Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,978)

Search Parameters:
Keywords = approach channel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 18859 KiB  
Article
Application of a Hierarchical Approach for Architectural Classification and Stratigraphic Evolution in Braided River Systems, Quaternary Strata, Songliao Basin, NE China
by Zhiwen Dong, Zongbao Liu, Yanjia Wu, Yiyao Zhang, Jiacheng Huang and Zekun Li
Appl. Sci. 2025, 15(15), 8597; https://doi.org/10.3390/app15158597 (registering DOI) - 2 Aug 2025
Abstract
The description and assessment of braided river architecture are usually limited by the paucity of real geological datasets from field observations; due to the complexity and diversity of rivers, traditional evaluation models are difficult to apply to braided river systems in different climatic [...] Read more.
The description and assessment of braided river architecture are usually limited by the paucity of real geological datasets from field observations; due to the complexity and diversity of rivers, traditional evaluation models are difficult to apply to braided river systems in different climatic and tectonic settings. This study aims to establish an architectural model suitable for the study area setting by introducing a hierarchical analysis approach through well-exposed three-dimensional outcrops along the Second Songhua River. A micro–macro four-level hierarchical framework is adopted to obtain a detailed anatomy of sedimentary outcrops: lithofacies, elements, element associations, and archetypes. Fourteen lithofacies are identified: three conglomerates, seven sandstones, and four mudstones. Five elements provide the basic components of the river system framework: fluvial channel, laterally accreting bar, downstream accreting bar, abandoned channel, and floodplain. Four combinations of adjacent elements are determined: fluvial channel and downstream accreting bar, fluvial channel and laterally accreting bar, erosionally based fluvial channel and laterally accreting bar, and abandoned channel and floodplain. Considering the sedimentary evolution process, the braided river prototype, which is an element-based channel filling unit, is established by documenting three contact combinations between different elements and six types of fine-grained deposits’ preservation positions in the elements. Empirical relationships are developed among the bankfull channel depth, mean bankfull channel depth, and bankfull channel width. For the braided river systems, the establishment of the model promotes understanding of the architecture and evolution, and the application of the hierarchical analysis approach provides a basis for outcrop, underground reservoir, and tank experiments. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

41 pages, 86958 KiB  
Article
An Efficient Aerial Image Detection with Variable Receptive Fields
by Wenbin Liu, Liangren Shi and Guocheng An
Remote Sens. 2025, 17(15), 2672; https://doi.org/10.3390/rs17152672 (registering DOI) - 2 Aug 2025
Abstract
This article presents VRF-DETR, a lightweight real-time object detection framework for aerial remote sensing images, aimed at addressing the challenge of insufficient receptive fields for easily confused categories due to differences in height and perspective. Based on the RT-DETR architecture, our approach introduces [...] Read more.
This article presents VRF-DETR, a lightweight real-time object detection framework for aerial remote sensing images, aimed at addressing the challenge of insufficient receptive fields for easily confused categories due to differences in height and perspective. Based on the RT-DETR architecture, our approach introduces three key innovations: the multi-scale receptive field adaptive fusion (MSRF2) module replaces the Transformer encoder with parallel dilated convolutions and spatial-channel attention to adjust receptive fields for confusing objects dynamically; the gated multi-scale context (GMSC) block reconstructs the backbone using Gated Multi-Scale Context units with attention-gated convolution (AGConv), reducing parameters while enhancing multi-scale feature extraction; and the context-guided fusion (CGF) module optimizes feature fusion via context-guided weighting to resolve multi-scale semantic conflicts. Evaluations were conducted on both the VisDrone2019 and UAVDT datasets, where VRF-DETR achieved the mAP50 of 52.1% and the mAP50-95 of 32.2% on the VisDrone2019 validation set, surpassing RT-DETR by 4.9% and 3.5%, respectively, while reducing parameters by 32% and FLOPs by 22%. It maintains real-time performance (62.1 FPS) and generalizes effectively, outperforming state-of-the-art methods in accuracy-efficiency trade-offs for aerial object detection. Full article
(This article belongs to the Special Issue Deep Learning Innovations in Remote Sensing)
Show Figures

