Characterization of Complete Chloroplast Genome Sequences of Three Tropical Liana Dalbergia Species and Comparative Analysis of Phylogenetic and Structure Variations in Dalbergia Genus
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials and DNA Extraction
2.2. DNA Sequencing and De Novo Genome Assembly
2.3. Genome Annotation and Analysis
2.4. Sequence Analyses
2.5. Phylogenetic and ANI Analysis
2.6. Genome Comparison of cp Genomes from Dalbergia
3. Results
3.1. Genome Sequencing and Features of Assembled Chloroplast Genomes
3.2. Repeat Sequence Analysis
3.3. Relative Codon Preference Analysis
3.4. Phylogenetic Analysis
3.5. Comparative cp Genome Analysis
3.6. Structural Variations in cp Genomes of Dalbergia Species
3.7. Potential Markers for Identification of Dalbergia Species
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adema, F.; Ohashi, H.; Sunarno, B. Notes on Malesian Fabaceae (Leguminosae-Papilionoideae) 17. The genus Dalbergia. Blumea-Biodivers. Evol. Biogeogr. Plants 2016, 61, 186–206. [Google Scholar] [CrossRef]
- Rahaingoson, F.R.; Oyebanji, O.; Stull, G.W.; Zhang, R.; Yi, T.S. A dated phylogeny of the pantropical genus Dalbergia L.f. (Leguminosae: Papilionoideae) and its implications for historical biogeography. Agronomy 2022, 12, 1612. [Google Scholar] [CrossRef]
- Cui, Z.Y.; Hu, H.Z.; Li, X.F.; Liu, X.J.; Zhang, Q.L.; Hong, Z.; Zhang, N.N.; Lin, W.; Xu, D.P. Physiological and biochemical mechanisms of drought regulating the size and color of heartwood in Dalbergia odorifera. Tree Physiol. 2025, 45, tpae157. [Google Scholar] [CrossRef]
- Arunkumar, A.N.; Warrier, R.R.; Kher, M.M.; da Silva, J.A.T. Indian rosewood (Dalbergia latifolia Roxb.): Biology, utilisation, and conservation practices. Trees 2022, 36, 883–898. [Google Scholar] [CrossRef]
- Saha, S.; Shilpi, J.A.; Mondal, H.; Hossain, F.; Anisuzzman, M.; Hasan, M.M.; Cordell, G.A. Ethnomedicinal, phytochemical, and pharmacological profile of the genus Dalbergia L. (Fabaceae). Phytopharmacology 2013, 4, 291–346. [Google Scholar]
- Nikum, R.D.; Nehete, J.Y. Review on traditionally medicinal importance, morphology, phytochemistry and pharmacological activities of Dalbergia sisso. Int. J. Pharmacogn. 2021, 8, 329–337. [Google Scholar] [CrossRef]
- Lucas, C.I.S.; Ferreira, A.F.; Costa, M.A.P.D.C.; Silva, F.D.L.; Estevinho, L.M.; Carvalho, C.A.L.D. Phytochemical study and antioxidant activity of Dalbergia ecastaphyllum. Rodriguésia 2020, 71, e00492019. [Google Scholar] [CrossRef]
- Hamburger, M.O.; Cordell, G.A.; Tantivatana, P.; Ruangrungsi, N. Traditional medicinal plants of Thailand, VIII. Isoflavonoids of Dalbergia candenatensis. J. Nat. Prod. 1987, 50, 696–699. [Google Scholar] [CrossRef]
- Cheenpracha, S.; Karalai, C.; Ponglimanont, C.; Kanjana-Opas, A. Candenatenins A−F, Phenolic Compounds from the Heartwood of Dalbergia candenatensis. J. Nat. Prod. 2009, 72, 1395–1398. [Google Scholar] [CrossRef]
- Rasolomampianina, R.; Bailly, X.; Fetiarison, R.; Rabevohitra, R.; Bena, G.; Ramaroson, L.; Raherimandimby, M.; Moulin, L.; De Lajudie, P.; Avarre, J.C. Nitrogen-fixing nodules from rose wood legume trees (Dalbergia spp.) endemic to Madagascar host seven different genera belonging to α- and β-Proteobacteria. Mol. Ecol. 2005, 14, 4135–4146. [Google Scholar] [CrossRef]
