignified stems are often [...] Read more.
Origanum majorana L. (O. majorana) (Lamiaceae) is an aromatic Mediterranean plant widely used in food, cosmetics, and traditional medicine due to its aroma and rich content of bioactive compounds. While its leaves and flowers are commonly utilized, lignified stems are often discarded. This study compared hydroalcoholic extracts from the leaves and flowers (valuable fraction, VF) and stems (by-product, BP). Phytochemical analysis revealed qualitatively similar profiles, identifying 20 phenolic compounds, with Rosmarinic acid and Salvianolic acid B as the most and second most abundant, respectively. Antioxidant activity was evaluated in vitro using DPPH (IC50 [µg/mL]: VF 30.11 ± 3.46; BP 31.72 ± 1.46), H2O2 (IC50 [µg/mL]: VF 103.09 ± 4.97; BP 119.55 ± 10.58), and O2•− (IC50 [µg/mL]: VF 0.71 ± 0.062; BP 0.79 ± 0.070). Both extracts (20 µg/mL) fully restored oxidative balance in hemin-stressed AC16 cardiomyocytes, without altering the expression of catalase, heme-oxygenase 1, superoxide dismutase 2, or ferritin. Anti-inflammatory activity in LPS-stimulated RAW 264.7 macrophages showed that VF (IC50 400 µg/mL) reduced NO release to control levels, while BP achieved a ~60% reduction. Cytotoxicity was assessed on cancer cell lines: CaCo-2 (IC50 [µg/mL]: VF 154.1 ± 6.22; BP 305.2 ± 15.94), MCF-7 (IC50 [µg/mL]: VF 624.6 ± 10.27; BP 917.9 ± 9.87), and A549 (IC50 [µg/mL]: VF 720.8 ± 13.66; BP 920.2 ± 16.79), with no cytotoxicity on normal fibroblasts HFF-1 (IC50 > 1000 µg/mL for both extracts). Finally, both extracts slightly inhibited only CYP1A2 (IC50 [µg/mL]: VF 497.45 ± 9.64; BP 719.72 ± 11.37) and CYP2D6 (IC50 [µg/mL]: VF 637.15 ± 14.78, BP 588.70 ± 11.01). These results support the potential reuse of O. majorana stems as a sustainable source of bioactive compounds for nutraceutical and health-related applications. Full article
Show Figures

Figure 1

22 pages, 3522 KiB  
Article
Seasonal Variation in Volatile Profiles of Lemon Catnip (Nepeta cataria var. citriodora) Essential Oil and Hydrolate
by Milica Aćimović, Biljana Lončar, Milica Rat, Mirjana Cvetković, Jovana Stanković Jeremić, Milada Pezo and Lato Pezo
Horticulturae 2025, 11(7), 862; https://doi.org/10.3390/horticulturae11070862 - 21 Jul 2025
Viewed by 382
Abstract
Lemon catnip (Nepeta cataria var. citriodora) is an underutilized aromatic and medicinal plant known for its high essential oil yield and distinctive lemon-like scent, and is widely used in the pharmaceutical, cosmetic, food, and biopesticide industries. Unlike typical catnip, it lacks [...] Read more.
Lemon catnip (Nepeta cataria var. citriodora) is an underutilized aromatic and medicinal plant known for its high essential oil yield and distinctive lemon-like scent, and is widely used in the pharmaceutical, cosmetic, food, and biopesticide industries. Unlike typical catnip, it lacks nepetalactones and is rich in terpene alcohols, such as nerol and geraniol, making it a promising substitute for lemon balm. Despite its diverse applications, little attention has been paid to the valorization of byproducts from essential oil distillation, such as hydrolates and their secondary recovery oils. This study aimed to thoroughly analyze the volatile compound profiles of the essential oil from Lemon catnip and the recovery oil derived from its hydrolate over three consecutive growing seasons, with particular emphasis on how temperature and precipitation influence the major volatile constituents. The essential oil was obtained via semi-industrial steam distillation, producing hydrolate as a byproduct, which was then further processed using a Likens–Nickerson apparatus to extract the recovery oil, also known as secondary oil. Both essential and recovery oils were predominantly composed of terpene alcohols, with nerol (47.5–52.3% in essential oils; 43.5–54.3% in recovery oils) and geraniol (25.2–27.9% in essential oils; 29.4–32.6% in recovery oils) as the primary components. While sesquiterpene hydrocarbons were mostly confined to the essential oil, the recovery oil was distinguished by a higher presence of monooxygenated and more hydrophilic terpenes. Over the three-year period, elevated temperatures led to increased levels of geraniol, geranial, neral, and citronellal in both oils, whereas cooler conditions favored the accumulation of nerol and linalool, especially in the recovery oils. Higher precipitation was associated with elevated concentrations of nerol and linalool but decreased levels of geraniol, geranial, and neral, possibly due to dilution or degradation processes. Full article
(This article belongs to the Section Medicinals, Herbs, and Specialty Crops)
Show Figures

Figure 1

22 pages, 2039 KiB  
Article
Quality and Physiology of Selected Mentha Genotypes Under Coloured Shading Nets
by Charlotte Hubert-Schöler, Saskia Tsiaparas, Katharina Luhmer, Marcel D. Moll, Maike Passon, Matthias Wüst, Andreas Schieber and Ralf Pude
Agronomy 2025, 15(7), 1735; https://doi.org/10.3390/agronomy15071735 - 18 Jul 2025
Viewed by 320
Abstract
Improving the quality of compounds in medicinal and aromatic plants is crucial due to their uses in the pharmaceutical, cosmetics, and food sectors. One way of influencing plant composition is through exposure to different light conditions. Therefore, a two-year field study (2023–2024) was [...] Read more.
Improving the quality of compounds in medicinal and aromatic plants is crucial due to their uses in the pharmaceutical, cosmetics, and food sectors. One way of influencing plant composition is through exposure to different light conditions. Therefore, a two-year field study (2023–2024) was conducted to investigate the impact of coloured shading nets on the physiology, essential oil (EO) content, and composition of three Mentha genotypes: Mentha × piperita ‘Multimentha’, Mentha × piperita ‘Fränkische Blaue’, and Mentha rotundifolia ‘Apfelminze’. In addition to an unshaded control, the Mentha plants were grown under red and blue shading nets. Plant height and vegetation indices were collected weekly. Biomass accumulation, EO content, and composition were determined for each harvest. Both red and blue shading were found to influence the physiological responses and EO compositions of the plants, with red shading promoting slightly higher p-menthone levels in ‘Fränkische Blaue’ and ‘Multimentha’, while blue shading slightly increased carvone levels in ‘Apfelminze’. While EO content varied across harvest seasons (spring, summer, and autumn), ‘Fränkische Blaue’ responded to red shading, demonstrating an increased EO content. The findings suggest that targeted use of coloured shading nets can modulate EO quality. However, genotype-specific responses highlight the necessity of further research to define shading applications for different species and genotypes. Full article
(This article belongs to the Special Issue Cultivation and Utilization of Herbal and Aromatic Plants)
Show Figures

Figure 1

14 pages, 586 KiB  
Article
NaDES-Based Extracts by Microwave Activation from Laurus nobilis L. Leaves: Sustainable Multifunctional Ingredients for Potential Cosmetic and Pharmaceutical Applications
by Debora Caviglia, Eleonora Russo, Anna Maria Schito, Francesco Saverio Robustelli della Cuna, Elena Grignani, Nicola Lionetti and Carla Villa
Molecules 2025, 30(14), 3006; https://doi.org/10.3390/molecules30143006 - 17 Jul 2025
Viewed by 342
Abstract
Laurus nobilis L. is a widely cultivated plant, used for ornamental purposes, as a high-value spice crop, and in the flavor and fragrance industry. In natural medicine, it is well-known for its many beneficial properties (due to a broad spectrum of biologically active [...] Read more.
Laurus nobilis L. is a widely cultivated plant, used for ornamental purposes, as a high-value spice crop, and in the flavor and fragrance industry. In natural medicine, it is well-known for its many beneficial properties (due to a broad spectrum of biologically active compounds) and used for the treatment of different disorders. In this study, natural deep eutectic solvents (NaDESs), coupled with microwave activation, were studied and applied for a green extraction of L. nobilis leaves. The main objective was to obtain a sustainable and multifunctional cosmetic and pharmaceutical ingredient (the NaDES-based extract itself), exploiting both the intrinsic cosmetic functionalities of NaDES components and the biological properties of laurel bioactive compounds. The most promising candidate was obtained from a eutectic system containing betaine, glycerol, and lactic acid. The evaluation of this NaDES-based complex reveals a considerable number of phenolic compounds (around 11.57 mg of gallic acid equivalents for a gram of fresh leaves) and a notable antioxidant activity (80.1% with respect to Trolox), with values quite constant over a period of six months. The complex exhibits effective antimicrobial activity against different Gram-positive (S. aureus and S. epidermidis) and Gram-negative (E. coli and P. aeruginosa) bacterial strains, with concentrations ranging from 3.8 to 7.5 mg/mL. Furthermore, the extract presents a pleasant fragrance, attributable to the selective extraction of different volatile aromatic compounds, as confirmed by GC-MS analysis. Full article
Show Figures

Graphical abstract

17 pages, 1333 KiB  
Article
Response of Dittany Cultivation to an Organic Fertilization on Nitrogen and Phosphorus Content, Uptake and Use Efficiency
by Aikaterini Molla, Anastasia Fountouli, Christina Emmanouil, Evaggelia Chatzikirou and Elpiniki Skoufogianni
Nitrogen 2025, 6(3), 58; https://doi.org/10.3390/nitrogen6030058 - 16 Jul 2025
Viewed by 259
Abstract
The growing negative environmental effects associated with chemical fertilizers have led to the promotion of organic fertilizers in agriculture. The purpose of this study was to evaluate the impacts of organic fertilization on nitrogen and phosphorus content, uptake and use efficiency in Origanum [...] Read more.
The growing negative environmental effects associated with chemical fertilizers have led to the promotion of organic fertilizers in agriculture. The purpose of this study was to evaluate the impacts of organic fertilization on nitrogen and phosphorus content, uptake and use efficiency in Origanum dictamnus (Dittany) cultivation. With this aim, a randomized complete blocks field experiment was carried out in Istron Kalou Xoriou (Agios Nikolaos—Crete). The study included three fertilization treatments (N0: 0 kg/ha−1, N1: 1250 kg/ha−1 and N2: 2500 kg/ha−1). Throughout the growing period, measurements were taken for the plant’s content, uptake and efficiency indices of total nitrogen (TN) and phosphorus (P). The findings indicated that the fertilization doses affect nutrient uptake and efficiency. The highest values of TN and P were recorded 60 days after transplants. N1 treatment showed the greatest improvement in nitrogen use efficiency, while phosphorus use efficiency reached its maximum level under N2 treatment. That research can contribute to achieving an in-depth insight of organic fertilization practices for aromatic and medicinal plants such as Dittany, promoting a sustainable agricultural strategy and enhancing product quality. Full article
Show Figures

Figure 1

19 pages, 5645 KiB  
Article
Characterization of Complete Chloroplast Genome Sequences of Three Tropical Liana Dalbergia Species and Comparative Analysis of Phylogenetic and Structure Variations in Dalbergia Genus
by Jun Wang, Shaoying Zheng, Xianglai Sun, Lulu Wang and Xupo Ding
Horticulturae 2025, 11(7), 799; https://doi.org/10.3390/horticulturae11070799 - 5 Jul 2025
Viewed by 340
Abstract
The Dalbergia genus, a morphologically diverse group within the Fabaceae family, encompasses species of significant value in furniture production and medicinal and aromatic applications. The taxonomy of Dalbergia has relied on morphological traits, chloroplast (cp) DNA fragments, and cp genomic data. However, genomic [...] Read more.
The Dalbergia genus, a morphologically diverse group within the Fabaceae family, encompasses species of significant value in furniture production and medicinal and aromatic applications. The taxonomy of Dalbergia has relied on morphological traits, chloroplast (cp) DNA fragments, and cp genomic data. However, genomic resources for tropical liana species within this genus remain scarce. In this study, we assembled and analyzed the cp genomes of 3 liana species—Dalbergia peishaensis, D. pinnata, and D. tsoi—and compared them with those of 26 other Dalbergia species to explore their cp genome characteristics and evolutionary patterns. We employed a combination of traditional cp genome analysis and methods adapted from plant whole-genome sequencing. Phylogenetic analysis revealed that D. peishaensis has a close relationship with D. cultrata, forming a recently diverged clade, whereas D. tsoi and D. pinnata are positioned within a basal clade of the Dalbergia genus, suggesting an earlier divergence. The Dalbergia cp genomes exhibit considerable variation in size, with evidence of pseudogenization, gene loss, and duplication observed in the three liana species. Notably, the infA gene, previously reported as absent in the chloroplast genomes of Dalbergia species, was identified in the cp genomes of these three liana Dalbergia species. A total of 4533 simple sequence repeats (SSRs) were identified, providing valuable insights into cp genome evolution and facilitating future population genetics studies, particularly when combined with the high structural variation observed in the genus through whole-genome analysis methods. Additionally, seven highly divergent regions were identified as potential DNA barcode hotspots. This study enhances the genomic characterization of liana Dalbergia species and offers a robust framework for future plant cp genome analyses by integrating methodologies originally developed for whole-genome studies. Full article
Show Figures

Figure 1

28 pages, 4918 KiB  
Article
Foeniculum vulgare Mill. Mitigates Scopolamine-Induced Cognitive Deficits via Antioxidant and Neuroprotective Mechanisms in Zebrafish
by Ion Brinza, Razvan Stefan Boiangiu, Elena Todirascu-Ciornea, Lucian Hritcu and Gabriela Dumitru
Molecules 2025, 30(13), 2858; https://doi.org/10.3390/molecules30132858 - 4 Jul 2025
Viewed by 918
Abstract
Foeniculum vulgare Mill. (Apiaceae) is an aromatic medicinal plant known for its anti-inflammatory, antispasmodic, antiseptic, carminative, diuretic, and analgesic properties. This study aimed to investigate the effects of F. vulgare essential oil (FVEO; 25, 150, and 300 μL/L) on the cognitive performance and [...] Read more.
Foeniculum vulgare Mill. (Apiaceae) is an aromatic medicinal plant known for its anti-inflammatory, antispasmodic, antiseptic, carminative, diuretic, and analgesic properties. This study aimed to investigate the effects of F. vulgare essential oil (FVEO; 25, 150, and 300 μL/L) on the cognitive performance and brain oxidative stress in a scopolamine (SCOP; 100 μM)-induced zebrafish model of cognitive impairment. Additionally, the pharmacokinetic properties and bioactivity profiles of the main FVEO constituents were predicted to be used in silico tools, including SwissADME, pkCSM, PASS online, and ADMETlab 2.0. Behavioral assays, novel tank diving test (NTT), Y-maze, and novel object recognition (NOR) test, were used to evaluate anxiety-like behavior, spatial memory, and recognition memory, respectively. Biochemical assessments of acetylcholinesterase (AChE) activity and oxidative stress biomarkers were also conducted. The results demonstrated that FVEO significantly improved cognitive performance in SCOP-treated zebrafish, normalized AChE activity, and reduced oxidative stress in the brain. These findings suggest the therapeutic potential of FVEO in ameliorating memory impairment and oxidative damage associated with neurodegenerative disorders such as Alzheimer’s disease (AD). Full article
(This article belongs to the Special Issue Novel Compounds in the Treatment of the CNS Disorders, 2nd Edition)
Show Figures

Figure 1

29 pages, 512 KiB  
Review
Antimicrobial and Antioxidant Activity of Essential Oils from Selected Pinus Species from Bosnia and Herzegovina
by Snježana Mirković, Milica Martinović, Vanja M. Tadić, Ivana Nešić, Aleksandra Stolić Jovanović and Ana Žugić
Antibiotics 2025, 14(7), 677; https://doi.org/10.3390/antibiotics14070677 - 3 Jul 2025
Viewed by 817
Abstract
Essential oils are lipophilic secondary metabolites produced in various parts of aromatic plants and stored in specialized secretory structures. They play a vital role in plant defense, offering protection against microorganisms and herbivores. These oils are known for a wide range of biological [...] Read more.
Essential oils are lipophilic secondary metabolites produced in various parts of aromatic plants and stored in specialized secretory structures. They play a vital role in plant defense, offering protection against microorganisms and herbivores. These oils are known for a wide range of biological activities, including antibacterial, anti-inflammatory, antitumor, analgesic, antioxidant, and immunomodulatory effects. Given the increasing interest in natural alternatives to synthetic drugs, this review explored the therapeutic relevance of Pinus-derived essential oils as promising candidates in modern phytotherapy. Species of the genus Pinus have been widely investigated for their phytochemical composition and biological potential, with a focus on their medicinal and pharmaceutical applications. This review aimed to assess the biological properties of Pinus species commonly used in traditional medicine. In this paper, thorough insight into the chemical composition, as well as into the antimicrobial and antioxidant activities of essential oils obtained from the different parts of Pinus species, was given. Although recognized for their antimicrobial activity against a wide range of bacterial strains, including both Gram-positive and Gram-negative bacteria, the practical application of Pinus essential oils is often limited by their physicochemical instability and volatility. Therefore, this review highlighted the advances in formulation strategies, particularly encapsulation techniques, as the possible direction of future research concerning essential oils. Full article
(This article belongs to the Special Issue Antimicrobial and Antioxidant Efficacy of Essential Oils)
Show Figures

Figure 1

18 pages, 2943 KiB  
Article
Monitoring Moringa oleifera Lam. in the Mediterranean Area Using Unmanned Aerial Vehicles (UAVs) and Leaf Powder Production for Food Fortification
by Carlo Greco, Raimondo Gaglio, Luca Settanni, Antonio Alfonzo, Santo Orlando, Salvatore Ciulla and Michele Massimo Mammano
Agriculture 2025, 15(13), 1359; https://doi.org/10.3390/agriculture15131359 - 25 Jun 2025
Viewed by 408
Abstract
The increasing global demand for resilient, sustainable agricultural systems has intensified the need for advanced monitoring strategies, particularly for climate-adaptive crops such as Moringa oleifera Lam. This study presents an integrated approach using Unmanned Aerial Vehicles (UAVs) equipped with multispectral and thermal cameras [...] Read more.
The increasing global demand for resilient, sustainable agricultural systems has intensified the need for advanced monitoring strategies, particularly for climate-adaptive crops such as Moringa oleifera Lam. This study presents an integrated approach using Unmanned Aerial Vehicles (UAVs) equipped with multispectral and thermal cameras to monitor the vegetative performance and determine the optimal harvest period of four M. oleifera genotypes in a Mediterranean environment. High-resolution data were collected and processed to generate the NDVI, canopy temperature, and height maps, enabling the assessment of plant vigor, stress conditions, and spatial canopy structure. NDVI analysis revealed robust vegetative growth (0.7–0.9), with optimal harvest timing identified on 30 October 2024, when the mean NDVI exceeded 0.85. Thermal imaging effectively discriminated plant crowns from surrounding weeds by capturing cooler canopy zones due to active transpiration. A clear inverse correlation between NDVI and Land Surface Temperature (LST) was observed, reinforcing its relevance for stress diagnostics and environmental monitoring. The results underscore the value of UAV-based multi-sensor systems for precision agriculture, offering scalable tools for phenotyping, harvest optimization, and sustainable management of medicinal and aromatic crops in semiarid regions. Moreover, in this study, to produce M. oleifera leaf powder intended for use as a food ingredient, the leaves of four M. oleifera genotypes were dried, milled, and evaluated for their hygiene and safety characteristics. Plate count analyses confirmed the absence of pathogenic bacterial colonies in the M. oleifera leaf powders, highlighting their potential application as natural and functional additives in food production. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

17 pages, 5896 KiB  
Article
Molecular Identification and Genotyping of Phytoplasmas Infecting Medicinal and Aromatic Plants in Northern Italy
by Camilla Barbieri, Abdelhameed Moussa, Alessandro Passera, Paola Casati, Piero Attilio Bianco and Fabio Quaglino
Microorganisms 2025, 13(7), 1444; https://doi.org/10.3390/microorganisms13071444 - 21 Jun 2025
Viewed by 364
Abstract
During field surveys carried out in 2021 at two farms in Lombardy (North Italy), leaf samples were collected from 113 plants (both symptomatic and asymptomatic) belonging to 18 medicinal and aromatic species. Amplification and nucleotide sequence analyses of the 16S rRNA gene revealed [...] Read more.
During field surveys carried out in 2021 at two farms in Lombardy (North Italy), leaf samples were collected from 113 plants (both symptomatic and asymptomatic) belonging to 18 medicinal and aromatic species. Amplification and nucleotide sequence analyses of the 16S rRNA gene revealed the presence of ‘Candidatus Phytoplasma solani’ (subgroup 16SrXII-A) in 69 plants (61% infection rate) belonging to 14 of the 18 examined species. Among the 14 infected species, only Nepeta cataria L. exhibited symptoms including leaf and stem reddening. Molecular typing analyses showed that ‘Ca. P. solani’ strains identified in this study constitute a genetically homogeneous population, carrying the stamp gene sequence variant St5 and the new vmp1 gene sequence variant Vm93. Phylogenetic analyses showed that ‘Ca. P. solani’ strain St5/Vm93 belongs to the cluster b-II, associated with the bindweed-related pathosystem. In silico-translated Vmp1 protein sequence alignment suggested that ‘Ca. P. solani’ strain St5/Vm93 could be generated by recombination events between ‘Ca. P. solani’ strains co-infecting the same host. The results suggested future research investigating the diffusion and the ecology of ‘Ca. P. solani’ strain St5/Vm93 in agroecosystems (including other crops), and its effect on the composition of biologically active compounds in aromatic and medicinal plants. Full article
(This article belongs to the Special Issue Phytoplasmas and Phytoplasma Diseases)
Show Figures

Figure 1

11 pages, 2378 KiB  
Article
The Antioxidant Properties of Extracts of Cuscuta spp. Depend on the Parasite and the Host Species
by Vanina Lozanova, Denitsa Teofanova, Bilyana Chakarova, Krasimir Rusanov, Kalina Pachedjieva, Anita Tosheva, Tzvetelina Zagorcheva and Lyuben Zagorchev
Antioxidants 2025, 14(7), 761; https://doi.org/10.3390/antiox14070761 - 20 Jun 2025
Viewed by 567
Abstract
Dodders (Cuscuta spp.) are prominent parasitic plants widely known and exploited in traditional medicine. They are rich in polyphenolics, which determine their strong antioxidant potential. However, comparatively few of the nearly 200 known species have been characterized for their medicinal potential. In [...] Read more.
Dodders (Cuscuta spp.) are prominent parasitic plants widely known and exploited in traditional medicine. They are rich in polyphenolics, which determine their strong antioxidant potential. However, comparatively few of the nearly 200 known species have been characterized for their medicinal potential. In the present study, we aimed to explore the antioxidant potential of four of the most widely distributed Cuscuta species in Bulgaria—C. campestris, C. monogyna, C. epithymum, and C. europaea. They differed significantly in polyphenolic content and accordingly differed in their antioxidant properties, although this correlation is not always straightforward, as shown in C. europaeae. Furthermore, we evaluated the host plant species’ influence on the polyphenolic content, antioxidant properties, and flavonoid profile of C. campestris, finding a significant enhancement when the parasite was grown on aromatic plants—rosemary and thyme—compared to a model host—Arabidopsis thaliana. Seven major flavonoids and phenolic acids—chlorogenic acid, kaempferol-3,7-O-diglucoside, quercetin-3-O-galactoside, kaempferol-3-O-galactoside, quercetin-3-O-glucoside, astragalin, and isorhamnetin-7-glucoside—were annotated after HPLC-MS analysis and found to be affected by the host species. In conclusion, it was found that extracts from different Cuscuta species differ in their antioxidant potential, which the host plants might further modify. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Figure 1

19 pages, 20720 KiB  
Article
Anti-Anxiety Effects of Essential Oil Microemulsion in Chronic Unpredictable Mild Stress-Induced Rats: Preparation, Characterization, and Mechanisms
by Wenxia Tang, Pan Jiang, Ke Hu, Duo Mei, Qinghao Jiao, Yan Li, Yanping Deng, Jun Wang, Ran Gao, Xin Chen and Jie Yu
Molecules 2025, 30(12), 2652; https://doi.org/10.3390/molecules30122652 - 19 Jun 2025
Viewed by 529
Abstract
Anxiety disorders, as common neurological diseases in clinical practice, often coexist with depression. Epidemiological surveys indicate that approximately 85% of patients with depression exhibit significant anxiety symptoms. This comorbid state not only exacerbates clinical symptoms but also leads to treatment resistance and prolonged [...] Read more.
Anxiety disorders, as common neurological diseases in clinical practice, often coexist with depression. Epidemiological surveys indicate that approximately 85% of patients with depression exhibit significant anxiety symptoms. This comorbid state not only exacerbates clinical symptoms but also leads to treatment resistance and prolonged disease duration. This study innovatively developed a compound aromatic plant essential oil (EO) formulation with remarkable anxiolytic and antidepressant effects and systematically elucidated its mechanism of action. The study found that the essential oil formulation, administered via inhalation, could significantly improve behavioral abnormalities in animals subjected to the chronic unpredictable mild stress (CUMS) model, specifically manifesting as (1) the reversal of stress-induced weight gain retardation; (2) a significant increase in sucrose preference; (3) an increase in the total distance of spontaneous activity; and (4) the prolongation of exploration time in the open arms of the elevated plus maze. Neuropathological examinations confirmed that the formulation could effectively protect the structural integrity of hippocampal neurons and alleviate CUMS-induced neural damage. In terms of mechanism of action, the study revealed that the formulation regulates the neurotransmitter system through multiple targets: (1) the upregulation of serotonin (5-HT) and γ-aminobutyric acid (GABA) levels; (2) the downregulation of glutamate (GLU) concentration; and (3) key targets identified via network pharmacological analysis, such as ESR1, STAT3, and PPARG. These findings provide molecular-level evidence for understanding the neuromodulatory effects of aromatic essential oils. Pharmaceutical formulation studies showed that the oil-in-water (O/W) type compound essential oil microemulsion, prepared using microemulsification technology, has a uniform particle size and excellent stability, maintaining stable physicochemical properties at room temperature for an extended period, thus laying a foundation for its clinical application. This study not only validates the practical value of traditional medicine but also provides new ideas for the development of novel anxiolytic and antidepressant drugs, achieving an organic integration of traditional experience and modern technology. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

Back to TopTop