Genetic Insights into Hemiplegic Migraine: Whole Exome Sequencing Highlights Vascular Pathway Involvement via Association Analysis
Abstract
1. Introduction
2. Methods
2.1. Study Population
2.2. Whole Exome Sequencing
2.3. Data Analysis Pipeline
2.3.1. Targeted Gene Selection
2.3.2. Initial Filtering
2.3.3. Data Merging and Exclusion
2.3.4. Quality Control and Classification
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Steiner, T.J.; Husøy, A.; Stovner, L.J. GBD2021: Headache disorders and global lost health—A focus on children, and a view forward. J. Headache Pain 2024, 25, 91. [Google Scholar] [CrossRef] [PubMed]
- Stovner, L.J.; Nichols, E.; Steiner, T.J.; Abd-Allah, F.; Abdelalim, A.; Al-Raddadi, R.M.; Ansha, M.G.; Barac, A.; Bensenor, I.M.; Doan, L.P.; et al. Global, regional, and national burden of migraine and tension-type headache, 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2018, 17, 954–976. [Google Scholar] [CrossRef]
- Mulder, E.J.; Van Baal, C.; Gaist, D.; Kallela, M.; Kaprio, J.; Svensson, D.A.; Nyholt, D.R.; Martin, N.G.; MacGregor, A.J.; Cherkas, L.F.; et al. Genetic and environmental influences on migraine: A twin study across six countries. Twin Res. 2003, 6, 422–431. [Google Scholar] [CrossRef]
- van den Maagdenberg, A.; Nyholt, D.R.; Anttila, V. Novel hypotheses emerging from GWAS in migraine? J. Headache Pain 2019, 20, 5. [Google Scholar] [CrossRef]
- Sutherland, H.G.; Jenkins, B.; Griffiths, L.R. Genetics of migraine: Complexity, implications, and potential clinical applications. Lancet Neurol. 2024, 23, 429–446. [Google Scholar] [CrossRef] [PubMed]
- Arnold, M. Headache Classification Committee of the International Headache Society (IHS) The International Classification of Headache Disorders, 3rd edition. Cephalalgia 2018, 38, 1–211. [Google Scholar] [CrossRef]
- de Boer, I.; Hansen, J.M.; Terwindt, G.M. Hemiplegic migraine. Handb. Clin. Neurol. 2024, 199, 353–365. [Google Scholar]
- Kruit, M.C.; van Buchem, M.A.; Hofman, P.A.; Bakkers, J.T.; Terwindt, G.M.; Ferrari, M.D.; Launer, L.J. Migraine as a risk factor for subclinical brain lesions. JAMA 2004, 291, 427–434. [Google Scholar] [CrossRef]
- Agostoni, E.; Rigamonti, A. Migraine and small vessel diseases. Neurol. Sci. 2012, 33 (Suppl. S1), S51–S54. [Google Scholar] [CrossRef]
- Tana, C.; Tafuri, E.; Tana, M.; Martelletti, P.; Negro, A.; Affaitati, G.; Fabrizio, A.; Costantini, R.; Mezzetti, A.; Giamberardino, M.A. New insights into the cardiovascular risk of migraine and the role of white matter hyperintensities: Is gold all that glitters? J. Headache Pain 2013, 14, 9. [Google Scholar] [CrossRef] [PubMed]
- Scher, A.I.; Gudmundsson, L.S.; Sigurdsson, S.; Ghambaryan, A.; Aspelund, T.; Eiriksdottir, G.; van Buchem, M.A.; Gudnason, V.; Launer, L.J. Migraine headache in middle age and late-life brain infarcts. JAMA 2009, 301, 2563–2570. [Google Scholar] [CrossRef]
- Gormley, P.; Anttila, V.; Winsvold, B.S.; Palta, P.; Esko, T.; Pers, T.H.; Farh, K.H.; Cuenca-Leon, E.; Muona, M.; Furlotte, N.A.; et al. Corrigendum: Meta-analysis of 375,000 individuals identifies 38 susceptibility loci for migraine. Nat. Genet. 2016, 48, 1296. [Google Scholar] [CrossRef]