- Cernusak, L.A.; Aranda, J.; Marshall, J.D.; Winter, K. Large variation in whole-plant water-use efficiency among tropical tree species. New Phytol. 2007, 173, 294–305. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, R.V. Climbing plant diversity in Australia: Taxonomy, biogeography and functional traits. Ecol. Lianas 2015, 9, 104–115. [Google Scholar] [CrossRef]
- Liu, H.H.; Zheng, Y.; Ke, M.Q. Study on the effects of vacuum heat treatment on the physical, mechanical, and chemical properties of Dalbergia latifolia Roxb. wood. Wood Mater. Sci. Eng. 2025, 1–11. [Google Scholar] [CrossRef]
- Barros, L.C.A.; Longui, E.L.; Muszynski, L. A quest for a sustainable alternative wood species to produce world class clarinets. BioResources 2021, 16, 6292. [Google Scholar] [CrossRef]
- Nhung, N.P.; Thu, P.Q.; Chi, N.M.; Dell, B. Vegetative propagation of Dalbergia tonkinensis, a threatened, high-value tree species in South-east Asia. South. For. A J. For. Sci. 2019, 81, 195–200. [Google Scholar] [CrossRef]
- Phong, D.T.; Tang, D.V.; Hien, V.T.T.; Ton, N.D.; Hai, N.V. Nucleotide diversity of a nuclear and four chloroplast DNA regions in rare tropical wood species of Dalbergia in Vietnam: A DNA barcode identifying utility. Asian J. Appl. Sci. 2014, 2, 116–125. [Google Scholar]
- Wu, H.Y.; Wong, K.H.; Kong, B.L.H.; Siu, T.Y.; But, G.W.C.; Tsang, S.S.K.; Lau, D.T.W.; Shaw, P.C. Comparative analysis of chloroplast genomes of Dalbergia species for identification and phylogenetic analysis. Plants 2022, 11, 1109. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.S.; Wappler, T.; Labandeira, C.; Huang, J.; Song, A.; Xie, S.P.; Jia, L.B.; Deng, W.Y.D.; Su, T. Cenozoic Dalbergia (Fabaceae) plant fossils from Southwest China: Biogeographic implications and plant-insect interactions. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2024, 647, 112260. [Google Scholar] [CrossRef]
- Hassold, S.; Lowry, P.P.; Bauert, M.R.; Razafintsalama, A.; Ramamonjisoa, L.; Widmer, A. DNA barcoding of Malagasy rosewoods: Towards a molecular identification of CITES-listed Dalbergia species. PLoS ONE 2016, 11, e0157881. [Google Scholar] [CrossRef]
- Wang, X.H.; Xu, M.F.; Wang, L.Z.; Chen, D.K. Overview of the pharmacy characteristics of climbing ancient Jiangzhenxiang. Strait Pharm. J. 2020, 32, 22–26. [Google Scholar]
- Jiang, Z.X.; Huang, Y.H.; Tu, X.W.; Liu, Y.L.; Yang, X.; Chen, Y.Q.; Li, K.; Xie, Y.Q. Characteristics of traditional medicine of Li nationality in Hainan. Chin. J. Ethnomed. Ethnopharm. 2022, 31, 5–14. [Google Scholar]
- Liu, X.C.; Li, Y.H.; Li, S.Y. Original plant of Chinese herb Jiangxiang. J. Chin. Med. Mater. 1996, 19, 550–553. [Google Scholar]
- Li, S.Y.; Liu, X.C. Further textual research on Herb Rosewood. Strait Pharm. J. 1996, 9, 5–7. [Google Scholar]
- Zhang, D.Y.; Gao, S.J.; Zhang, L.; Zhang, J.N.; Mo, W. Identification of original plant varieties of national Jiangzhenxiang conventionally used as medicine and incense in Hainan. J. Anhui Agric. Sci. 2016, 44, 147–150. [Google Scholar]
- Liang, Z.B.; Ni, X.J.; Tian, L.W.; Zeng, Y.; Li, S.Y. A new study on the Materia Medica of Jiangxiang. J. Chin. Med. Mater. 2017, 40, 982–985. [Google Scholar]
- DB45/T 1914-2018; Identification Method of Jiangzhenxiang. Markert Supervision Administration of Guangxi: Nanning, China, 2018.
