Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (422)

Search Parameters:
Keywords = architectural proportions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 242 KiB  
Article
Genetic Insights into Hemiplegic Migraine: Whole Exome Sequencing Highlights Vascular Pathway Involvement via Association Analysis
by Zizi Molaee, Robert A. Smith, Neven Maksemous and Lyn R. Griffiths
Genes 2025, 16(8), 895; https://doi.org/10.3390/genes16080895 - 28 Jul 2025
Viewed by 314
Abstract
Background: Hemiplegic migraine (HM) is a rare and severe subtype of migraine with a complex genetic basis. Although pathogenic variants in CACNA1A, ATP1A2, and SCN1A explain some familial cases, a significant proportion of patients remain genetically undiagnosed. Increasing evidence points [...] Read more.
Background: Hemiplegic migraine (HM) is a rare and severe subtype of migraine with a complex genetic basis. Although pathogenic variants in CACNA1A, ATP1A2, and SCN1A explain some familial cases, a significant proportion of patients remain genetically undiagnosed. Increasing evidence points to an overlap between migraine and cerebral small vessel disease (SVD), implicating vascular dysfunction in HM pathophysiology. Objective: This study aimed to identify rare or novel variants in genes associated with SVD in a cohort of patients clinically diagnosed with HM who tested negative for known familial hemiplegic migraine (FHM) pathogenic variants. Methods: We conducted a case-control association analysis of whole exome sequencing (WES) data from 184 unrelated HM patients. A targeted panel of 34 SVD-related genes was assessed. Variants were prioritised based on rarity (MAF ≤ 0.05), location (exonic/splice site), and predicted pathogenicity using in silico tools. Statistical comparisons to gnomAD’s Non-Finnish European population were made using chi-square tests. Results: Significant variants were identified in several SVD-related genes, including LRP1 (p.Thr4077Arg), COL4A1 (p.Pro54Leu), COL4A2 (p.Glu1123Gly), and TGFBR2 (p.Met148Leu and p.Ala51Pro). The LRP1 variant showed the strongest association (p < 0.001). All key variants demonstrated pathogenicity predictions in multiple computational models, implicating them in vascular dysfunction relevant to migraine mechanisms. Conclusions: This study provides new insights into the genetic architecture of hemiplegic migraine, identifying rare and potentially deleterious variants in SVD-related genes. These findings support the hypothesis that vascular and cellular maintenance pathways contribute to migraine susceptibility and may offer new targets for diagnosis and therapy. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
24 pages, 1197 KiB  
Article
Fractional Gradient-Based Model Reference Adaptive Control Applied on an Inverted Pendulum-Cart System
by Maibeth Sánchez-Rivero, Manuel A. Duarte-Mermoud, Lisbel Bárzaga-Martell, Marcos E. Orchard and Gustavo Ceballos-Benavides
Fractal Fract. 2025, 9(8), 485; https://doi.org/10.3390/fractalfract9080485 - 24 Jul 2025
Viewed by 270
Abstract
This study introduces a novel model reference adaptive control (MRAC) framework that incorporates fractional-order gradients (FGs) to regulate the displacement of an inverted pendulum-cart system. Fractional-order gradients have been shown to significantly improve convergence rates in domains such as machine learning and neural [...] Read more.
This study introduces a novel model reference adaptive control (MRAC) framework that incorporates fractional-order gradients (FGs) to regulate the displacement of an inverted pendulum-cart system. Fractional-order gradients have been shown to significantly improve convergence rates in domains such as machine learning and neural network optimization. Nevertheless, their integration with fractional-order error models within adaptive control paradigms remains unexplored and represents a promising avenue for research. The proposed control scheme extends the classical MRAC architecture by embedding Caputo fractional derivatives into the adaptive law governing parameter updates, thereby improving both convergence dynamics and control flexibility. To ensure optimal performance across multiple criteria, the controller parameters are systematically tuned using a multi-objective Particle Swarm Optimization (PSO) algorithm. Two fractional-order error models (FOEMs) incorporating fractional gradients (FOEM2-FG, FOEM3-FG) are investigated, with their stability formally analyzed via Lyapunov-based methods under conditions of sufficient excitation. Validation is conducted through both simulation and real-time experimentation on a physical pendulum-cart setup. The results demonstrate that the proposed fractional-order MRAC (FOMRAC) outperforms conventional MRAC, proportional-integral-derivative (PID), and fractional-order PID (FOPID) controllers. Specifically, FOMRAC-FG achieved superior tracking performance, attaining the lowest Integral of Squared Error (ISE) of 2.32×105 and the lowest Integral of Squared Input (ISI) of 6.40 in simulation studies. In real-time experiments, FOMRAC-FG maintained the lowest ISE (5.11×106). Under real-time experiments with disturbances, it still achieved the lowest ISE (1.06×105), highlighting its practical effectiveness. Full article
Show Figures