Figure 1

14 pages, 11798 KiB  
Article
Wavefront-Corrected Algorithm for Vortex Optical Transmedia Wavefront-Sensorless Sensing Based on U-Net Network
by Shangjun Yang, Yanmin Zhao, Binkun Liu, Shuguang Zou and Chenghu Ke
Photonics 2025, 12(8), 780; https://doi.org/10.3390/photonics12080780 (registering DOI) - 1 Aug 2025
Abstract
Atmospheric and oceanic turbulence can severely degrade the orbital angular momentum (OAM) mode purity of vortex beams in cross-media optical links. Here, we propose a hybrid correction framework that fuses multiscale phase-screen modeling with a lightweight U-Net predictor for phase-distortion—driven solely by measured [...] Read more.
Atmospheric and oceanic turbulence can severely degrade the orbital angular momentum (OAM) mode purity of vortex beams in cross-media optical links. Here, we propose a hybrid correction framework that fuses multiscale phase-screen modeling with a lightweight U-Net predictor for phase-distortion—driven solely by measured optical intensity—and augments it with a feed-forward, Gaussian-reference subtraction scheme for iterative compensation. In our experiments, this approach boosts the l = 3 mode purity from 38.4% to 98.1%. Compared to the Gerchberg–Saxton algorithm, the Gaussian-reference feed-forward method achieves far lower computational complexity and greater robustness, making real-time phase recovery feasible for OAM-based communications over heterogeneous channels. Full article
21 pages, 4688 KiB  
Article
Nondestructive Inspection of Steel Cables Based on YOLOv9 with Magnetic Flux Leakage Images
by Min Zhao, Ning Ding, Zehao Fang, Bingchun Jiang, Jiaming Zhong and Fuqin Deng
J. Sens. Actuator Netw. 2025, 14(4), 80; https://doi.org/10.3390/jsan14040080 (registering DOI) - 1 Aug 2025
Abstract
The magnetic flux leakage (MFL) method is widely acknowledged as a highly effective non-destructive evaluation (NDE) technique for detecting local damage in ferromagnetic structures such as steel wire ropes. In this study, a multi-channel MFL sensor module was developed, incorporating a purpose-designed Hall [...] Read more.
The magnetic flux leakage (MFL) method is widely acknowledged as a highly effective non-destructive evaluation (NDE) technique for detecting local damage in ferromagnetic structures such as steel wire ropes. In this study, a multi-channel MFL sensor module was developed, incorporating a purpose-designed Hall sensor array and magnetic yokes specifically shaped for steel cables. To validate the proposed damage detection method, artificial damages of varying degrees were inflicted on wire rope specimens through experimental testing. The MFL sensor module facilitated the scanning of the damaged specimens and measurement of the corresponding MFL signals. In order to improve the signal-to-noise ratio, a comprehensive set of signal processing steps, including channel equalization and normalization, was implemented. Subsequently, the detected MFL distribution surrounding wire rope defects was transformed into MFL images. These images were then analyzed and processed utilizing an object detection method, specifically employing the YOLOv9 network, which enables accurate identification and localization of defects. Furthermore, a quantitative defect detection method based on image size was introduced, which is effective for quantifying defects using the dimensions of the anchor frame. The experimental results demonstrated the effectiveness of the proposed approach in detecting and quantifying defects in steel cables, which combines deep learning-based analysis of MFL images with the non-destructive inspection of steel cables. Full article
Show Figures