- Yu, X.Q.; Huang, Y.; Chen, R.; Wei, J.H.; Huang, M.C. Pharmacognosy Research of Dalbergia benthamii Prain. Popul. Sci. Technol. 2021, 23, 58–61. [Google Scholar]
- Song, Y.; Zhang, Y.J.; Xu, J.; Li, W.M.; Li, M.F. Characterization of the complete chloroplast genome sequence of Dalbergia species and its phylogenetic implications. Sci. Rep. 2019, 9, 20401. [Google Scholar] [CrossRef]
- Li, C.; Liu, Y.; Lin, F.; Zheng, Y.; Huang, P. Characterization of the complete chloroplast genome sequences of six Dalbergia species and its comparative analysis in the subfamily of Papilionoideae (Fabaceae). PeerJ 2022, 10, e13570. [Google Scholar] [CrossRef]
- Qin, M.; Zhu, C.J.; Yang, J.B.; Vatanparast, M.; Schley, R.; Lai, Q.; Zhang, D.Y.; Tu, T.Y.; Klitgård, B.B.; Zhang, D.X. Comparative analysis of complete plastid genome reveals powerful barcode regions for identifying wood of Dalbergia odorifera and D. tonkinensis (Leguminosae). J. Syst. Evol. 2022, 60, 73–84. [Google Scholar] [CrossRef]
- He, T.; Jiao, L.C.; Yu, M.; Guo, J.; Jiang, X.M.; Yin, Y.F. DNA barcoding authentication for the wood of eight endangered Dalbergia timber species using machine learning approaches. Holzforschung 2018, 73, 277–285. [Google Scholar] [CrossRef]
- Wang, W.; Chen, B.; Ma, R.; Qiao, M.; Fu, Y. The DNA barcode identification of Dalbergia odorifera T. Chen and Dalbergia tonkinensis Prain. BMC Plant Biol. 2023, 23, 546. [Google Scholar] [CrossRef] [PubMed]
- Hartvig, I.; Czako, M.; Kjaer, E.D.; Nielsen, L.R.; Theilade, I. The use of DNA barcoding in identification and conservation of rosewood (Dalbergia spp.). PLoS ONE 2015, 10, e0138231. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.W.; Wu, J.H.; Wang, Y.S.; Lian, X.M.; Wu, F.L.; Zhou, L.; Huang, Z.B.; Zhu, S. The phylogenetic analysis of Dalbergia (Fabaceae: Papilionaceae) based on different DNA barcodes. Holzforschung 2017, 71, 939–949. [Google Scholar] [CrossRef]
- Li, S.J. Dalbergia in Asia; Sience Press: Beijing, China, 2017; pp. 1–371. [Google Scholar]
- Lachenaud, O.; van der Maesen, L.J.G. Notes on African Dalbergia (Leguminosae–Papilionoideae) with the description of two new species from Atlantic Central Africa. Symb. Bot. Ups. 2016, 38, 167–194. [Google Scholar]
- Ding, X.P.; Mei, W.L.; Lin, Q.; Wang, H.; Wang, J.; Peng, S.Q.; Li, H.L.; Zhu, J.H.; Li, W.; Wang, P.; et al. Genome sequence of the agarwood tree Aquilaria sinensis (Lour.) Spreng: The first chromosome-level draft genome in the Thymelaeceae family. GigaScience 2020, 9, giaa013. [Google Scholar] [CrossRef]
- Ding, X.P.; Chen, H.Q.; Huang, S.Z.; Yu, M.; Dai, H.F.; Mei, W.L. Characterization of complete chloroplast genome of the tertiary relict tree Cephalotaxus hainanensis (Cephalotaxaceae), an endangered species endemic to China. Mitochondrial DNA Part B 2019, 4, 824–825. [Google Scholar] [CrossRef]