Figure 1

23 pages, 999 KiB  
Article
Unmanned Aerial Vehicle Position Tracking Using Nonlinear Autoregressive Exogenous Networks Learned from Proportional-Derivative Model-Based Guidance
by Wilson Pavon, Jorge Chavez, Diego Guffanti and Ama Baduba Asiedu-Asante
Math. Comput. Appl. 2025, 30(4), 78; https://doi.org/10.3390/mca30040078 - 24 Jul 2025
Viewed by 260
Abstract
The growing demand for agile and reliable Unmanned Aerial Vehicles (UAVs) has spurred the advancement of advanced control strategies capable of ensuring stability and precision under nonlinear and uncertain flight conditions. This work addresses the challenge of accurately tracking UAV position by proposing [...] Read more.
The growing demand for agile and reliable Unmanned Aerial Vehicles (UAVs) has spurred the advancement of advanced control strategies capable of ensuring stability and precision under nonlinear and uncertain flight conditions. This work addresses the challenge of accurately tracking UAV position by proposing a neural-network-based approach designed to replicate the behavior of classical control systems. A complete nonlinear model of the quadcopter was derived and linearized around a hovering point to design a traditional proportional derivative (PD) controller, which served as a baseline for training a nonlinear autoregressive exogenous (NARX) artificial neural network. The NARX model, selected for its feedback structure and ability to capture temporal dynamics, was trained to emulate the control signals of the PD controller under varied reference trajectories, including step, sinusoidal, and triangular inputs. The trained networks demonstrated performance comparable to the PD controller, particularly in the vertical axis, where the NARX model achieved a minimal Mean Squared Error (MSE) of 7.78×105 and an R2 value of 0.9852. These results confirm that the NARX neural network, trained via supervised learning to emulate a PD controller, can replicate and even improve classical control strategies in nonlinear scenarios, thereby enhancing robustness against dynamic changes and modeling uncertainties. This research contributes a scalable approach for integrating neural models into UAV control systems, offering a promising path toward adaptive and autonomous flight control architectures that maintain stability and accuracy in complex environments. Full article
(This article belongs to the Section Engineering)
Show Figures