Figure 1

25 pages, 3746 KiB  
Article
Empirical Modelling of Ice-Jam Flood Hazards Along the Mackenzie River in a Changing Climate
by Karl-Erich Lindenschmidt, Sergio Gomez, Jad Saade, Brian Perry and Apurba Das
Water 2025, 17(15), 2288; https://doi.org/10.3390/w17152288 - 1 Aug 2025
Abstract
This study introduces a novel methodology for assessing ice-jam flood hazards along river channels. It employs empirical equations that relate non-dimensional ice-jam stage to discharge, enabling the generation of an ensemble of longitudinal profiles of ice-jam backwater levels through Monte-Carlo simulations. These simulations [...] Read more.
This study introduces a novel methodology for assessing ice-jam flood hazards along river channels. It employs empirical equations that relate non-dimensional ice-jam stage to discharge, enabling the generation of an ensemble of longitudinal profiles of ice-jam backwater levels through Monte-Carlo simulations. These simulations produce non-exceedance probability profiles, which indicate the likelihood of various flood levels occurring due to ice jams. The flood levels associated with specific return periods were validated using historical gauge records. The empirical equations require input parameters such as channel width, slope, and thalweg elevation, which were obtained from bathymetric surveys. This approach is applied to assess ice-jam flood hazards by extrapolating data from a gauged reach at Fort Simpson to an ungauged reach at Jean Marie River along the Mackenzie River in Canada’s Northwest Territories. The analysis further suggests that climate change is likely to increase the severity of ice-jam flood hazards in both reaches by the end of the century. This methodology is applicable to other cold-region rivers in Canada and northern Europe, provided similar fluvial geomorphological and hydro-meteorological data are available, making it a valuable tool for ice-jam flood risk assessment in other ungauged areas. Full article
Show Figures

Figure 1

16 pages, 2389 KiB  
Article
Designing an SOI Interleaver Using Genetic Algorithm
by Michael Gad, Mostafa Fedawy, Mira Abboud, Hany Mahrous, Gamal A. Ebrahim, Mostafa M. Salah, Ahmed Shaker, W. Fikry and Michael Ibrahim
Photonics 2025, 12(8), 775; https://doi.org/10.3390/photonics12080775 (registering DOI) - 31 Jul 2025
Abstract
A multi-objective genetic algorithm is tailored to optimize the design of a wavelength interleaver/deinterleaver device. An interleaver combines data streams from two physical channels into one. The deinterleaver does the opposite job. The WDM requirements for this device include channel spacing of 50 [...] Read more.
A multi-objective genetic algorithm is tailored to optimize the design of a wavelength interleaver/deinterleaver device. An interleaver combines data streams from two physical channels into one. The deinterleaver does the opposite job. The WDM requirements for this device include channel spacing of 50 GHz, channel bandwidth of 20 GHz, free spectral range of 100 GHz, maximum channel dispersion of 30 ps/nm, and maximum crosstalk of −23 dB. The challenges for the optimization process include the lack of a closed-form expression for the device performance and the trade-off between the conflicting performance parameters. So, for this multi-objective problem, the proposed approach maneuvers to find a compromise between the performance parameters within a few minutes, saving the designer the laborious design process previously proposed in the literature, which relies on visually inspecting the Z-plane for the dynamics of the transmission poles and zeros. Designs of better performance are achieved, with fewer ring resonators, a channel dispersion as low as 1.6 ps/nm, and crosstalk as low as −30 dB. Full article
(This article belongs to the Special Issue Advanced Materials and Devices for Silicon Photonics)
Show Figures

Figure 1

28 pages, 4107 KiB  
Article
Channel Model for Estimating Received Power Variations at a Mobile Terminal in a Cellular Network
by Kevin Verdezoto Moreno, Pablo Lupera-Morillo, Roberto Chiguano, Robin Álvarez, Ricardo Llugsi and Gabriel Palma
Electronics 2025, 14(15), 3077; https://doi.org/10.3390/electronics14153077 (registering DOI) - 31 Jul 2025
Abstract
This paper introduces a theoretical large-scale radio channel model for the downlink in cellular systems, aimed at estimating variations in received signal power at the user terminal as a function of device mobility. This enables applications such as direction-of-arrival (DoA) estimation, estimating power [...] Read more.
This paper introduces a theoretical large-scale radio channel model for the downlink in cellular systems, aimed at estimating variations in received signal power at the user terminal as a function of device mobility. This enables applications such as direction-of-arrival (DoA) estimation, estimating power at subsequent points based on received power, and detection of coverage anomalies. The model is validated using real-world measurements from urban and suburban environments, achieving a maximum estimation error of 7.6%. In contrast to conventional models like Okumura–Hata, COST-231, Third Generation Partnership Project (3GPP) stochastic models, or ray-tracing techniques, which estimate average power under static conditions, the proposed model captures power fluctuations induced by terminal movement, a factor often neglected. Although advanced techniques such as wave-domain processing with intelligent metasurfaces can also estimate DoA, this model provides a simpler, geometry-driven approach based on empirical traces. While it does not incorporate infrastructure-specific characteristics or inter-cell interference, it remains a practical solution for scenarios with limited information or computational resources. Full article
Show Figures