- Malik, R.; Freilinger, T.; Winsvold, B.S.; Anttila, V.; Vander Heiden, J.; Traylor, M.; de Vries, B.; Holliday, E.G.; Terwindt, G.M.; Sturm, J.; et al. Shared genetic basis for migraine and ischemic stroke: A genome-wide analysis of common variants. Neurology 2015, 84, 2132–2145. [Google Scholar] [CrossRef] [PubMed]
- Frimpong-Manson, K.; Ortiz, Y.T.; McMahon, L.R.; Wilkerson, J.L. Advances in understanding migraine pathophysiology: A bench to bedside review of research insights and therapeutics. Front. Mol. Neurosci. 2024, 17, 1355281. [Google Scholar] [CrossRef]
- Wiggers, A.; Ashina, H.; Hadjikhani, N.; Sagare, A.; Zlokovic, B.V.; Lauritzen, M.; Ashina, M. Brain barriers and their potential role in migraine pathophysiology. J. Headache Pain 2022, 23, 16. [Google Scholar] [CrossRef]
- Paolucci, M.; Altamura, C.; Vernieri, F. The Role of Endothelial Dysfunction in the Pathophysiology and Cerebrovascular Effects of Migraine: A Narrative Review. J. Clin. Neurol. 2021, 17, 164–175. [Google Scholar] [CrossRef]
- Sutherland, H.G.; Maksemous, N.; Albury, C.L.; Ibrahim, O.; Smith, R.A.; Lea, R.A.; Haupt, L.M.; Jenkins, B.; Tsang, B.; Griffiths, L.R. Comprehensive Exonic Sequencing of Hemiplegic Migraine-Related Genes in a Cohort of Suspected Probands Identifies Known and Potential Pathogenic Variants. Cells 2020, 9, 2368. [Google Scholar] [CrossRef] [PubMed]
- Maksemous, N.; Harder, A.V.E.; Ibrahim, O.; Vijfhuizen, L.S.; Sutherland, H.; Pelzer, N.; de Boer, I.; Terwindt, G.M.; Lea, R.A.; van den Maagdenberg, A.; et al. Whole Exome Sequencing of Hemiplegic Migraine Patients Shows an Increased Burden of Missense Variants in CACNA1H and CACNA1I Genes. Mol. Neurobiol. 2023, 60, 3034–3043. [Google Scholar] [CrossRef] [PubMed]
- Maksemous, N.; Blayney, C.D.; Sutherland, H.G.; Smith, R.A.; Lea, R.A.; Tran, K.N.; Ibrahim, O.; McArthur, J.R.; Haupt, L.M.; Cader, M.Z.; et al. Investigation of CACNA1I Cav3.3 Dysfunction in Hemiplegic Migraine. Front. Mol. Neurosci. 2022, 15, 892820. [Google Scholar] [CrossRef] [PubMed]
- Alfayyadh, M.M.; Maksemous, N.; Sutherland, H.G.; Lea, R.A.; Griffiths, L.R. PathVar: A Customisable NGS Variant Calling Algorithm Implicates Novel Candidate Genes and Pathways in Hemiplegic Migraine. Clin. Genet. 2025, 107, 157–168. [Google Scholar] [CrossRef] [PubMed]
- Alfayyadh, M.M.; Maksemous, N.; Sutherland, H.G.; Lea, R.A.; Griffiths, L.R. Gene-Based Burden Testing of Rare Variants in Hemiplegic Migraine: A Computational Approach to Uncover the Genetic Architecture of a Rare Brain Disorder. Genes 2025, 16, 807. [Google Scholar] [CrossRef]
- Dunn, P.J.; Maksemous, N.; Smith, R.A.; Sutherland, H.G.; Haupt, L.M.; Griffiths, L.R. Targeted exonic sequencing identifies novel variants in a cerebral small vessel disease cohort. Clin. Chim. Acta 2025, 567, 120120. [Google Scholar] [CrossRef]
- Robinson, J.T.; Thorvaldsdóttir, H.; Wenger, A.M.; Zehir, A.; Mesirov, J.P. Variant Review with the Integrative Genomics Viewer. Cancer Res. 2017, 77, e31–e34. [Google Scholar] [CrossRef] [PubMed]