Figure 1

8 pages, 355 KiB  
Article
ChatGPT-4o and OpenAI-o1: A Comparative Analysis of Its Accuracy in Refractive Surgery
by Avi Wallerstein, Taanvee Ramnawaz and Mathieu Gauvin
J. Clin. Med. 2025, 14(15), 5175; https://doi.org/10.3390/jcm14155175 - 22 Jul 2025
Viewed by 350
Abstract
Background: To assess the accuracy of ChatGPT-4o and OpenAI-o1 in answering refractive surgery questions from the AAO BCSC Self-Assessment Program and to evaluate whether their performance could meaningfully support clinical decision making, we compared the models with 1983 ophthalmology residents and clinicians. Methods [...] Read more.
Background: To assess the accuracy of ChatGPT-4o and OpenAI-o1 in answering refractive surgery questions from the AAO BCSC Self-Assessment Program and to evaluate whether their performance could meaningfully support clinical decision making, we compared the models with 1983 ophthalmology residents and clinicians. Methods: A randomized, questionnaire-based study was conducted with 228 text-only questions from the Refractive Surgery section of the BCSC Self-Assessment Program. Each model received the prompt, “Please provide an answer to the following questions.” Accuracy was measured as the proportion of correct answers and reported with 95 percent confidence intervals. Differences between groups were assessed with the chi-squared test for independence and pairwise comparisons. Results: OpenAI-o1 achieved the highest score (91.2%, 95% CI 87.6–95.0%), followed by ChatGPT-4o (86.4%, 95% CI 81.9–90.9%) and the average score from 1983 users of the Refractive Surgery section of the BCSC Self-Assessment Program (77%, 95% CI 75.2–78.8%). Both language models significantly outperformed human users. The five-point margin of OpenAI-o1 over ChatGPT-4o did not reach statistical significance (p = 0.1045) but could represent one additional correct decision in twenty clinically relevant scenarios. Conclusions: Both ChatGPT-4o and OpenAI-o1 significantly outperformed BCSC Program users, demonstrating a level of accuracy that could augment medical decision making. Although OpenAI-o1 scored higher than ChatGPT-4o, the difference did not reach statistical significance. These findings indicate that the “advanced reasoning” architecture of OpenAI-o1 offers only incremental gains and underscores the need for prospective studies linking LLM recommendations to concrete clinical outcomes before routine deployment in refractive-surgery practice. Full article
(This article belongs to the Section Ophthalmology)
Show Figures

Figure 1

17 pages, 2163 KiB  
Article
Allometric Growth of Annual Pinus yunnanensis After Decapitation Under Different Shading Levels
by Pengrui Wang, Chiyu Zhou, Boning Yang, Jiangfei Li, Yulan Xu and Nianhui Cai
Plants 2025, 14(15), 2251; https://doi.org/10.3390/plants14152251 - 22 Jul 2025
Viewed by 254
Abstract
Pinus yunnanensis, a native tree species in southwest China, is shading-tolerant and ecologically significant. Light has a critical impact on plant physiology, and decapitation improves canopy light penetration and utilization efficiency. The study of allometric relationships is well-known in forestry, forest ecology, [...] Read more.
Pinus yunnanensis, a native tree species in southwest China, is shading-tolerant and ecologically significant. Light has a critical impact on plant physiology, and decapitation improves canopy light penetration and utilization efficiency. The study of allometric relationships is well-known in forestry, forest ecology, and related fields. Under control (full daylight exposure, 0% shading), L1 (partial shading, 25% shading), L2 (medium shading, 50% shading), and L3 (serious shading, 75% shading) levels, this study used the decapitation method. The results confirmed the effectiveness of decapitation in annual P. yunnanensis and showed that the main stem maintained isometric growth in all shading treatments, accounting for 26.8% of the individual plant biomass, and exhibited dominance in biomass allocation and high shading sensitivity. These results also showed that lateral roots exhibited a substantial biomass proportion of 12.8% and maintained more than 0.5 of higher plasticity indices across most treatments. Moreover, the lateral root exhibited both the lowest slope in 0.5817 and the highest significance (p = 0.023), transitioning from isometric to allometric growth under L1 shading treatment. Importantly, there was a positive correlation between the biomass allocation of an individual plant and that of all components of annual P. yunnanensis. In addition, the synchronized allocation between main roots and lateral branches, as well as between main stems and lateral roots, suggested functional integration between corresponding belowground and aboveground structures to maintain balanced resource acquisition and architectural stability. At the same time, it has been proved that the growth of lateral roots can be accelerated through decapitation. Important scientific implications for annual P. yunnanensis management were derived from these shading experiments on allometric growth. Full article
(This article belongs to the Special Issue Development of Woody Plants)
Show Figures