Figure 1

13 pages, 3187 KiB  
Article
An Approach to Improve Land–Water Salt Flux Modeling in the San Francisco Estuary
by John S. Rath, Paul H. Hutton and Sujoy B. Roy
Water 2025, 17(15), 2278; https://doi.org/10.3390/w17152278 - 31 Jul 2025
Abstract
In this case study, we used the Delta Simulation Model II (DSM2) to study the salt balance at the land–water interface in the river delta of California’s San Francisco Estuary. Drainage, a source of water and salt for adjacent channels in the study [...] Read more.
In this case study, we used the Delta Simulation Model II (DSM2) to study the salt balance at the land–water interface in the river delta of California’s San Francisco Estuary. Drainage, a source of water and salt for adjacent channels in the study area, is affected by channel salinity. The DSM2 approach has been adopted by several hydrodynamic models of the estuary to enforce water volume balance between diversions, evapotranspiration and drainage at the land–water interface, but does not explicitly enforce salt balance. We found deviations from salt balance to be quite large, albeit variable in magnitude due to the heterogeneity of hydrodynamic and salinity conditions across the study area. We implemented a procedure that approximately enforces salt balance through iterative updates of the baseline drain salinity boundary conditions (termed loose coupling). We found a reasonable comparison with field measurements of drainage salinity. In particular, the adjusted boundary conditions appear to capture the range of observed interannual variability better than the baseline periodic estimates. The effect of the iterative adjustment procedure on channel salinity showed substantial spatial variability: locations dominated by large flows were minimally impacted, and in lower flow channels, deviations between baseline and adjusted channel salinity series were notable, particularly during the irrigation season. This approach, which has the potential to enhance the simulation of extreme salinity intrusion events (when high channel salinity significantly impacts drainage salinity), is essential for robustly modeling hydrodynamic conditions that pre-date contemporary water management infrastructure. We discuss limitations associated with this approach and recommend that—for this case study—further improvements could best be accomplished through code modification rather than coupling of transport and island water balance models. Full article
(This article belongs to the Special Issue Advances in Coastal Hydrological and Geological Processes)
Show Figures

Figure 1

24 pages, 4753 KiB  
Article
A Secure Satellite Transmission Technique via Directional Variable Polarization Modulation with MP-WFRFT
by Zhiyu Hao, Zukun Lu, Xiangjun Li, Xiaoyu Zhao, Zongnan Li and Xiaohui Liu
Aerospace 2025, 12(8), 690; https://doi.org/10.3390/aerospace12080690 (registering DOI) - 31 Jul 2025
Abstract
Satellite communications are pivotal to global Internet access, connectivity, and the advancement of information warfare. Despite these importance, the open nature of satellite channels makes them vulnerable to eavesdropping, making the enhancement of interception resistance in satellite communications a critical issue in both [...] Read more.
Satellite communications are pivotal to global Internet access, connectivity, and the advancement of information warfare. Despite these importance, the open nature of satellite channels makes them vulnerable to eavesdropping, making the enhancement of interception resistance in satellite communications a critical issue in both academic and industrial circles. Within the realm of satellite communications, polarization modulation and quadrature techniques are essential for information transmission and interference suppression. To boost electromagnetic countermeasures in complex battlefield scenarios, this paper integrates multi-parameter weighted-type fractional Fourier transform (MP-WFRFT) with directional modulation (DM) algorithms, building upon polarization techniques. Initially, the operational mechanisms of the polarization-amplitude-phase modulation (PAPM), MP-WFRFT, and DM algorithms are elucidated. Secondly, it introduces a novel variable polarization-amplitude-phase modulation (VPAPM) scheme that integrates variable polarization with amplitude-phase modulation. Subsequently, leveraging the VPAPM modulation scheme, an exploration of the anti-interception capabilities of MP-WFRFT through parameter adjustment is presented. Rooted in an in-depth analysis of simulation data, the anti-scanning capabilities of MP-WFRFT are assessed in terms of scale vectors in the horizontal and vertical direction. Finally, exploiting the potential of the robust anti-scanning capabilities of MP-WFRFT and the directional property of antenna arrays in DM, the paper proposes a secure transmission technique employing directional variable polarization modulation with MP-WFRFT. The performance simulation analysis demonstrates that the integration of MP-WFRFT and DM significantly outperforms individual secure transmission methods, improving anti-interception performance by at least an order of magnitude at signal-to-noise ratios above 10 dB. Consequently, this approach exhibits considerable potential and engineering significance for its application within satellite communication systems. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

16 pages, 3521 KiB  
Article
HBM Package Interconnection Pseudo All-Channel Signal Integrity Simulation and Implementation Method of the Synchronous Current Load Research
by Wen-Xue Tang, Cong-Jian Mai, Li-Yan Zhou, Ying Sun, Xin-Ran Zhao, Shu-Li Liu, Gang Wang, Da-Wei Wang and Cheng-Qian Wang
Micromachines 2025, 16(8), 896; https://doi.org/10.3390/mi16080896 (registering DOI) - 31 Jul 2025
Viewed by 21
Abstract
This paper proposes a pseudo full-channel signal integrity (SI) simulation method tailored for high-bandwidth memory (HBM) interconnects. In this approach, real interconnect models are applied to selected portions of the channel, while the remaining sections are replaced with synchronized current loads that emulate [...] Read more.
This paper proposes a pseudo full-channel signal integrity (SI) simulation method tailored for high-bandwidth memory (HBM) interconnects. In this approach, real interconnect models are applied to selected portions of the channel, while the remaining sections are replaced with synchronized current loads that emulate the electrical behavior of actual signal transmission. This technique enables accurate modeling of the HBM interface under full-channel parallel data transfer conditions. In addition to the simulation methodology itself, this study focuses on three specific implementation schemes for the synchronized current loads and explores their practical applications. Comparative analysis demonstrates the necessity and effectiveness of using synchronized current loads as substitutes for real transmission loads, offering a viable and efficient solution for SI analysis in HBM interconnect systems. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

11 pages, 1219 KiB  
Article
The Church and Academia Model: New Paradigm for Spirituality and Mental Health Research
by Marta Illueca, Samantha M. Meints, Megan M. Miller, Dikachi Osaji and Benjamin R. Doolittle
Religions 2025, 16(8), 998; https://doi.org/10.3390/rel16080998 (registering DOI) - 31 Jul 2025
Viewed by 69
Abstract
Ongoing interest in the intersection of spirituality and health has prompted a need for integrated research. This report proposes a distinct approach in a model that allows for successful and harmonious cross-fertilization within these latter two areas of interest. Our work is especially [...] Read more.
Ongoing interest in the intersection of spirituality and health has prompted a need for integrated research. This report proposes a distinct approach in a model that allows for successful and harmonious cross-fertilization within these latter two areas of interest. Our work is especially pertinent to inquiries around the role of spirituality in mental health, with special attention to chronic pain conditions. The latter have become an open channel for novel avenues to explore the field of spirituality-based interventions within the arena of psychological inquiry. To address this, the authors developed and implemented the Church and Academia Model, a prototype for an innovative collaborative research project, with the aim of exploring the role of devotional practices, and their potential to be used as therapeutic co-adjuvants or tools to enhance the coping skills of patients with chronic pain. Keeping in mind that the church presents a rich landscape for clinical inquiry with broad relevance for clinicians and society at large, we created a unique hybrid research model. This is a new paradigm that focuses on distinct and well-defined studies where the funding, protocol writing, study design, and implementation are shared by experts from both the pastoral and clinical spaces. A team of theologians, researchers, and healthcare providers, including clinical pain psychologists, built a coalition leveraging their respective skill sets. Each expert is housed in their own environs, creating a functional network that has proven academically productive and pastorally effective. Key outputs include the creation and validation of a new psychometric measure, the Pain-related PRAYER Scale (PPRAYERS), an associated bedside prayer tool and a full-scale dissemination strategy through journal publications and specialty society conferences. This collaborative prototype is also an ideal fit for integrated knowledge translation platforms, and it is a promising paradigm for future collaborative projects focused on spirituality and mental health. Full article
Show Figures