- Luo, R.B.; Liu, B.H.; Xie, Y.L.; Li, Z.Y.; Huang, W.H.; Yuan, J.Y.; He, G.Z.; Chen, Y.X.; Liu, Y.J.; Cheung, D.W.; et al. SOAPdenovo2: An empirically improved memory-efficient short-read de novo assembler. Gigascience 2012, 1, 18. [Google Scholar] [CrossRef]
- Ye, J.; McGinnis, S.; Madden, T.L. BLAST: Improvements for better sequence analysis. Nucleic Acids Res. 2006, 34, W6–W9. [Google Scholar] [CrossRef]
- Lohse, M.; Drechsel, O.; Kahlau, S.; Bock, R. OrganellarGenomeDRAW—A suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res. 2013, 41, W575–W581. [Google Scholar] [CrossRef]
- Xie, R.; Zan, X.; Chu, L.; Su, Y.; Xu, P.; Liu, W. Study of the error correction capability of multiple sequence alignment algorithm (MAFFT) in DNA storage. BMC bioinform. 2023, 24, 111. [Google Scholar] [CrossRef]
- Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS ONE 2010, 5, e9490. [Google Scholar] [CrossRef] [PubMed]
- Jain, C.; Rodriguez-R, L.M.; Phillippy, A.M.; Konstantinidis, K.T.; Aluru, S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 2018, 9, 5114. [Google Scholar] [CrossRef]
- Rice, P.; Longden, I.; Bleasby, A. EMBOSS: The European molecular biology open software suite. Trends Genet. 2000, 16, 276–277. [Google Scholar] [CrossRef]
- Marçais, G.; Delcher, A.L.; Phillippy, A.M.; Coston, R.; Salzberg, S.L.; Zimin, A. MUMmer4: A fast and versatile genome alignment system. PLoS Comput. Biol. 2018, 14, e1005944. [Google Scholar] [CrossRef]
- Goel, M.; Sun, H.; Jiao, W.B.; Schneeberger, K. SyRI: Finding genomic rearrangements and local sequence differences from whole-genome assemblies. Genome biol. 2019, 20, 1–13. [Google Scholar] [CrossRef]
- Rozas, J.; Ferrer-Mata, A.; Sánchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sánchez-Gracia, A. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef]
- Ortiz, J.M. Botany: Taxonomy, morphology and physiology of fruits, leaves and flowers. In Citrus; CRC Press: Boca Raton, FL, USA, 2002; pp. 30–49. [Google Scholar]
- Wheeler, E.A. Inside Wood-A web resource for hardwood anatomy. IAWA J. 2011, 32, 199–211. [Google Scholar] [CrossRef]
- Koch, G.; Richter, H.G.; Schmitt, U. Design and application of CITESwoodID computer-aided identification and description of CITES-protected timbers. IAWA J. 2011, 32, 213–220. [Google Scholar] [CrossRef]
- de Palacios, P.; Esteban, L.G.; Gasson, P.; García-Fernández, F.; de Marco, A.; García-Iruela, A.; García-Esteban, L.; González-de-vega, D. Using lenses attached to a smartphone as a macroscopic early warning tool in the illegal timber trade, in particular for CITES-listed species. Forests 2020, 11, 1147. [Google Scholar] [CrossRef]