Figure 1

20 pages, 1848 KiB  
Article
Integrated Intelligent Control for Trajectory Tracking of Nonlinear Hydraulic Servo Systems Under Model Uncertainty
by Haoren Zhou, Jinsheng Zhang and Heng Zhang
Actuators 2025, 14(8), 359; https://doi.org/10.3390/act14080359 - 22 Jul 2025
Viewed by 320
Abstract
To address the challenges of model uncertainty, strong nonlinearities, and controller tuning in high-precision trajectory tracking for hydraulic servo systems, this paper proposes a hierarchical GA-PID-MPC fusion strategy. The architecture integrates three functional layers: a Genetic Algorithm (GA) for online parameter optimization, a [...] Read more.
To address the challenges of model uncertainty, strong nonlinearities, and controller tuning in high-precision trajectory tracking for hydraulic servo systems, this paper proposes a hierarchical GA-PID-MPC fusion strategy. The architecture integrates three functional layers: a Genetic Algorithm (GA) for online parameter optimization, a Model Predictive Controller (MPC) for future-oriented planning, and a Proportional–Integral–Derivative (PID) controller for fast feedback correction. These modules are dynamically coordinated through an adaptive cost-aware blending mechanism based on real-time performance evaluation. The MPC module operates on a linearized state–space model and performs receding-horizon control with weights and horizon length θ=[q,r,Tp] tuned by GA. In parallel, the PID controller is enhanced with online gain projection to mitigate nonlinear effects. The blending coefficient σ(t) is adaptively updated to balance predictive accuracy and real-time responsiveness, forming a robust single-loop controller. Rigorous theoretical analysis establishes global input-to-state stability and H performance under average dwell-time constraints. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

16 pages, 1531 KiB  
Article
Intelligent HVAC Control: Comparative Simulation of Reinforcement Learning and PID Strategies for Energy Efficiency and Comfort Optimization
by Atef Gharbi, Mohamed Ayari, Nasser Albalawi, Yamen El Touati and Zeineb Klai
Mathematics 2025, 13(14), 2311; https://doi.org/10.3390/math13142311 - 19 Jul 2025
Viewed by 545
Abstract
This study presents a new comparative analysis of the cognitive control methods of HVAC systems that assess reinforcement learning (RL) and traditional proportional-integral-derivative (PID) control. Through extensive simulations in various building environments, we have shown that while the PID controller provides stability under [...] Read more.
This study presents a new comparative analysis of the cognitive control methods of HVAC systems that assess reinforcement learning (RL) and traditional proportional-integral-derivative (PID) control. Through extensive simulations in various building environments, we have shown that while the PID controller provides stability under predictable conditions, the RL-based control can improve energy efficiency and thermal comfort in dynamic environments by constantly adapting to environmental changes. Our framework integrates real-time sensor data with a scalable RL architecture, allowing autonomous optimization without the need for a precise system model. Key findings show that RL largely outperforms PID during disturbances such as occupancy increases and weather fluctuations, and that the preferably optimal solution balances energy savings and comfort. The study provides practical insight into the implementation of adaptive HVAC control and outlines the potential of RL to transform building energy management despite its higher computational requirements. Full article
(This article belongs to the Special Issue Control Theory and Applications, 2nd Edition)
Show Figures