Figure 1

18 pages, 5712 KiB  
Article
A Fractional Fourier Transform-Based Channel Estimation and Equalization Algorithm for Mud Pulse Telemetry
by Jingchen Zhang, Zitong Sha, Lei Wan, Yishan Su, Jiang Zhu and Fengzhong Qu
J. Mar. Sci. Eng. 2025, 13(8), 1468; https://doi.org/10.3390/jmse13081468 - 31 Jul 2025
Viewed by 131
Abstract
Mud pulse telemetry (MPT) systems are a promising approach to transmitting downhole data to the ground. During transmission, the amplitudes of pressure waves decay exponentially with distance, and the channel is often frequency-selective due to reflection and multipath effect. To address these issues, [...] Read more.
Mud pulse telemetry (MPT) systems are a promising approach to transmitting downhole data to the ground. During transmission, the amplitudes of pressure waves decay exponentially with distance, and the channel is often frequency-selective due to reflection and multipath effect. To address these issues, this work proposes a fractional Fourier transform (FrFT)-based channel estimation and equalization method. Leveraging the energy aggregation of linear frequency-modulated signals in the fractional Fourier domain, the time delay and attenuation parameters of the multipath channel can be estimated accurately. Furthermore, a fractional Fourier domain equalizer is proposed to pre-filter the frequency-selective fading channel using fractionally spaced decision feedback equalization. The effectiveness of the proposed method is evaluated through a simulation analysis and field experiments. The simulation results demonstrate that this method can significantly reduce multipath effects, effectively control the impact of noise, and facilitate subsequent demodulation. The field experiment results indicate that the demodulation of real data achieves advanced data rate communication (over 12 bit/s) and a low bit error rate (below 0.5%), which meets engineering requirements in a 3000 m drilling system. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

19 pages, 3130 KiB  
Article
Deep Learning-Based Instance Segmentation of Galloping High-Speed Railway Overhead Contact System Conductors in Video Images
by Xiaotong Yao, Huayu Yuan, Shanpeng Zhao, Wei Tian, Dongzhao Han, Xiaoping Li, Feng Wang and Sihua Wang
Sensors 2025, 25(15), 4714; https://doi.org/10.3390/s25154714 (registering DOI) - 30 Jul 2025
Viewed by 157
Abstract
The conductors of high-speed railway OCSs (Overhead Contact Systems) are susceptible to conductor galloping due to the impact of natural elements such as strong winds, rain, and snow, resulting in conductor fatigue damage and significantly compromising train operational safety. Consequently, monitoring the galloping [...] Read more.
The conductors of high-speed railway OCSs (Overhead Contact Systems) are susceptible to conductor galloping due to the impact of natural elements such as strong winds, rain, and snow, resulting in conductor fatigue damage and significantly compromising train operational safety. Consequently, monitoring the galloping status of conductors is crucial, and instance segmentation techniques, by delineating the pixel-level contours of each conductor, can significantly aid in the identification and study of galloping phenomena. This work expands upon the YOLO11-seg model and introduces an instance segmentation approach for galloping video and image sensor data of OCS conductors. The algorithm, designed for the stripe-like distribution of OCS conductors in the data, employs four-direction Sobel filters to extract edge features in horizontal, vertical, and diagonal orientations. These features are subsequently integrated with the original convolutional branch to form the FDSE (Four Direction Sobel Enhancement) module. It integrates the ECA (Efficient Channel Attention) mechanism for the adaptive augmentation of conductor characteristics and utilizes the FL (Focal Loss) function to mitigate the class-imbalance issue between positive and negative samples, hence enhancing the model’s sensitivity to conductors. Consequently, segmentation outcomes from neighboring frames are utilized, and mask-difference analysis is performed to autonomously detect conductor galloping locations, emphasizing their contours for the clear depiction of galloping characteristics. Experimental results demonstrate that the enhanced YOLO11-seg model achieves 85.38% precision, 77.30% recall, 84.25% AP@0.5, 81.14% F1-score, and a real-time processing speed of 44.78 FPS. When combined with the galloping visualization module, it can issue real-time alerts of conductor galloping anomalies, providing robust technical support for railway OCS safety monitoring. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

19 pages, 3436 KiB  
Article
An Improved Wind Power Forecasting Model Considering Peak Fluctuations
by Shengjie Yang, Jie Tang, Lun Ye, Jiangang Liu and Wenjun Zhao
Electronics 2025, 14(15), 3050; https://doi.org/10.3390/electronics14153050 - 30 Jul 2025
Viewed by 117
Abstract
Wind power output sequences exhibit strong randomness and intermittency characteristics; traditional single forecasting models struggle to capture the internal features of sequences and are highly susceptible to interference from high-frequency noise and predictive accuracy is still notably poor at the peaks where the [...] Read more.
Wind power output sequences exhibit strong randomness and intermittency characteristics; traditional single forecasting models struggle to capture the internal features of sequences and are highly susceptible to interference from high-frequency noise and predictive accuracy is still notably poor at the peaks where the power curve undergoes abrupt changes. To address the poor fitting at peaks, a short-term wind power forecasting method based on the improved Informer model is proposed. First, the temporal convolutional network (TCN) is introduced to enhance the model’s ability to capture regional segment features along the temporal dimension, enhancing the model’s receptive field to address wind power fluctuation under varying environmental conditions. Next, a discrete cosine transform (DCT) is employed for adaptive modeling of frequency dependencies between channels, converting the time series data into frequency domain representations to extract its frequency features. These frequency domain features are then weighted using a channel attention mechanism to improve the model’s ability to capture peak features and resist noise interference. Finally, the Informer generative decoder is used to output the power prediction results, this enables the model to simultaneously leverage neighboring temporal segment features and long-range inter-temporal dependencies for future wind-power prediction, thereby substantially improving the fitting accuracy at power-curve peaks. Experimental results validate the effectiveness and practicality of the proposed model; compared with other models, the proposed approach reduces MAE by 9.14–42.31% and RMSE by 12.57–47.59%. Full article
(This article belongs to the Special Issue Digital Intelligence Technology and Applications)
Show Figures

Figure 1

23 pages, 7739 KiB  
Article
AGS-YOLO: An Efficient Underwater Small-Object Detection Network for Low-Resource Environments
by Weikai Sun, Xiaoqun Liu, Juan Hao, Qiyou Yao, Hailin Xi, Yuwen Wu and Zhaoye Xing
J. Mar. Sci. Eng. 2025, 13(8), 1465; https://doi.org/10.3390/jmse13081465 - 30 Jul 2025
Viewed by 169
Abstract
Detecting underwater targets is crucial for ecological evaluation and the sustainable use of marine resources. To enhance environmental protection and optimize underwater resource utilization, this study proposes AGS-YOLO, an innovative underwater small-target detection model based on YOLO11. Firstly, this study proposes AMSA, a [...] Read more.
Detecting underwater targets is crucial for ecological evaluation and the sustainable use of marine resources. To enhance environmental protection and optimize underwater resource utilization, this study proposes AGS-YOLO, an innovative underwater small-target detection model based on YOLO11. Firstly, this study proposes AMSA, a multi-scale attention module, and optimizes the C3k2 structure to improve the detection and precise localization of small targets. Secondly, a streamlined GSConv convolutional module is incorporated to minimize the parameter count and computational load while effectively retaining inter-channel dependencies. Finally, a novel and efficient cross-scale connected neck network is designed to achieve information complementarity and feature fusion among different scales, efficiently capturing multi-scale semantics while decreasing the complexity of the model. In contrast with the baseline model, the method proposed in this paper demonstrates notable benefits for use in underwater devices constrained by limited computational capabilities. The results demonstrate that AGS-YOLO significantly outperforms previous methods in terms of accuracy on the DUO underwater dataset, with mAP@0.5 improving by 1.3% and mAP@0.5:0.95 improving by 2.6% relative to those of the baseline YOLO11n model. In addition, the proposed model also shows excellent performance on the RUOD dataset, demonstrating its competent detection accuracy and reliable generalization. This study proposes innovative approaches and methodologies for underwater small-target detection, which have significant practical relevance. Full article
Show Figures

Figure 1

Back to TopTop