- Ioannidis, N.M.; Rothstein, J.H.; Pejaver, V.; Middha, S.; McDonnell, S.K.; Baheti, S.; Musolf, A.; Li, Q.; Holzinger, E.; Karyadi, D.; et al. REVEL: An Ensemble Method for Predicting the Pathogenicity of Rare Missense Variants. Am. J. Hum. Genet. 2016, 99, 877–885. [Google Scholar] [CrossRef]
- Rentzsch, P.; Witten, D.; Cooper, G.M.; Shendure, J.; Kircher, M. CADD: Predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 2018, 47, D886–D894. [Google Scholar] [CrossRef]
- Sim, N.-L.; Kumar, P.; Hu, J.; Henikoff, S.; Schneider, G.; Ng, P.C. SIFT web server: Predicting effects of amino acid substitutions on proteins. Nucleic Acids Res. 2012, 40, W452–W457. [Google Scholar] [CrossRef]
- Steinhaus, R.; Proft, S.; Schuelke, M.; Cooper, D.N.; Schwarz, J.M.; Seelow, D. MutationTaster2021. Nucleic Acids Res. 2021, 49, W446–W451. [Google Scholar] [CrossRef] [PubMed]
- Adzhubei, I.; Jordan, D.M.; Sunyaev, S.R. Predicting functional effect of human missense mutations using PolyPhen-2. Curr. Protoc. Hum. Genet. 2013, 76, 7–20. [Google Scholar] [CrossRef] [PubMed]
- Landrum, M.J.; Lee, J.M.; Riley, G.R.; Jang, W.; Rubinstein, W.S.; Church, D.M.; Maglott, D.R. ClinVar: Public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 2014, 42, D980–D985. [Google Scholar] [CrossRef]
- Sherry, S.T.; Ward, M.-H.; Kholodov, M.; Baker, J.; Phan, L.; Smigielski, E.M.; Sirotkin, K. dbSNP: The NCBI database of genetic variation. Nucleic Acids Res. 2001, 29, 308–311. [Google Scholar] [CrossRef]
- Anderson, B.H.; Kasher, P.R.; Mayer, J.; Szynkiewicz, M.; Jenkinson, E.M.; Bhaskar, S.S.; Urquhart, J.E.; Daly, S.B.; Dickerson, J.E.; O’Sullivan, J.; et al. Mutations in CTC1, encoding conserved telomere maintenance component 1, cause Coats plus. Nat. Genet. 2012, 44, 338–342. [Google Scholar] [CrossRef]
- Chen, L.-Y.; Majerská, J.; Lingner, J. Molecular basis of telomere syndrome caused by CTC1 mutations. Genes Dev. 2013, 27, 2099–2108. [Google Scholar] [CrossRef]
- Gu, P.; Chang, S. Functional characterization of human CTC1 mutations reveals novel mechanisms responsible for the pathogenesis of the telomere disease Coats plus. Aging Cell 2013, 12, 1100–1109. [Google Scholar] [CrossRef] [PubMed]
- Actis Dato, V.; Chiabrando, G.A. The Role of Low-Density Lipoprotein Receptor-Related Protein 1 in Lipid Metabolism, Glucose Homeostasis and Inflammation. Int. J. Mol. Sci. 2018, 19, 1780. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Li, D.; Zhao, J.; Song, J.; Zhao, Y. The role of the low-density lipoprotein receptor-related protein 1 (LRP-1) in regulating blood-brain barrier integrity. Rev. Neurosci. 2016, 27, 623–634. [Google Scholar] [CrossRef] [PubMed]
- Jeanne, M.; Labelle-Dumais, C.; Jorgensen, J.; Kauffman, W.B.; Mancini, G.M.; Favor, J.; Valant, V.; Greenberg, S.M.; Rosand, J.; Gould, D.B. COL4A2 mutations impair COL4A1 and COL4A2 secretion and cause hemorrhagic stroke. Am. J. Hum. Genet. 2012, 90, 91–101. [Google Scholar] [CrossRef]
- Kuo, D.S.; Labelle-Dumais, C.; Gould, D.B. COL4A1 and COL4A2 mutations and disease: Insights into pathogenic mechanisms and potential therapeutic targets. Hum. Mol. Genet. 2012, 21, R97–R110. [Google Scholar] [CrossRef]