Figure 1

20 pages, 1647 KiB  
Article
Research on the Enhancement of Provincial AC/DC Ultra-High Voltage Power Grid Security Based on WGAN-GP
by Zheng Shi, Yonghao Zhang, Zesheng Hu, Yao Wang, Yan Liang, Jiaojiao Deng, Jie Chen and Dingguo An
Electronics 2025, 14(14), 2897; https://doi.org/10.3390/electronics14142897 - 19 Jul 2025
Viewed by 238
Abstract
With the advancement in the “dual carbon” strategy and the integration of high proportions of renewable energy sources, AC/DC ultra-high-power grids are facing new security challenges such as commutation failure and multi-infeed coupling effects. Fault diagnosis, as an important tool for assisting power [...] Read more.
With the advancement in the “dual carbon” strategy and the integration of high proportions of renewable energy sources, AC/DC ultra-high-power grids are facing new security challenges such as commutation failure and multi-infeed coupling effects. Fault diagnosis, as an important tool for assisting power grid dispatching, is essential for maintaining the grid’s long-term stable operation. Traditional fault diagnosis methods encounter challenges such as limited samples and data quality issues under complex operating conditions. To overcome these problems, this study proposes a fault sample data enhancement method based on the Wasserstein Generative Adversarial Network with Gradient Penalty (WGAN-GP). Firstly, a simulation model of the AC/DC hybrid system is constructed to obtain the original fault sample data. Then, through the adoption of the Wasserstein distance measure and the gradient penalty strategy, an improved WGAN-GP architecture suitable for feature learning of the AC/DC hybrid system is designed. Finally, by comparing the fault diagnosis performance of different data models, the proposed method achieves up to 100% accuracy on certain fault types and improves the average accuracy by 6.3% compared to SMOTE and vanilla GAN, particularly under limited-sample conditions. These results confirm that the proposed approach can effectively extract fault characteristics from complex fault data. Full article
(This article belongs to the Special Issue Applications of Computational Intelligence, 3rd Edition)
Show Figures

Figure 1

25 pages, 5872 KiB  
Article
Application of Twisting Controller and Modified Pufferfish Optimization Algorithm for Power Management in a Solar PV System with Electric-Vehicle and Load-Demand Integration
by Arunesh Kumar Singh, Rohit Kumar, D. K. Chaturvedi, Ibraheem, Gulshan Sharma, Pitshou N. Bokoro and Rajesh Kumar
Energies 2025, 18(14), 3785; https://doi.org/10.3390/en18143785 - 17 Jul 2025
Viewed by 250
Abstract
To combat the catastrophic effects of climate change, the usage of renewable energy sources (RESs) has increased dramatically in recent years. The main drivers of the increase in solar photovoltaic (PV) system grid integrations in recent years have been lowering energy costs and [...] Read more.
To combat the catastrophic effects of climate change, the usage of renewable energy sources (RESs) has increased dramatically in recent years. The main drivers of the increase in solar photovoltaic (PV) system grid integrations in recent years have been lowering energy costs and pollution. Active and reactive powers are controlled by a proportional–integral controller, whereas energy storage batteries improve the quality of energy by storing both current and voltage, which have an impact on steady-state error. Since traditional controllers are unable to maximize the energy output of solar systems, artificial intelligence (AI) is essential for enhancing the energy generation of PV systems under a variety of climatic conditions. Nevertheless, variations in the weather can have an impact on how well photovoltaic systems function. This paper presents an intelligent power management controller (IPMC) for obtaining power management with load and electric-vehicle applications. The architecture combines the solar PV, battery with electric-vehicle load, and grid system. Initially, the PV architecture is utilized to generate power from the irradiance. The generated power is utilized to compensate for the required load demand on the grid side. The remaining PV power generated is utilized to charge the batteries of electric vehicles. The power management of the PV is obtained by considering the proposed control strategy. The power management controller is a combination of the twisting sliding-mode controller (TSMC) and Modified Pufferfish Optimization Algorithm (MPOA). The proposed method is implemented, and the application results are matched with the Mountain Gazelle Optimizer (MSO) and Beluga Whale Optimization (BWO) Algorithm by evaluating the PV power output, EV power, battery-power and battery-energy utilization, grid power, and grid price to show the merits of the proposed work. Full article
(This article belongs to the Special Issue Power Quality and Disturbances in Modern Distribution Networks)
Show Figures

Figure 1

29 pages, 5277 KiB  
Article
DualHet-YOLO: A Dual-Backbone Heterogeneous YOLO Network for Inspection Robots to Recognize Yellow-Feathered Chicken Behavior in Floor-Raised House
by Yaobo Zhang, Linwei Chen, Hongfei Chen, Tao Liu, Jinlin Liu, Qiuhong Zhang, Mingduo Yan, Kaiyue Zhao, Shixiu Zhang and Xiuguo Zou
Agriculture 2025, 15(14), 1504; https://doi.org/10.3390/agriculture15141504 - 12 Jul 2025
Viewed by 289
Abstract
The behavior of floor-raised chickens is closely linked to their health status and environmental comfort. As a type of broiler chicken with special behaviors, understanding the daily actions of yellow-feathered chickens is crucial for accurately checking their health and improving breeding practices. Addressing [...] Read more.
The behavior of floor-raised chickens is closely linked to their health status and environmental comfort. As a type of broiler chicken with special behaviors, understanding the daily actions of yellow-feathered chickens is crucial for accurately checking their health and improving breeding practices. Addressing the challenges of high computational complexity and insufficient detection accuracy in existing floor-raised chicken behavior recognition models, a lightweight behavior recognition model was proposed for floor-raised yellow-feathered chickens, based on a Dual-Backbone Heterogeneous YOLO Network. Firstly, DualHet-YOLO enhances the feature extraction capability of floor-raised chicken images through a dual-path feature map extraction architecture and optimizes the localization and classification of multi-scale targets using a TriAxis Unified Detection Head. Secondly, a Proportional Scale IoU loss function is introduced that improves regression accuracy. Finally, a lightweight structure Eff-HetKConv was designed, significantly reducing model parameters and computational complexity. Experiments on a private floor-raised chicken behavior dataset show that, compared with the baseline YOLOv11 model, the DualHet-YOLO model increases the mAP for recognizing five behaviors—pecking, resting, walking, dead, and inactive—from 77.5% to 84.1%. Meanwhile, it reduces model parameters by 14.6% and computational complexity by 29.2%, achieving a synergistic optimization of accuracy and efficiency. This approach provides an effective solution for lightweight object detection in poultry behavior recognition. Full article
Show Figures

Figure 1

23 pages, 2540 KiB  
Article
Decentralised Consensus Control of Hybrid Synchronous Condenser and Grid-Forming Inverter Systems in Renewable-Dominated Low-Inertia Grids
by Hamid Soleimani, Asma Aziz, S M Muslem Uddin, Mehrdad Ghahramani and Daryoush Habibi
Energies 2025, 18(14), 3593; https://doi.org/10.3390/en18143593 - 8 Jul 2025
Cited by 1 | Viewed by 340
Abstract
The increasing penetration of renewable energy sources (RESs) has significantly altered the operational characteristics of modern power systems, resulting in reduced system inertia and fault current capacity. These developments introduce new challenges for maintaining frequency and voltage stability, particularly in low-inertia grids that [...] Read more.
The increasing penetration of renewable energy sources (RESs) has significantly altered the operational characteristics of modern power systems, resulting in reduced system inertia and fault current capacity. These developments introduce new challenges for maintaining frequency and voltage stability, particularly in low-inertia grids that are dominated by inverter-based resources (IBRs). This paper presents a hierarchical control framework that integrates synchronous condensers (SCs) and grid-forming (GFM) inverters through a leader–follower consensus control architecture to address these issues. In this approach, selected GFMs act as leaders to restore nominal voltage and frequency, while follower GFMs and SCs collaboratively share active and reactive power. The primary control employs droop-based regulation, and a distributed secondary layer enables proportional power sharing via peer-to-peer communication. A modified IEEE 14-bus test system is implemented in PSCAD to validate the proposed strategy under scenarios including load disturbances, reactive demand variations, and plug-and-play operations. Compared to conventional droop-based control, the proposed framework reduces frequency nadir by up to 0.3 Hz and voltage deviation by 1.1%, achieving optimised sharing indices. Results demonstrate that consensus-based coordination enhances dynamic stability and power-sharing fairness and supports the flexible integration of heterogeneous assets without requiring centralised control. Full article
(This article belongs to the Special Issue Advances in Sustainable Power and Energy Systems: 2nd Edition)
Show Figures

