An Improved Wind Power Forecasting Model Considering Peak Fluctuations
Abstract
1. Introduction
2. Related Work
2.1. Time Convolutional Network
2.2. Channel Attention Mechanism
2.3. Mish Activation Function
2.4. Informer
- 1.
- probSparse self-attention mechanism
- 2.
- Self-attention distillation
- 3.
- Generative decoder
3. Methodology
3.1. Analysis of Abnormal Event Characteristics
3.2. Frequency Domain Feature Analysis
3.3. Frequency Attention Mechanism
3.4. TCN–FAM–Informer
3.5. Model Prediction Process
4. Results
4.1. Data Preprocessing
4.2. Preparation Before the Experiment
4.3. Model Evaluation Indicators
4.4. Hyperparameter Optimization
4.5. Result and Analysis
4.5.1. Ablation Experiment
4.5.2. Comparative Experiment
4.5.3. Supplementary Analysis
5. Conclusions
5.1. Summary
5.2. Limitations and Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, H.; Guo, D.; Wang, L.; Zhou, T.; Jia, C.; Liu, Y. A novel frequency sparse downsampling interaction transformer for wind power forecasting. Energy 2025, 326, 136199. [Google Scholar] [CrossRef]
- Bashir, T.; Wang, H.; Tahir, M.; Zhang, Y. Wind and solar power forecasting based on hybrid CNN-ABiLSTM, CNN-transformer-MLP models. Renew. Energy 2025, 239, 122055. [Google Scholar] [CrossRef]
- Dong, Y.; Zhou, B.; Zhang, H.; Yang, G.; Ma, S. A deep time-frequency augmented wind power forecasting model. Renew. Energy 2025, 239, 123550. [Google Scholar] [CrossRef]
- Hanifi, S.; Liu, X.; Lin, Z.; Lotfian, S. A critical review of wind power forecasting methods—Past, present and future. Energies 2020, 13, 3764. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, J. Short-term wind power forecasting based on multivariate/multi-step LSTM with temporal feature attention mechanism. Appl. Soft Comput. 2024, 150, 111050. [Google Scholar] [CrossRef]
- Liu, W.; Mao, Z. Short-term photovoltaic power forecasting with feature extraction and attention mechanisms. Renew. Energy 2024, 226, 120437. [Google Scholar] [CrossRef]
- Qiu, H.; Shi, K.; Wang, R.; Zhang, L.; Liu, X.; Cheng, X. A novel temporal–spatial graph neural network for wind power forecasting considering blockage effects. Renew. Energy 2024, 227, 120499. [Google Scholar] [CrossRef]
- Singh, A.; Kumar, R.S.; Bajaj, M.; Khadse, C.B.; Zaitsev, I. Machine learning-based energy management and power forecasting in grid-connected microgrids with multiple distributed energy sources. Sci. Rep. 2024, 14, 19207. [Google Scholar] [CrossRef]
- Jonkers, J.; Avendano, D.N.; Van Wallendael, G.; Van Hoecke, S. A novel day-ahead regional and probabilistic wind power forecasting framework using deep CNNs and conformalized regression forests. