Foeniculum vulgare Mill. Mitigates Scopolamine-Induced Cognitive Deficits via Antioxidant and Neuroprotective Mechanisms in Zebrafish
Abstract
1. Introduction
2. Results and Discussions
2.1. Pharmacokinetic Profiles of Scopolamine, Galantamine, Trans-Anethole, Camphor, Trans-Sabinene Hydrate, (+)-Carvone, and β-Pinene
2.2. The Similarities Between the Pharmacokinetic Properties of the Compounds
2.3. Prediction of Activity Spectra for Scopolamine, Galantamine, Trans-Anethole, Camphor, Trans-Sabinene Hydrate, (+)-Carvone, and β-Pinene
2.4. Effects of FVEO on Anxiety-like Behavior in NTT
2.5. Effects of FVEO on Zebrafish Spatial Memory Assessed in the Y-Maze Test
2.6. Effects of FVEO on Recognition Memory Assessed in the NOR Test
2.7. Effects of FVEO on AChE Activity
2.8. Effects of FVEO on the Antioxidant System Activity
2.9. Correlation Analyses Between Behavioral and Biochemical Parameters
3. Materials and Methods
3.1. Estimated In Silico Pharmacokinetic Profile of Compounds
3.2. Prediction of the Biological Activity of the Compounds via PASS Online Platforms
3.3. Compound Prediction, Drug Analogy
3.4. Experimental Design and Ethical Considerations
3.5. Group Allocation and Treatment
- Group I (Control): Untreated zebrafish maintained in standard conditions.
- Group II (GAL): Treated with galantamine (GAL, 1 mg/L), used as a positive control in behavioral and biochemical assessments.
- Groups III–V (FVEO): Treated with FVEO at 25, 150, and 300 µL/L, respectively.
- Group VI (SCOP): Treated with scopolamine (SCOP, 100 µM) to induce a dementia-like phenotype.
- Group VII (SCOP + GAL): Treated with SCOP (100 µM), followed by GAL (1 mg/L).
- Groups VIII–X (SCOP + FVEO): Treated with SCOP (100 µM), followed by FVEO at 25, 150, or 300 µL/L, respectively.
3.6. Behavioral Analysis
3.6.1. Novel Tank Diving Test (NTT)
3.6.2. Y-Maze Test
3.6.3. Novel Object Recognition (NOR) Test
3.7. Biochemical Parameters Assay
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Scheltens, P.; Blennow, K.; Breteler, M.M.B.; de Strooper, B.; Frisoni, G.B.; Salloway, S.; Van der Flier, W.M. Alzheimer’s Disease. Lancet 2016, 388, 505–517. [Google Scholar] [CrossRef]
- Graff-Radford, J.; Yong, K.X.X.; Apostolova, L.G.; Bouwman, F.H.; Carrillo, M.; Dickerson, B.C.; Rabinovici, G.D.; Schott, J.M.; Jones, D.T.; Murray, M.E. New Insights into Atypical Alzheimer’s Disease in the Era of Biomarkers. Lancet Neurol. 2021, 20, 222–234. [Google Scholar] [CrossRef]
- Hampel, H.; Mesulam, M.M.; Cuello, A.C.; Farlow, M.R.; Giacobini, E.; Grossberg, G.T.; Khachaturian, A.S.; Vergallo, A.; Cavedo, E.; Snyder, P.J.; et al. The Cholinergic System in the Pathophysiology and Treatment of Alzheimer’s Disease. Brain 2018, 141, 1917–1933. [Google Scholar] [CrossRef]
- Chen, Z.R.; Huang, J.B.; Yang, S.L.; Hong, F.F. Role of Cholinergic Signaling in Alzheimer’s Disease. Molecules 2022, 27, 1816. [Google Scholar] [CrossRef]
- Bekdash, R.A. The Cholinergic System, the Adrenergic System and the Neuropathology of Alzheimer’s Disease. Int. J. Mol. Sci. 2021, 22, 1273. [Google Scholar] [CrossRef]
- Fahimi, A.; Noroozi, M.; Salehi, A. Enlargement of Early Endosomes and Traffic Jam in Basal Forebrain Cholinergic Neurons in Alzheimer’s Disease. Handb. Clin. Neurol. 2021, 179, 207–218. [Google Scholar] [CrossRef]