Figure 1

12 pages, 11453 KiB  
Article
Probabilistic Shaping Based on Single-Layer LUT Combined with RBFNN Nonlinear Equalization in a Photonic Terahertz OFDM System
by Yuting Huang, Kaile Li, Feixiang Zhang and Jianguo Yu
Electronics 2025, 14(13), 2677; https://doi.org/10.3390/electronics14132677 - 2 Jul 2025
Viewed by 259
Abstract
We propose a probabilistic shaping (PS) scheme based on a single-layer lookup table (LUT) that employs only one LUT for symbol mapping while achieving favorable system performance. This scheme reduces the average power of the signal by adjusting the symbol distribution using a [...] Read more.
We propose a probabilistic shaping (PS) scheme based on a single-layer lookup table (LUT) that employs only one LUT for symbol mapping while achieving favorable system performance. This scheme reduces the average power of the signal by adjusting the symbol distribution using a specialized LUT architecture and a flexible shaping proportion. The simulation results indicate that the proposed PS scheme delivers performance comparable to that of the conventional constant-composition distribution-matching-based probabilistic shaping (CCDM-PS) algorithm. Specifically, it reduces the bit error rate (BER) from 1.2376 ×104 to 6.3256 ×105, corresponding to a 48.89% improvement. The radial basis function neural network (RBFNN) effectively compensates for nonlinear distortions and further enhances transmission performance due to its simple architecture and strong capacity for nonlinear learning. In this work, we combine lookup-table-based probabilistic shaping (LUT-PS) with RBFNN-based nonlinear equalization for the first time, completing the transmission of 16-QAM OFDM signals over a photonic terahertz-over-fiber system operating at 400 GHz. Simulation results show that the proposed approach reduces the BER by 81.45% and achieves a maximum Q-factor improvement of up to 23 dB. Full article
Show Figures

Figure 1

19 pages, 4714 KiB  
Article
Robust Model-Free Control for MMC Inverters in Cold Ironing Systems
by Cheikh Abdel Kader, Nadia Aït-Ahmed, Azeddine Houari, Mourad Aït-Ahmed, Gang Yao and Menny El-Bah
Appl. Sci. 2025, 15(13), 7343; https://doi.org/10.3390/app15137343 - 30 Jun 2025
Viewed by 245
Abstract
Power quality is a key issue in cold ironing (CI) systems, where a stable, clean power supply is essential to meet the needs of moored vessels. According to IEC/ISO/IEEE 80005-1, these systems must deliver high power at standardized voltages (6.6 kV or 11 [...] Read more.
Power quality is a key issue in cold ironing (CI) systems, where a stable, clean power supply is essential to meet the needs of moored vessels. According to IEC/ISO/IEEE 80005-1, these systems must deliver high power at standardized voltages (6.6 kV or 11 kV) with minimal harmonic distortion in the presence of vessel load variability. This study proposes a model-free control strategy based on an intelligent proportional–integral (iPI) corrector with adaptive gain, applied to a three-phase modular multilevel converter (MMC) equipped with an LC filter. This architecture, adapted to distributed infrastructures, reduces the number of transformers required while guaranteeing high output voltages. The iPI strategy improves system robustness, dynamically compensates for disturbances, and ensures better power quality. A comparative analysis of three control strategies, proportional–integral (PI), intelligent proportional–integral (iPI), and intelligent proportional–integral adaptive (iPIa), performed in MATLAB/Simulink and complemented by experimental tests on the OPAL-RT platform, revealed a significant THD reduction of 1.18%, in accordance with the IEC/ISO/IEEE 80005-1 standard. These results confirm the effectiveness of the proposed method in meeting the requirements of CI systems. Full article
Show Figures

Figure 1

19 pages, 3853 KiB  
Article
YOLOv8-MSP-PD: A Lightweight YOLOv8-Based Detection Method for Jinxiu Malus Fruit in Field Conditions
by Yi Liu, Xiang Han, Hongjian Zhang, Shuangxi Liu, Wei Ma, Yinfa Yan, Linlin Sun, Linlong Jing, Yongxian Wang and Jinxing Wang
Agronomy 2025, 15(7), 1581; https://doi.org/10.3390/agronomy15071581 - 28 Jun 2025
Viewed by 248
Abstract
Accurate detection of Jinxiu Malus fruits in unstructured orchard environments is hampered by frequent overlap, occlusion, and variable illumination. To address these challenges, we propose YOLOv8-MSP-PD (YOLOv8 with Multi-Scale Pyramid Fusion and Proportional Distance IoU), a lightweight model built on an enhanced YOLOv8 [...] Read more.
Accurate detection of Jinxiu Malus fruits in unstructured orchard environments is hampered by frequent overlap, occlusion, and variable illumination. To address these challenges, we propose YOLOv8-MSP-PD (YOLOv8 with Multi-Scale Pyramid Fusion and Proportional Distance IoU), a lightweight model built on an enhanced YOLOv8 architecture. We replace the backbone with MobileNetV4, incorporating unified inverted bottleneck (UIB) modules and depth-wise separable convolutions for efficient feature extraction. We introduce a spatial pyramid pooling fast cross-stage partial connections (SPPFCSPC) module for multi-scale feature fusion and a modified proportional distance IoU (MPD-IoU) loss to optimize bounding-box regression. Finally, layer-adaptive magnitude pruning (LAMP) combined with knowledge distillation compresses the model while retaining performance. On our custom Jinxiu Malus dataset, YOLOv8-MSP-PD achieves a mean average precision (mAP) of 92.2% (1.6% gain over baseline), reduces floating-point operations (FLOPs) by 59.9%, and shrinks to 2.2 MB. Five-fold cross-validation confirms stability, and comparisons with Faster R-CNN and SSD demonstrate superior accuracy and efficiency. This work offers a practical vision solution for agricultural robots and guidance for lightweight detection in precision agriculture. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

20 pages, 4098 KiB  
Article
Hierarchical Deep Learning for Comprehensive Epileptic Seizure Analysis: From Detection to Fine-Grained Classification
by Peter Akor, Godwin Enemali, Usman Muhammad, Rajiv Ranjan Singh and Hadi Larijani
Information 2025, 16(7), 532; https://doi.org/10.3390/info16070532 - 24 Jun 2025
Viewed by 499
Abstract
Epileptic seizure detection and classification from EEG recordings faces significant challenges due to extreme class imbalance. Analysis of the Temple University Hospital Seizure (TUSZ) dataset reveals imbalance ratios of 150:1 between common and rare seizure types, with high temporal heterogeneity (seizure durations of [...] Read more.
Epileptic seizure detection and classification from EEG recordings faces significant challenges due to extreme class imbalance. Analysis of the Temple University Hospital Seizure (TUSZ) dataset reveals imbalance ratios of 150:1 between common and rare seizure types, with high temporal heterogeneity (seizure durations of 1–1638 s). We propose a cascaded deep learning architecture with two specialized CNNs: a binary detector followed by a multi-class classifier. This approach decomposes the classification problem, reducing the maximum imbalance from 150:1 to manageable levels (9:1 binary, 5:1 type). The architecture implements a high-confidence filtering mechanism (threshold = 0.9), creating a 99.5% pure dataset for type classification, dynamic class-weighted optimization proportional to inverse class frequencies, and information flow refinement through progressive stages. Loss dynamics analysis reveals that our weighting scheme strategically redistributes optimization attention, reducing variance by 90.7% for majority classes while increasing variance for minority classes, ensuring all seizure types receive proportional learning signals regardless of representation. The binary classifier achieves 99.64% specificity and 98.23% sensitivity (ROC-AUC = 0.995). The type classifier demonstrates >99% accuracy across seven seizure categories with perfect (100%) classification for three seizure types despite minimal representation. Cross-dataset validation on the University of Bonn dataset confirms robust generalization (96.0% accuracy) for binary seizure detection. This framework effectively addresses multi-level imbalance in neurophysiological signal classification with hierarchical class structures. Full article
Show Figures

Graphical abstract

Back to TopTop