- Zhao, W.B.; Zhang, D.Y.; Xu, Z.C.; Mo, W. Study on composition and antioxidant activity of volatile oil from Dalbergia pinnata. Trad. Chin. Drug Clin. Pharmacol. 2017, 28, 659–662. [Google Scholar] [CrossRef]
- Wang, X.H.; Wang, L.Z. Textual research on Materia Medica of Jiangxiang and Jiangzhenxiang. Asia-Pac. Trad. Med. 2019, 15, 73–75. [Google Scholar]
- Lu, C.S.; Wei, J.H.; Chen, R.; Huo, L.N.; Zhu, X.Y.; Wu, G. GC-MS analysis of volatile oil from Dalbergia benthamii Prain of different producing areas by supercritical carbon dioxide extraction. Technol. Dev. Chem. Ind. 2020, 49, 56–58. [Google Scholar]
- Zhou, W.; He, Y.X.; Lei, X.L.; Liao, L.K.; Fu, T.K.; Yuan, Y.; Huang, X.B.; Zou, L.Q.; Liu, Y.H.; Ruan, R.; et al. Chemical composition and evaluation of antioxidant activities, antimicrobial, and anti-melanogenesis effect of the essential oils extracted from Dalbergia pinnata (Lour.) Prain. J. Ethnopharmacol. 2020, 254, 112731. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.D.; Fan, Z.Y.; Zhang, D.Y.; Ban, M.M.; Yang, L. Species identification and chemical composition analysis of Shimuxiang. Trad. Chin. Drug Clin. Pharmacol. 2021, 32, 1525–1530. [Google Scholar]
- Jayasinghe, L.; Kumarihamy, B.M.M.; Nishantha Jayarathna, K.H.R.; Gayathri Udishani, N.W.M.; Ratnayake Bandara, B.M.; Hara, N.; Fujimoto, Y. Antifungal constituents of the stem bark of Bridelia retusa. Phytochemistry 2003, 62, 637–641. [Google Scholar] [CrossRef] [PubMed]
- Rossi, P.G.; Bao, L.; Luciani, A.; Panighi, J.; Desjobert, J.M.; Costa, J.; Casanova, J.; Bolla, J.M.; Berti, L. (E)-Methylisoeugenol and elemicin: Antibacterial components of Daucus carota L. essential oil against Campylobacter jejuni. J. Agric. Food Chem. 2007, 55, 7332–7336. [Google Scholar] [CrossRef]
- Grice, I.D.; Rogers, K.L.; Griffiths, L.R. Isolation of bioactive compounds that relate to the anti-platelet activity of Cymbopogon ambiguous. Evid.-Based Complement. Altern. Med. 2010, 2011, 467134. [Google Scholar] [CrossRef]
- Ma, H.H.; Zhao, W.B.; Zhang, D.Y.; Li, S.J.; Fan, Z.Y.; Lin, R.Y. Macroscopic and microscopic identification of Hainan Li medicine Dalbergia benthamii Prain. Pharm. Today 2020, 30, 324–327. [Google Scholar]
- Zhang, H.; Li, W.; Zhang, Q.; Zhong, R.X.; Li, C.Q.; Chen, Y.; Xia, T.Y.; Peng, M.M.; Ren, Z.L.; Zhao, H.; et al. Identification of active compounds and molecular mechanisms of Dalbergia tsoi Merr. & Chun to accelerate wound healing. Biomed. Pharmacother. 2022, 150, 112990. [Google Scholar] [CrossRef]
- Wang, L.; Liu, X.; Wang, H.; Wang, J. Wood Anatomy of Seven Species of Vine or Climbing Plant of Dalbergia L.f. Chin. J. Trop. Crops 2022, 45, 1205–1218. [Google Scholar]
- Cui, F.; Tu, T.Y.; Li, S.J.; Zhang, D.X. A new synonym of Dalbergia tsoi Merr. et Chun. J. Trop. Subtr. Bot. 2013, 21, 225–228. [Google Scholar]