- Martinez, J.L.; Zammit, M.D.; West, N.R.; Christian, B.T.; Bhattacharyya, A. Basal Forebrain Cholinergic Neurons: Linking Down Syndrome and Alzheimer’s Disease. Front. Aging Neurosci. 2021, 13, 703876. [Google Scholar] [CrossRef]
- Lan, T. Current Drug Treatments in Alzheimer’s Disease. Highlights Sci. Eng. Technol. 2023, 36, 297–302. [Google Scholar] [CrossRef]
- Peitzika, S.C.; Pontiki, E. A Review on Recent Approaches on Molecular Docking Studies of Novel Compounds Targeting Acetylcholinesterase in Alzheimer Disease. Molecules 2023, 28, 1084. [Google Scholar] [CrossRef]
- Kandelshein, H.; Bloemer, J. Side Effects of Drugs Used in the Treatment of Alzheimer’s Disease. Side Eff. Drugs Annu. 2022, 44, 69–75. [Google Scholar] [CrossRef]
- Ilie, A.C.; Stefaniu, R.; Handaric, M.; Dascalescu, S.; Ivascu, I.; Alexa, I.D. Adverse Effects Of Cholinesterase Inhibitors In The Elderly Patient With Myasthenia Gravis. Case Reports. Med.-Surg. J. 2018, 122, 314–317. [Google Scholar]
- Blokland, A. Cholinergic Models of Memory Impairment in Animals and Man: Scopolamine vs. Biperiden. Behav. Pharmacol. 2022, 33, 231–237. [Google Scholar] [CrossRef]
- Chen, W.N.; Yeong, K.Y. Scopolamine, a Toxin-Induced Experimental Model, Used for Research in Alzheimer’s Disease. CNS Neurol. Disord. Drug Targets 2020, 19, 85–93. [Google Scholar] [CrossRef]
- Hsiao, S.H.; Hwang, T.J.; Lin, F.J.; Sheu, J.J.; Wu, C.H. The Association Between the Use of Cholinesterase Inhibitors and Cardiovascular Events Among Older Patients With Alzheimer Disease. Mayo Clin. Proc. 2021, 96, 350–362. [Google Scholar] [CrossRef]
- Hernández-Rodríguez, M.; Arciniega-Martínez, I.M.; García-Marín, I.D.; Correa-Basurto, J.; Rosales-Hernández, M.C. Chronic Administration of Scopolamine Increased GSK3βP9, Beta Secretase, Amyloid Beta, and Oxidative Stress in the Hippocampus of Wistar Rats. Mol. Neurobiol. 2020, 57, 3979–3988. [Google Scholar] [CrossRef]
- Kishore, N.; Verma, A.K. Foeniculum Vulgare Mill: Flavoring, Pharmacological, Phytochemical, and Folklore Aspects. In Medicinal Plants; Apple Academic Press: Palm Bay, FL, USA, 2022; pp. 77–91. [Google Scholar] [CrossRef]
- Crescenzi, M.A.; D’Urso, G.; Piacente, S.; Montoro, P. UPLC-ESI-QTRAP-MS/MS Analysis to Quantify Bioactive Compounds in Fennel (Foeniculum Vulgare Mill.) Waste with Potential Anti-Inflammatory Activity. Metabolites 2022, 12, 701. [Google Scholar] [CrossRef]
- Amiza, A.; Rauf, A.; ud Din, A.M.; Ahmad, F.; Sehar, S.; Khawaja, A.A.; Haroon, S.M.; Iqbal, R. A Concise Review on Toxicity and Pharmacological Aspects of Foeniculum Vulgare with Emphasis on Anti-Cancer Potential. Asian J. Res. Pharm. Sci. 2022, 12, 75–82. [Google Scholar] [CrossRef]
- Debnath, S.; Kumar, H.; Sharma, A.; Medicine, I.; Khoshnevisan, K.; Alipanah, H.; Baharifar, H.; Ranjbar, N.; Osanloo, M. Foeniculum Vulgare from Spice to Pharma: Recent Advances in Its Medicinal Value, Bioactivities and Perspectives. Tradit. Integr. Med. 2023, 8, 217–229. [Google Scholar] [CrossRef]
- Cherbal, A.; Bouabdallah, M.; Benhalla, M.; Hireche, S.; Desdous, R. Phytochemical Screening, Phenolic Content, and Anti-Inflammatory Effect of Foeniculum Vulgare Seed Extract. Prev. Nutr. Food Sci. 2023, 28, 141. [Google Scholar] [CrossRef]
- Patil, J.; Patil, D.; Sayyed, H.; Patil, M.; Mali, R. Medicinal Traits of the Phenolic Compound from Foeniculum Vulgare for Oligomenorrhea. Chem. Proc. 2022, 12, 54. [Google Scholar] [CrossRef]
- SwissADME. Available online: http://www.swissadme.ch/ (accessed on 13 October 2023).
- Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. PkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J. Med. Chem. 2015, 58, 4066–4072. [Google Scholar] [CrossRef]
- van de Waterbeemd, H.; Gifford, E. ADMET in Silico Modelling: Towards Prediction Paradise? Nat. Rev. Drug Discov. 2003, 2, 192–204. [Google Scholar] [CrossRef]
- Cioanca, O.; Hancianu, M.; Mircea, C.; Trifan, A.; Hritcu, L. Essential Oils from Apiaceae as Valuable Resources in Neurological Disorders: Foeniculi Vulgare Aetheroleum. Ind. Crops Prod. 2016, 88, 51–57. [Google Scholar] [CrossRef]
- Mareş, C.; Udrea, A.M.; Şuţan, N.A.; Avram, S. Bioinformatics Tools for the Analysis of Active Compounds Identified in Ranunculaceae Species. Pharmaceuticals 2023, 16, 842. [Google Scholar] [CrossRef]
- Ibrahim, M.T.; Uzairu, A. 2D-QSAR, Molecular Docking, Drug-Likeness, and ADMET/Pharmacokinetic Predictions of Some Non-Small Cell Lung Cancer Therapeutic Agents. J. Taibah Univ. Med. Sci. 2023, 18, 295. [Google Scholar] [CrossRef]
- Dong, J.; Wang, N.N.; Yao, Z.J.; Zhang, L.; Cheng, Y.; Ouyang, D.; Lu, A.P.; Cao, D.S. Admetlab: A Platform for Systematic ADMET Evaluation Based on a Comprehensively Collected ADMET Database. J. Cheminform. 2018, 10, 29. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Adv. Drug Deliv. Rev. 1997, 23, 3–25. [Google Scholar] [CrossRef]
- Bickerton, G.R.; Paolini, G.V.; Besnard, J.; Muresan, S.; Hopkins, A.L. Quantifying the Chemical Beauty of Drugs. Nat. Chem. 2012, 4, 90–98. [Google Scholar] [CrossRef]
- Ghose, A.K.; Viswanadhan, V.N.; Wendoloski, J.J. A Knowledge-Based Approach in Designing Combinatorial or Medicinal Chemistry Libraries for Drug Discovery. 1. A Qualitative and Quantitative Characterization of Known Drug Databases. J. Comb. Chem. 1999, 1, 55–68. [Google Scholar] [CrossRef]
- Egan, W.J.; Merz, K.M.; Baldwin, J.J. Prediction of Drug Absorption Using Multivariate Statistics. J. Med. Chem. 2000, 43, 3867–3877. [Google Scholar] [CrossRef]
- Furey, M.L.; Khanna, A.; Hoffman, E.M.; Drevets, W.C. Scopolamine Produces Larger Antidepressant and Antianxiety Effects in Women Than in Men. Neuropsychopharmacology 2010, 35, 2479. [Google Scholar] [CrossRef]
- Hughes, R.N.; Otto, M.T. Anxiolytic Effects of Environmental Enrichment Attenuate Sex-Related Anxiogenic Effects of Scopolamine in Rats. Prog. Neuropsychopharmacol. Biol. Psychiatry 2013, 40, 252–259. [Google Scholar] [CrossRef]
- Hamilton, T.J.; Morrill, A.; Lucas, K.; Gallup, J.; Harris, M.; Healey, M.; Pitman, T.; Schalomon, M.; Digweed, S.; Tresguerres, M. Establishing Zebrafish as a Model to Study the Anxiolytic Effects of Scopolamine. Sci. Rep. 2017, 7, 15081. [Google Scholar] [CrossRef]
- Kim, Y.H.; Lee, Y.; Kim, D.; Jung, M.W.; Lee, C.J. Scopolamine-Induced Learning Impairment Reversed by Physostigmine in Zebrafish. Neurosci. Res. 2010, 67, 156–161. [Google Scholar] [CrossRef]
- Singsai, K.; Ladpala, N.; Dangja, N.; Boonchuen, T.; Jaikhamfu, N.; Fakthong, P. Effect of Streblus Asper Leaf Extract on Scopolamine-Induced Memory Deficits in Zebrafish: The Model of Alzheimer’s Disease. Adv. Pharmacol. Pharm. Sci. 2021, 2021, 6666726. [Google Scholar] [CrossRef]
- Richetti, S.K.; Blank, M.; Capiotti, K.M.; Piato, A.L.; Bogo, M.R.; Vianna, M.R.; Bonan, C.D. Quercetin and Rutin Prevent Scopolamine-Induced Memory Impairment in Zebrafish. Behav. Brain Res. 2011, 217, 10–15. [Google Scholar] [CrossRef]
- Amoah, V.; Atawuchugi, P.; Jibira, Y.; Tandoh, A.; Ossei, P.P.S.; Sam, G.; Ainooson, G. Lantana Camara Leaf Extract Ameliorates Memory Deficit and the Neuroinflammation Associated with Scopolamine-Induced Alzheimer’s-like Cognitive Impairment in Zebrafish and Mice. Pharm. Biol. 2023, 61, 825–838. [Google Scholar] [CrossRef]
- Wang, S.; Su, G.; Zhang, X.; Song, G.; Zhang, L.; Zheng, L.; Zhao, M. Characterization and Exploration of Potential Neuroprotective Peptides in Walnut (Juglans Regia) Protein Hydrolysate against Cholinergic System Damage and Oxidative Stress in Scopolamine-Induced Cognitive and Memory Impairment Mice and Zebrafish. J. Agric. Food Chem. 2021, 69, 2773–2783. [Google Scholar] [CrossRef]
- Alvarado-García, P.A.A.; Soto-Vasquez, M.R.; Rosales-Cerquin, L.E.; Rodrigo-Villanueva, E.M.; Jara-Aguilar, D.R.; Tuesta-Collantes, L. Anxiolytic and Antidepressant-like Effects of Foeniculum Vulgare Essential Oil. Pharmacogn. J. 2022, 14, 425–431. [Google Scholar] [CrossRef]
- Raman, S.; Asle-Rousta, M.; Rahnema, M. Protective Effect of Fennel, and Its Major Component Trans-Anethole against Social Isolation Induced Behavioral Deficits in Rats. Physiol. Int. 2020, 107, 30–39. [Google Scholar] [CrossRef]
- Bahari, N.; Mahmoudi, F.; Haghighat, K.; Khazali, H. The Effects of Trans-Anethole on the Hypothalamic CGRP and CRH Gene Expression in Rat Model of Stress. Arch. Adv. Biosci. 2023, 14, 1–7. [Google Scholar] [CrossRef]
- Volgin, A.D.; Yakovlev, O.A.; Demin, K.A.; Alekseeva, P.A.; Kalueff, A.V. Acute Behavioral Effects of Deliriant Hallucinogens Atropine and Scopolamine in Adult Zebrafish. Behav. Brain Res. 2019, 359, 274–280. [Google Scholar] [CrossRef]
- Pande, S.; Patel, C. Effect of Lactobacillus Rhamnosus and Diclofenac with Curcumin for Neuronal Restoration and Repair Against Scopolamine Induced Dementia in Zebrafish (Danio Rerio). Curr. Enzym. Inhib. 2023, 19, 147–155. [Google Scholar] [CrossRef]
- Delaram, E.E.; Shahrbanoo, O.; Maryam, K.; Farhad, V. Effect of Fennel Extract on the Improvement of Memory Disorders in Beta Amyloid Alzheimer Model of Male Wistar Rats. J. Ilam Univ. Med. Sci. 2019, 27, 1–12. [Google Scholar] [CrossRef]
- Bhatti, S.; Ali Shah, S.A.; Ahmed, T.; Zahid, S. Neuroprotective Effects of Foeniculum Vulgare Seeds Extract on Lead-Induced Neurotoxicity in Mice Brain. Drug Chem. Toxicol. 2018, 41, 399–407. [Google Scholar] [CrossRef]
- Brinza, I.; Ayoub, I.M.; Eldahshan, O.A.; Hritcu, L. Baicalein 5,6-Dimethyl Ether Prevents Memory Deficits in the Scopolamine Zebrafish Model by Regulating Cholinergic and Antioxidant Systems. Plants 2021, 10, 1245. [Google Scholar] [CrossRef]
- Koppula, S.; Kumar, H. Foeniculum Vulgare Mill (Umbelliferae) Attenuates Stress and Improves Memory in Wister Rats. Trop. J. Pharm. Res. 2013, 12, 553–558. [Google Scholar] [CrossRef]
- Chang, W.; An, J.; Seol, G.H.; Han, S.H.; Yee, J.; Min, S.S. Trans-Anethole Alleviates Trimethyltin Chloride-Induced Impairments in Long-Term Potentiation. Pharmaceutics 2022, 14, 1422. [Google Scholar] [CrossRef]
- Richter, N.; Beckers, N.; Onur, O.A.; Dietlein, M.; Tittgemeyer, M.; Kracht, L.; Neumaier, B.; Fink, G.R.; Kukolja, J. Effect of Cholinergic Treatment Depends on Cholinergic Integrity in Early Alzheimer’s Disease. Brain 2018, 141, 903–915. [Google Scholar] [CrossRef]
- Lane, R.M.; Potkin, S.G.; Enz, A. Targeting Acetylcholinesterase and Butyrylcholinesterase in Dementia. Int. J. Neuropsychopharmacol. 2006, 9, 101–124. [Google Scholar] [CrossRef]
- Abdel-Baki, A.A.S.; Aboelhadid, S.M.; Sokmen, A.; Al-Quraishy, S.; Hassan, A.O.; Kamel, A.A. Larvicidal and Pupicidal Activities of Foeniculum Vulgare Essential Oil, Trans-Anethole and Fenchone against House Fly Musca Domestica and Their Inhibitory Effect on Acetylcholinestrase. Entomol. Res. 2021, 51, 568–577. [Google Scholar] [CrossRef]
- Joshi, H.; Parle, M. Cholinergic Basis of Memory-Strengthening Effect of Foeniculum Vulgare Linn. J. Med. Food 2006, 9, 413–417. [Google Scholar] [CrossRef]
- Shahriari, M.; Zibaee, A.; Sahebzadeh, N.; Shamakhi, L. Effects of α-Pinene, Trans-Anethole, and Thymol as the Essential Oil Constituents on Antioxidant System and Acetylcholine Esterase of Ephestia Kuehniella Zeller (Lepidoptera: Pyralidae). Pestic. Biochem. Physiol. 2018, 150, 40–47. [Google Scholar] [CrossRef]
- Smith, M.A.; Rottkamp, C.A.; Nunomura, A.; Raina, A.K.; Perry, G. Oxidative Stress in Alzheimer’s Disease. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2000, 1502, 139–144. [Google Scholar] [CrossRef]
- Chen, Z.; Zhong, C. Oxidative Stress in Alzheimer’s Disease. Neurosci. Bull. 2014, 30, 271–281. [Google Scholar] [CrossRef]
- Huang, W.J.; Zhang, X.; Chen, W.W. Role of Oxidative Stress in Alzheimer’s Disease (Review). Biomed. Rep. 2016, 4, 519–522. [Google Scholar] [CrossRef]
- Muhammad, T.; Ali, T.; Ikram, M.; Khan, A.; Alam, S.I.; Kim, M.O. Melatonin Rescue Oxidative Stress-Mediated Neuroinflammation/ Neurodegeneration and Memory Impairment in Scopolamine-Induced Amnesia Mice Model. J. Neuroimmune Pharmacol. 2019, 14, 278–294. [Google Scholar] [CrossRef]
- Das, M.; Jaya Balan, D.; Kasi, P.D. Mitigation of Oxidative Stress with Dihydroactinidiolide, a Natural Product against Scopolamine-Induced Amnesia in Swiss Albino Mice. Neurotoxicology 2021, 86, 149–161. [Google Scholar] [CrossRef]
- Alghamdi, A.; Al-Abbasi, F.A.; Alghamdi, S.; Alzarea, S.; Almalki, W.; Gupta, G.; Nadeem, M.; Sayyed, N.; Kazmi, I.; Alghamdi, A.M.; et al. Europinidin Attenuates Scopolamine-Induced Deficit Memory in Rats by Improving Neurobehavioral Activity, Inhibiting AChE Levels and BDNF Expression. Authorea 2023. [Google Scholar] [CrossRef]
- Karthivashan, G.; Park, S.Y.; Kweon, M.H.; Kim, J.; Haque, M.E.; Cho, D.Y.; Kim, I.S.; Cho, E.A.; Ganesan, P.; Choi, D.K. Ameliorative Potential of Desalted Salicornia Europaea L. Extract in Multifaceted Alzheimer’s-like Scopolamine-Induced Amnesic Mice Model. Sci. Rep. 2018, 8, 8826. [Google Scholar] [CrossRef]
- Yang, Q.; Lin, J.; Zhang, H.; Liu, Y.; Kan, M.; Xiu, Z.; Chen, X.; Lan, X.; Li, X.; Shi, X.; et al. Ginsenoside Compound K Regulates Amyloid β via the Nrf2/Keap1 Signaling Pathway in Mice with Scopolamine Hydrobromide-Induced Memory Impairments. J. Mol. Neurosci. 2019, 67, 62–71. [Google Scholar] [CrossRef]
- Zhang, B.; Zhao, J.; Wang, Z.; Xu, L.; Liu, A.; Du, G. DL0410 Attenuates Oxidative Stress and Neuroinflammation via BDNF/TrkB/ERK/CREB and Nrf2/HO-1 Activation. Int. Immunopharmacol. 2020, 86, 106729. [Google Scholar] [CrossRef]
- Sun, Z.; Park, S.Y.; Hwang, E.; Park, B.; Seo, S.A.; Cho, J.G.; Zhang, M.; Yi, T.H. Dietary Foeniculum Vulgare Mill Extract Attenuated UVB Irradiation-Induced Skin Photoaging by Activating of Nrf2 and Inhibiting MAPK Pathways. Phytomedicine 2016, 23, 1273–1284. [Google Scholar] [CrossRef]
- Yu, C.; Tong, Y.; Li, Q.; Wang, T.; Yang, Z. Trans-Anethole Ameliorates Intestinal Injury Through Activation of Nrf2 Signaling Pathway in Subclinical Necrotic Enteritis-Induced Broilers. Front. Vet. Sci. 2022, 9, 877066. [Google Scholar] [CrossRef]
- Hashemi, P.; Ahmadi, S. Alpha-Pinene Moderates Memory Impairment Induced by Kainic Acid via Improving the BDNF/TrkB/CREB Signaling Pathway in Rat Hippocampus. Front. Mol. Neurosci. 2023, 16, 1202232. [Google Scholar] [CrossRef]
- Tripathi, P.; Tripathi, R.; Patel, R.K.; Pancholi, S.S. Investigation of Antimutagenic Potential of Foeniculum Vulgare Essential Oil on Cyclophosphamide Induced Genotoxicity and Oxidative Stress in Mice. Drug Chem. Toxicol. 2013, 36, 35–41. [Google Scholar] [CrossRef]
- Barakat, H.; Alkabeer, I.A.; Aljutaily, T.; Almujaydil, M.S.; Algheshairy, R.M.; Alhomaid, R.M.; Almutairi, A.S.; Mohamed, A. Phenolics and Volatile Compounds of Fennel (Foeniculum Vulgare) Seeds and Their Sprouts Prevent Oxidative DNA Damage and Ameliorates CCl4-Induced Hepatotoxicity and Oxidative Stress in Rats. Antioxidants 2022, 11, 2318. [Google Scholar] [CrossRef]
- Imran, A.; Xiao, L.; Ahmad, W.; Anwar, H.; Rasul, A.; Imran, M.; Aziz, N.; Razzaq, A.; Arshad, M.U.; Shabbir, A.; et al. Foeniculum Vulgare (Fennel) Promotes Functional Recovery and Ameliorates Oxidative Stress Following a Lesion to the Sciatic Nerve in Mouse Model. J. Food Biochem. 2019, 43, e12983. [Google Scholar] [CrossRef]
- Ryu, Y.; Lee, D.; Jung, S.H.; Lee, K.J.; Jin, H.; Kim, S.J.; Lee, H.M.; Kim, B.; Won, K.J. Sabinene Prevents Skeletal Muscle Atrophy by Inhibiting the MAPK–MuRF-1 Pathway in Rats. Int. J. Mol. Sci. 2019, 20, 4955. [Google Scholar] [CrossRef]
- Dhingra, D. Sudha Antidepressant-Like Activity Of Trans-Anethole In Unstressed Mice And Stressed Mice. Asian J. Pharm. Clin. Res. 2019, 12, 121–127. [Google Scholar] [CrossRef]
- Salama, A.; Mahmoud, H.A.A.H.; Kandeil, M.A.; Khalaf, M.M. Neuroprotective Role of Camphor against Ciprofloxacin Induced Depression in Rats: Modulation of Nrf-2 and TLR4. Immunopharmacol. Immunotoxicol. 2021, 43, 309–318. [Google Scholar] [CrossRef]
- Dai, M.; Wu, L.; Yu, K.; Xu, R.; Wei, Y.; Chinnathambi, A.; Alahmadi, T.A.; Zhou, M. D-Carvone Inhibit Cerebral Ischemia/Reperfusion Induced Inflammatory Response TLR4/NLRP3 Signaling Pathway. Biomed. Pharmacother. 2020, 132, 110870. [Google Scholar] [CrossRef]
- Dahiya, M.; Kumar, A.; Yadav, M. Ameliorative Effect of Β-pinene Targeting Mitochondrial Dysfunction and Oxidative Stress in Alzheimer’s Disease. Alzheimer’s Dement. 2023, 19, e076020. [Google Scholar] [CrossRef]
- Way2Drug-Main. Available online: https://www.way2drug.com/PASSOnline/index.php (accessed on 6 November 2023).
- Percie du Sert, N.; Hurst, V.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; et al. The ARRIVE Guidelines 2.0: Updated Guidelines for Reporting Animal Research. PLoS Biol. 2020, 18, e3000410. [Google Scholar] [CrossRef]
- Brinza, I.; Boiangiu, R.S.; Cioanca, O.; Hancianu, M.; Dumitru, G.; Hritcu, L.; Birsan, G.-C.; Todirascu-Ciornea, E. Direct Evidence for Using Coriandrum Sativum Var. Microcarpum Essential Oil to Ameliorate Scopolamine-Induced Memory Impairment and Brain Oxidative Stress in the Zebrafish Model. Antioxidants 2023, 12, 1534. [Google Scholar] [CrossRef]
- Stewart, A.; Cachat, J.; Wong, K.; Gaikwad, S.; Gilder, T.; DiLeo, J.; Chang, K.; Utterback, E.; Kalueff, A.V. Homebase Behavior of Zebrafish in Novelty-Based Paradigms. Behav. Process. 2010, 85, 198–203. [Google Scholar] [CrossRef]
- Cognato, G.d.P.; Bortolotto, J.W.; Blazina, A.R.; Christoff, R.R.; Lara, D.R.; Vianna, M.R.; Bonan, C.D. Y-Maze Memory Task in Zebrafish (Danio Rerio): The Role of Glutamatergic and Cholinergic Systems on the Acquisition and Consolidation Periods. Neurobiol. Learn. Mem. 2012, 98, 321–328. [Google Scholar] [CrossRef]
- Stefanello, F.V.; Fontana, B.D.; Ziani, P.R.; Müller, T.E.; Mezzomo, N.J.; Rosemberg, D.B. Exploring Object Discrimination in Zebrafish: Behavioral Performance and Scopolamine-Induced Cognitive Deficits at Different Retention Intervals. Zebrafish 2019, 16, 370–378. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, K.D.; Andres, V.; Feather-Stone, R.M. A New and Rapid Colorimetric Determination of Acetylcholinesterase Activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Winterbourn, C.C.; Hawkins, R.E.; Brian, M.; Carrell, R.W. The Estimation of Red Cell Superoxide Dismutase Activity. J. Lab. Clin. Med. 1975, 85, 337–341. [Google Scholar]
- Sinha, A.K. Colorimetric Assay of Catalase. Anal. Biochem. 1972, 47, 389–394. [Google Scholar] [CrossRef]