- Verbeek, E.; Meuwissen, M.E.; Verheijen, F.W.; Govaert, P.P.; Licht, D.J.; Kuo, D.S.; Poulton, C.J.; Schot, R.; Lequin, M.H.; Dudink, J.; et al. COL4A2 mutation associated with familial porencephaly and small-vessel disease. Eur. J. Hum. Genet. 2012, 20, 844–851. [Google Scholar] [CrossRef]
- Meuwissen, M.E.C.; Halley, D.J.J.; Smit, L.S.; Lequin, M.H.; Cobben, J.M.; de Coo, R.; van Harssel, J.; Sallevelt, S.; Woldringh, G.; van der Knaap, M.S.; et al. The expanding phenotype of COL4A1 and COL4A2 mutations: Clinical data on 13 newly identified families and a review of the literature. Genet. Med. 2015, 17, 843–853. [Google Scholar] [CrossRef]
- Dahl, S.; Pettersson, M.; Eisfeldt, J.; Schröder, A.K.; Wickström, R.; Teär Fahnehjelm, K.; Anderlid, B.M.; Lindstrand, A. Whole genome sequencing unveils genetic heterogeneity in optic nerve hypoplasia. PLoS ONE 2020, 15, e0228622. [Google Scholar] [CrossRef]
- Chung, J.; Hamilton, G.; Kim, M.; Marini, S.; Montgomery, B.; Henry, J.; Cho, A.E.; Brown, D.L.; Worrall, B.B.; Meschia, J.F.; et al. Rare Missense Functional Variants at COL4A1 and COL4A2 in Sporadic Intracerebral Hemorrhage. Neurology 2021, 97, e236–e247. [Google Scholar] [CrossRef]
- Plaisier, E.; Gribouval, O.; Alamowitch, S.; Mougenot, B.; Prost, C.; Verpont, M.C.; Marro, B.; Desmettre, T.; Cohen, S.Y.; Roullet, E.; et al. COL4A1 mutations and hereditary angiopathy, nephropathy, aneurysms, and muscle cramps. N. Engl. J. Med. 2007, 357, 2687–2695. [Google Scholar] [CrossRef]
- Cutrer, F.M. Pathophysiology of migraine. Semin. Neurol. 2010, 30, 120–130. [Google Scholar] [CrossRef] [PubMed]
- Gould, D.B.; Phalan, F.C.; van Mil, S.E.; Sundberg, J.P.; Vahedi, K.; Massin, P.; Bousser, M.G.; Heutink, P.; Miner, J.H.; Tournier-Lasserve, E.; et al. Role of COL4A1 in small-vessel disease and hemorrhagic stroke. N. Engl. J. Med. 2006, 354, 1489–1496. [Google Scholar] [CrossRef] [PubMed]
- Pardali, E.; Ten Dijke, P. TGFβ signaling and cardiovascular diseases. Int. J. Biol. Sci. 2012, 8, 195–213. [Google Scholar] [CrossRef]
- Ramachandran, R. Neurogenic inflammation and its role in migraine. Semin. Immunopathol. 2018, 40, 301–314. [Google Scholar] [CrossRef]
- Jacobs, B.; Dussor, G. Neurovascular contributions to migraine: Moving beyond vasodilation. Neuroscience 2016, 338, 130–144. [Google Scholar] [CrossRef] [PubMed]
- Pietrobon, D.; Moskowitz, M.A. Pathophysiology of migraine. Annu. Rev. Physiol. 2013, 75, 365–391. [Google Scholar] [CrossRef]
- Saygi, S.; Alehan, F.; Erol, İ.; Yalçın, Y.Y.; Ataç, F.B.; Kubat, G. TGF-β1 Genotype in Pediatric Migraine Patients. J. Child Neurol. 2014, 30, 27–31. [Google Scholar] [CrossRef]
Gene | Locus | dbSNP | Amino Acid Change | Coding | Transcript | Revel | CADD | SIFT | Polyphen-2 | Mutation Taster |
---|---|---|---|---|---|---|---|---|---|---|
LRP1 | chr12:57602950 | rs142667784 | p.Thr4077Arg | c.12230C>G | NM_002332.2 | 0.632 | 24.2 | 0.011 | 0.998 | D |
COL4A1 | chr13:110866346 | rs34004222 | p.Pro54Leu | c.161C>T | NM_001845.5 | 0.746 | 29.9 | 0.03 | 0.999 | D |
COL4A2 | chr13:111143601 | rs117412802 | p.Glu1123Gly | c.3368A>G | NM_001846.3 | 0.468 | 25.2 | 0.04 | 0.707 | D |
CTC1 | chr17:8138569 | rs62624978 | p.Gly414Ala | c.1241G>C | NM_025099.5 | 0.264 | 22 | 0.192 | ND | D |
NOTCH3 | chr19:15290236 | rs112197217 | p.His1133Gln | c.3399C>A | NM_000435.2 | 0.438 | 6.878 | 0.002 | ND | P |
CDKN2A | chr9:21970916 | rs3731249 | p.Ala148Thr | c.442G>A | NM_001195132 | 0.271 | 14.75 | 0.011 | 0.804 | P |
MTHFR | chr1:11850750 | rs35737219 | p.Thr653Met | c.1958C>T | NM_005957.4 | 0.139 | 1.795 | 0.38 | 0.002 | P |
LRP1 | chr12:57539082 | rs1800127 | p.Ala217Val | c.650C>T | NM_002332.2 | 0.263 | 24.3 | 0.02 | 0.003 | P |
TGFBR2 | chr3:30664747 | rs557449314 | p.Ala51Pro | c.151G>C | NM_001024847.2 | 0.194 | 11.66 | 0.3 | ND | P |
TGFBR2 | chr3:30691865 | rs768385200 | p.Met148Leu | c.442A>T | NM_001024847.2 | 0.645 | 23.5 | 0 | 0.314 | D |
TGFBR2 | chr3:30713834 | rs35766612 | p.Val412Met | c.1234G>A | NM_001024847.2 | 0.79 | 25 | 0.115 | 0.999 | P |
GLA | chrX:100653420 | rs28935490 | p.Asp313Tyr | c.937G>T | NM_000169.2 | 0.614 | 18.33 | 0.001 | 0.999 | P |
CBS | chr21:44480591 | rs117687681 | p.Arg369Cys | c.1105C>T | NM_001178008.2 | 0.972 | 31 | 0 | ND | D |
Gene | Variant and Locus | Chi-Square | p-Value | df | MAF in the HM Cohort | gnomAD NFE |
---|---|---|---|---|---|---|
LRP1 | chr12:57602950-C>G * | 25.11 | 5.41 × 10−7 | 1 | 0.008 | 0.0007750 |
COL4A1 | chr13:110866346-G>A * | 3.88 | 0.049 | 1 | 0.01 | 0.004205 |
COL4A2 | chr13:111143601-A>G | 2.41 | 0.121 | 1 | 0.022 | 0.01267 |
CTC1 | chr17:8138569-C>G | 0.50 | 0.478 | 1 | 0.014 | 0.01859 |
NOTCH3 | chr19:15290236-G>T | 0.02 | 0.877 | 1 | 0.019 | 0.01795 |
CDKN2A | chr9:21970916-C>T | 0.06 | 0.800 | 1 | 0.035 | 0.03296 |
MTHFR | chr1:11850750-G>A | 0.39 | 0.530 | 1 | 0.016 | 0.02101 |
LRP1 | chr12:57539082-C>T | 0.00 | 0.957 | 1 | 0.0249 | 0.02490 |
TGFBR2 | chr3:30664747-G>C * | 99.45 | 2.01 × 10−23 | 1 | 0.003 | 0.00001798 |
TGFBR2 | chr3:30691865-A>T | N/A | N/A | - | 0.003 | ND |
TGFBR2 | chr3:30713834-G>A | 0.11 | 0.740 | 1 | 0.003 | 0.001954 |
GLA | chrX:100653420-C>A | 0.25 | 0.617 | 1 | 0.003 | 0.004456 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molaee, Z.; Smith, R.A.; Maksemous, N.; Griffiths, L.R. Genetic Insights into Hemiplegic Migraine: Whole Exome Sequencing Highlights Vascular Pathway Involvement via Association Analysis. Genes 2025, 16, 895. https://doi.org/10.3390/genes16080895
Molaee Z, Smith RA, Maksemous N, Griffiths LR. Genetic Insights into Hemiplegic Migraine: Whole Exome Sequencing Highlights Vascular Pathway Involvement via Association Analysis. Genes. 2025; 16(8):895. https://doi.org/10.3390/genes16080895
Chicago/Turabian StyleMolaee, Zizi, Robert A. Smith, Neven Maksemous, and Lyn R. Griffiths. 2025. "Genetic Insights into Hemiplegic Migraine: Whole Exome Sequencing Highlights Vascular Pathway Involvement via Association Analysis" Genes 16, no. 8: 895. https://doi.org/10.3390/genes16080895
APA StyleMolaee, Z., Smith, R. A., Maksemous, N., & Griffiths, L. R. (2025). Genetic Insights into Hemiplegic Migraine: Whole Exome Sequencing Highlights Vascular Pathway Involvement via Association Analysis. Genes, 16(8), 895. https://doi.org/10.3390/genes16080895