- Magee, A.M.; Aspinall, S.; Rice, D.W.; Cusack, B.P.; Sémon, M.; Perry, A.S.; Stefanović, S.S.; Milbourne, D.; Barth, S.; Palmer, J.D.; et al. Localized hypermutation and associated gene losses in legume chloroplast genomes. Genome Res. 2010, 20, 1700–1710. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, K.H.; Morden, C.W.; Ems, S.C.; Palmer, J.D. Rapid evolution of the plastid translational apparatus in a nonphotosynthetic plant: Loss or accelerated sequence evolution of tRNA and ribosomal protein genes. J. Mol. Evol. 1992, 35, 304–317. [Google Scholar] [CrossRef] [PubMed]
- Millen, R.S.; Olmstead, R.G.; Adams, K.L.; Palmer, J.D.; Lao, N.T.; Heggie, L.; Kavangh, T.A.; Hibberd, J.M.; Gray, J.C.; Morden, C.W.; et al. Many parallel losses of infA from chloroplast DNA during angiosperm evolution with multiple independent transfers to the nucleus. Plant Cell 2001, 13, 645–658. [Google Scholar] [CrossRef]
- Schwenkert, S.; Soll, J.; Bölter, B. Protein import into chloroplasts—How chaperones feature into the game. Biochim. Et Biophys. Acta (BBA)-Biomembr. 2011, 1808, 901–911. [Google Scholar] [CrossRef]
- Jarvis, P.; López-Juez, E. Biogenesis and homeostasis of chloroplasts and other plastids. Nat. Rev. Mol. Cell Biol. 2013, 14, 787–802. [Google Scholar] [CrossRef]
- Nakai, M. The TIC complex uncovered: The alternative view on the molecular mechanism of protein translocation across the inner envelope membrane of chloroplasts. Biochim. Et Biophys. Acta (BBA)-Bioenerg. 2015, 1847, 957–967. [Google Scholar] [CrossRef]
- Yang, Z.; Mei, W.; Wang, H.; Zeng, J.; Dai, H.; Ding, X. Comprehensive Analysis of NAC Transcription Factors Reveals Their Evolution in Malvales and Functional Characterization of AsNAC019 and AsNAC098 in Aquilaria sinensis. Int. J. Mol. Sci. 2023, 24, 17384. [Google Scholar] [CrossRef]
- Schnitzer, S.A. Testing ecological theory with lianas. New Phytol. 2018, 220, 366–380. [Google Scholar] [CrossRef]
- Caballé, G. Liana structure, function and selection: A comparative study of xylem cylinders of tropical rainforest species in Africa and America. Bot. J. Linn. Soc. 1993, 113, 41–60. [Google Scholar] [CrossRef]
- Tang, Y.; Kitching, R.L.; Cao, M. Lianas as structural parasites: A re-evaluation. Chin. Sci. Bull. 2012, 57, 307–312. [Google Scholar] [CrossRef]
- Isnard, S.; Silk, W.K. Moving with climbing plants from Charles Darwin’s time into the 21st century. Am. J. Bot. 2009, 96, 1205–1221. [Google Scholar] [CrossRef] [PubMed]
- Medina-Vega, J.A.; Bongers, F.; Poorter, L.; Schnitzer, S.A.; Sterck, F.J. Lianas have more acquisitive traits than trees in a dry but not in a wet forest. J. Ecol. 2021, 109, 2367–2384. [Google Scholar] [CrossRef]