- Fukuzawa, K.; Tokumura, A. Glutathione Peroxidase Activity in Tissues of Vitamin E-Deficient Mice. J. Nutr. Sci. Vitaminol. 1976, 22, 405–407. [Google Scholar] [CrossRef]
- Salbitani, G.; Vona, V.; Bottone, C.; Petriccione, M.; Carfagna, S. Sulfur Deprivation Results in Oxidative Perturbation in Chlorella Sorokiniana (211/8k). Plant Cell Physiol. 2015, 56, 897–905. [Google Scholar] [CrossRef]
- Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for Lipid Peroxides in Animal Tissues by Thiobarbituric Acid Reaction. Anal. Biochem. 1979, 95, 351–358. [Google Scholar] [CrossRef]
- Oliver, C.N.; Ahn, B.W.; Moerman, E.J.; Goldstein, S.; Stadtman, E.R. Age-Related Changes in Oxidized Proteins. J. Biol. Chem. 1987, 262, 5488–5491. [Google Scholar] [CrossRef]
Descriptor | SCOP | GAL | Trans-Anethole | Camphor | Trans-Sabinene Hydrate | (+)-Carvone | β-Pinene |
---|---|---|---|---|---|---|---|
Molecular weight | 303.358 | 287.359 | 148.20 | 152.23 | 154.253 | 150.22 | 136.23 |
No. heavy atoms | 22 | 21 | 11 | 11 | 11 | 11 | 10 |
No. aroma heavy atoms | 6 | 6 | 6 | 0 | 0 | 0 | 0 |
LogP | 0.9181 | 1.8503 | 2.7283 | 2.4017 | 2.1935 | 2.4879 | 2.9987 |
Fraction csp3 | 0.59 | 0.53 | 0.20 | 0.90 | 1.00 | 0.50 | 0.80 |
Rotatable bonds | 4 | 1 | 2 | 0 | 1 | 1 | 0 |
Acceptors | 5 | 4 | 1 | 1 | 1 | 1 | 0 |
Donors | 1 | 1 | 0 | 0 | 1 | 0 | 0 |
Molar refractivity | 83.48 | 84.05 | 47.83 | 45.64 | 46.90 | 47.32 | 45.22 |
Surface area | 129.371 | 124.520 | 67.315 | 68.174 | 68.806 | 67.800 | 63.322 |
TPSA | 62.30 Å | 41.93 Å | 9.23 Å | 17.07 Å | 20.23 Å | 17.07 Å | 0.00 Å |
Property | Compound Model Name | SCOP | GAL | Trans-Anethole | Camphor | Trans-Sabinene Hydrate | (+)-Carvone | β-Pinene | Unit |
---|---|---|---|---|---|---|---|---|---|
Intestinal absorption (human) (low < 30%, high > 30%) | 72.626 | 94.994 | 95.592 | 95.965 | 94.786 | 97.702 | 95.525 | Numeric (% Absorbed) | |
P-glycoprotein substrate | Yes | No | No | No | No | No | No | Categorical (Yes/No) | |
P-glycoprotein I/II inhibitor | No | No | No | No | No | No | No | Categorical (Yes/No) | |
Distribution | VDss (human) | 0.583 | 0.89 | 0.343 | 0.331 | 0.351 | 0.179 | 0.685 | Numeric (log L/kg) |
Fraction unbound (human) | 0.414 | 0.36 | 0.266 | 0.459 | 0.469 | 0.53 | 0.35 | Numeric (Fu) | |
BBB permeability (log BB > 0.3 cross BB, log BB < 0.1 do not coross BB) | −0.043 | −0.081 | 0.529 | 0.612 | 0.663 | 0.588 | 0.818 | Numeric (log BB) | |
CNS permeability (log PS > −2, penetrate CNS, log PS < −3 do not penetrate) | −3.031 | −2.511 | −1.659 | −2.158 | −2.24 | −2.478 | −1.857 | Numeric (log PS) | |
Metabolism | CYP3A4 substrate | Yes | Yes | No | No | No | No | No | Categorical (Yes/No) |
CYP1A2 inhibitor | No | No | Yes | No | No | No | No | Categorical (Yes/No) | |
Excretion | Total Clearance | 1.096 | 0.991 | 0.268 | 0.109 | 1.011 | 0.225 | 0.03 | Numeric (log ml/min/kg) |
Toxicity | Max. tolerated dose (human) (low < 0.447, high > 0.477) | −0.319 | −0.423 | 0.824 | 0.473 | 0.637 | 0.775 | 0.371 | Numeric (log mg/kg/day) |
Oral Rat Acute Toxicity (LD50) | 2.234 | 2.728 | 1.798 | 1.653 | 1.703 | 1.86 | 1.673 | Numeric (mol/kg) | |
Oral Rat Chronic Toxicity (LOAEL) | 0.736 | 0.966 | 2.217 | 1.981 | 1.926 | 1.972 | 2.28 | Numeric (log mg/kg_bw/day) | |
Hepatotoxicity | No | Yes | No | No | No | No | No | Categorical (Yes/No) | |
Skin Sensitisation | No | No | Yes | Yes | Yes | Yes | No | Categorical (Yes/No) |
Drug-Likeness | SCOP | GAL | Trans- Anethole | Camphor | Trans- Sabinene Hydrate | (+)-Carvone | β-Pinene |
---|---|---|---|---|---|---|---|
Lipinski | Yes; 0 violation | Yes; 0 violation | Yes; 0 violation | Yes; 0 violation | Yes; 0 violation | Yes; 0 violation | Yes; 1 violation: MLOGP > 4.15 |
Ghose | Yes | Yes | No; 1 violation: MW < 160 | No; 1 violation: MW < 160 | No; 1 violation: MW < 160 | No; 1 violation: MW < 160 | No; 1 violation: MW < 160 |
Veber | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Egan | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Muegge | Yes | Yes | No; 2 violations: MW < 200, Heteroatoms < 2 | No; 2 violations: MW < 200, Heteroatoms < 2 | No; 2 violations: MW < 200, Heteroatoms < 2 | No; 2 violations: MW < 200, Heteroatoms < 2 | No; 2 violations: MW < 200, Heteroatoms < 2 |
Bioavailability Score | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 |
Drug-Likeness | SCOP | GAL | Trans-Anethole | Camphor | Trans-Sabinene Hydrate | (+)-Carvone | β-Pinene | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pa | Pi | Pa | Pi | Pa | Pi | Pa | Pi | Pa | Pi | Pa | Pi | Pa | Pi | |
ACh nicotinic antagonist | 0.249 | 0.006 | 0.080 | 0.083 | 0.089 | 0.059 | 0.127 | 0.033 | 0.169 | 0.041 | 0.128 | 0.033 | 0.148 | 0.025 |
ACh neuromuscular blocking agent | 0.351 | 0.171 | 0.376 | 0.154 | 0.594 | 0.025 | 0.674 | 0.006 | 0.483 | 0.085 | 0.729 | 0.004 | 0.571 | 0.035 |
Cholinergic antagonist | 0.713 | 0.004 | 0.360 | 0.097 | 0.136 | 0.039 | 0.122 | 0.048 | 0.153 | 0.095 | 0.090 | 0.075 | 0.131 | 0.045 |
Neurotransmitter antagonist | 0.396 | 0.095 | 0.736 | 0.003 | 0.549 | 0.024 | 0.498 | 0.041 | 0.410 | 0.086 | 0.336 | 0.146 | 0.464 | 0.056 |
Neurotrophic factor enhancer | 0.113 | 0.252 | 0.176 | 0.102 | 0.176 | 0.102 | 0.498 | 0.041 | 0.252 | 0.029 | 0.155 | 0.140 | 0.202 | 0.066 |
Dementia treatment | 0.285 | 0.164 | 0.458 | 0.026 | 0.499 | 0.015 | 0.574 | 0.005 | 0.540 | 0.008 | 0.332 | 0.105 | 0.537 | 0.009 |
Antineurotic | 0.334 | 0.214 | 0.241 | 0.215 | 0.485 | 0.117 | 0.495 | 0.113 | 0.252 | 0.104 | 0.289 | 0.106 | 0.664 | 0.051 |
Antiinflammatory | 0.338 | 0.130 | 0.140 | 0.115 | 0.526 | 0.049 | 0.252 | 0.116 | 0.839 | 0.005 | 0.473 | 0.065 | 0.611 | 0.029 |
Delirium | 0.900 | 0.005 | 0.612 | 0.044 | 0.327 | 0.169 | 0.393 | 0.134 | 0.622 | 0.042 | 0.280 | 0.202 | 0.376 | 0.143 |
Behavioral disturbance | 0.861 | 0.016 | 0.605 | 0.055 | 0.452 | 0.101 | 0.530 | 0.074 | 0.566 | 0.065 | 0.825 | 0.021 | 0.477 | 0.090 |
Depression | 0.328 | 0.198 | 0.644 | 0.028 | 0.487 | 0.072 | 0.384 | 0.137 | 0.450 | 0.091 | 0.353 | 0.167 | 0.462 | 0.085 |
Lipid peroxidase inhibitor | 0.521 | 0.015 | 0.369 | 0.025 | 0.439 | 0.026 | 0.242 | 0.098 | 0.239 | 0.100 | 0.465 | 0.067 | 0.070 | 0.059 |
NADPH peroxidase inhibitor | 0.431 | 0.090 | 0.369 | 0.025 | 0.488 | 0.072 | 0.457 | 0.082 | 0.381 | 0.111 | 0.299 | 0.162 | 0.369 | 0.117 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brinza, I.; Boiangiu, R.S.; Todirascu-Ciornea, E.; Hritcu, L.; Dumitru, G. Foeniculum vulgare Mill. Mitigates Scopolamine-Induced Cognitive Deficits via Antioxidant and Neuroprotective Mechanisms in Zebrafish. Molecules 2025, 30, 2858. https://doi.org/10.3390/molecules30132858
Brinza I, Boiangiu RS, Todirascu-Ciornea E, Hritcu L, Dumitru G. Foeniculum vulgare Mill. Mitigates Scopolamine-Induced Cognitive Deficits via Antioxidant and Neuroprotective Mechanisms in Zebrafish. Molecules. 2025; 30(13):2858. https://doi.org/10.3390/molecules30132858
Chicago/Turabian StyleBrinza, Ion, Razvan Stefan Boiangiu, Elena Todirascu-Ciornea, Lucian Hritcu, and Gabriela Dumitru. 2025. "Foeniculum vulgare Mill. Mitigates Scopolamine-Induced Cognitive Deficits via Antioxidant and Neuroprotective Mechanisms in Zebrafish" Molecules 30, no. 13: 2858. https://doi.org/10.3390/molecules30132858
APA StyleBrinza, I., Boiangiu, R. S., Todirascu-Ciornea, E., Hritcu, L., & Dumitru, G. (2025). Foeniculum vulgare Mill. Mitigates Scopolamine-Induced Cognitive Deficits via Antioxidant and Neuroprotective Mechanisms in Zebrafish. Molecules, 30(13), 2858. https://doi.org/10.3390/molecules30132858