Cp Genome | SSR | SSR Motif | Repeat Types | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Length | No. | A | C | G | T | AT | TA | TTA | A/T | C/G | AT/TA | AAT/ATT | |
D. hainanensis | 156,579 | 168 | 75 | 4 | 3 | 72 | 7 | 6 | 1 | 147 | 7 | 13 | 1 |
D.odorifera | 156,064 | 168 | 77 | 4 | 3 | 71 | 7 | 6 | 1 | 148 | 7 | 13 | 1 |
D.tonkinensis | 156,090 | 162 | 73 | 4 | 4 | 68 | 7 | 5 | 1 | 141 | 8 | 12 | 1 |
D.yunnanensis | 155,823 | 153 | 70 | 3 | 2 | 63 | 8 | 6 | 1 | 133 | 5 | 14 | 1 |
D.vietnamensis | 156,088 | 155 | 66 | 5 | 5 | 62 | 10 | 5 | 1 | 128 | 10 | 15 | 1 |
D. sissoo | 155,701 | 176 | 81 | 4 | 2 | 77 | 10 | 2 | 0 | 158 | 6 | 12 | 0 |
D.martinii | 157,123 | 149 | 66 | 4 | 4 | 67 | 4 | 2 | 1 | 133 | 8 | 6 | 1 |
D.obovata | 156,012 | 151 | 65 | 4 | 4 | 68 | 6 | 4 | 0 | 133 | 8 | 10 | 0 |
D.chlorocarpa | 155,745 | 146 | 69 | 1 | 4 | 65 | 4 | 3 | 0 | 134 | 5 | 7 | 0 |
D. cearensis | 156,314 | 160 | 77 | 2 | 2 | 72 | 5 | 2 | 0 | 149 | 4 | 7 | 0 |
D. frutescens | 156,105 | 152 | 68 | 3 | 2 | 71 | 5 | 2 | 1 | 139 | 5 | 7 | 1 |
D. armata | 156,246 | 148 | 67 | 2 | 4 | 63 | 8 | 3 | 1 | 130 | 6 | 11 | 0 |
D. nigra | 155,330 | 164 | 74 | 4 | 3 | 72 | 8 | 3 | 0 | 146 | 7 | 11 | 0 |
D.hancei | 155,698 | 149 | 69 | 4 | 4 | 58 | 10 | 3 | 0 | 127 | 8 | 13 | 0 |
D.millettii | 155,907 | 147 | 69 | 4 | 2 | 56 | 10 | 5 | 0 | 125 | 6 | 15 | 0 |
D.mimosoides | 155,773 | 151 | 77 | 3 | 4 | 56 | 8 | 2 | 0 | 133 | 7 | 1 | 0 |
D.cultrata | 156,385 | 167 | 74 | 2 | 5 | 74 | 6 | 5 | 0 | 148 | 7 | 11 | 0 |
D.peishaensis | 155,553 | 152 | 64 | 3 | 4 | 66 | 8 | 6 | 0 | 130 | 7 | 14 | 0 |
D.assamica | 155,835 | 152 | 68 | 2 | 3 | 63 | 11 | 5 | 0 | 131 | 5 | 16 | 0 |
D.hupeana | 155,858 | 156 | 73 | 2 | 3 | 62 | 10 | 6 | 0 | 135 | 5 | 16 | 0 |
D.balansae | 155,868 | 153 | 72 | 2 | 2 | 60 | 11 | 6 | 0 | 132 | 4 | 17 | 0 |
D.bariensis | 156,544 | 167 | 72 | 4 | 2 | 67 | 12 | 9 | 1 | 139 | 6 | 1 | 1 |
D.oliveri | 156,750 | 171 | 75 | 4 | 3 | 71 | 11 | 6 | 1 | 146 | 7 | 17 | 1 |
D.cochinchinensis | 156,576 | 141 | 64 | 2 | 1 | 61 | 6 | 5 | 1 | 125 | 3 | 11 | 1 |
D.obtusifolia | 156,419 | 158 | 69 | 3 | 3 | 63 | 11 | 7 | 1 | 132 | 6 | 18 | 1 |
D.candenatensis | 155,947 | 148 | 66 | 4 | 2 | 61 | 9 | 6 | 0 | 127 | 6 | 15 | 0 |
D. pinnata | 159,619 | 153 | 69 | 2 | 3 | 63 | 10 | 6 | 0 | 132 | 5 | 16 | 0 |
D.benthamii | 156,638 | 148 | 67 | 3 | 2 | 58 | 13 | 5 | 0 | 125 | 5 | 18 | 0 |
D.tsoi | 156,579 | 168 | 77 | 2 | 4 | 68 | 9 | 8 | 0 | 145 | 6 | 17 | 0 |
Reference cp Genome | Query cp Genome | SNP | Insertions | Deletions | in Ref Length | in Query Length |
---|---|---|---|---|---|---|
D. hainanensis | D.odorifera | 24 | 16 | 9 | 62 | 53 |
D.odorifera | D.tonkinensis | 82 | 45 | 40 | 173 | 199 |
D.tonkinensis | D.yunnanensis | 288 | 65 | 98 | 486 | 224 |
D.yunnanensis | D.vietnamensis | 316 | 96 | 69 | 208 | 449 |
D.vietnamensis | D. sissoo | 874 | 148 | 160 | 1298 | 558 |
D. sissoo | D.martinii | 977 | 184 | 162 | 716 | 1125 |
D.martinii | D.obovata | 619 | 150 | 142 | 1719 | 595 |
D.obovata | D.chlorocarpa | 624 | 122 | 130 | 616 | 808 |
D.chlorocarpa | D. cearensis | 990 | 176 | 156 | 816 | 868 |
D. cearensis | D. frutescens | 714 | 147 | 137 | 833 | 667 |
D. frutescens | D. armata | 887 | 151 | 148 | 818 | 1063 |
D. armata | D. nigra | 806 | 161 | 142 | 2080 | 1153 |
D. nigra | D.hancei | 1243 | 136 | 177 | 1148 | 1049 |
D.hancei | D.millettii | 475 | 98 | 80 | 467 | 670 |
D.millettii | D.mimosoides | 519 | 90 | 102 | 669 | 525 |
D.mimosoides | D.cultrata | 1042 | 164 | 118 | 464 | 1086 |
D.cultrata | D.peishaensis | 742 | 109 | 146 | 1568 | 495 |
D.peishaensis | D.assamica | 1482 | 118 | 172 | 990 | 497 |
D.assamica | D.hupeana | 72 | 23 | 17 | 52 | 75 |
D.hupeana | D.balansae | 171 | 38 | 39 | 154 | 164 |
D.balansae | D.bariensis | 1108 | 182 | 131 | 690 | 1400 |
D.bariensis | D.oliveri | 289 | 88 | 66 | 234 | 446 |
D.oliveri | D.cochinchinensis | 1473 | 157 | 196 | 1050 | 1019 |
D.cochinchinensis | D.obtusifolia | 879 | 149 | 134 | 960 | 669 |
D.obtusifolia | D.candenatensis | 1719 | 164 | 149 | 1041 | 786 |
D.candenatensis | D. pinnata | 484 | 59 | 76 | 348 | 4015 |
D. pinnata | D.benthamii | 921 | 137 | 92 | 457 | 819 |
D.benthamii | D.tsoi | 624 | 94 | 92 | 532 | 498 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Zheng, S.; Sun, X.; Wang, L.; Ding, X. Characterization of Complete Chloroplast Genome Sequences of Three Tropical Liana Dalbergia Species and Comparative Analysis of Phylogenetic and Structure Variations in Dalbergia Genus. Horticulturae 2025, 11, 799. https://doi.org/10.3390/horticulturae11070799
Wang J, Zheng S, Sun X, Wang L, Ding X. Characterization of Complete Chloroplast Genome Sequences of Three Tropical Liana Dalbergia Species and Comparative Analysis of Phylogenetic and Structure Variations in Dalbergia Genus. Horticulturae. 2025; 11(7):799. https://doi.org/10.3390/horticulturae11070799
Chicago/Turabian StyleWang, Jun, Shaoying Zheng, Xianglai Sun, Lulu Wang, and Xupo Ding. 2025. "Characterization of Complete Chloroplast Genome Sequences of Three Tropical Liana Dalbergia Species and Comparative Analysis of Phylogenetic and Structure Variations in Dalbergia Genus" Horticulturae 11, no. 7: 799. https://doi.org/10.3390/horticulturae11070799
APA StyleWang, J., Zheng, S., Sun, X., Wang, L., & Ding, X. (2025). Characterization of Complete Chloroplast Genome Sequences of Three Tropical Liana Dalbergia Species and Comparative Analysis of Phylogenetic and Structure Variations in Dalbergia Genus. Horticulturae, 11(7), 799. https://doi.org/10.3390/horticulturae11070799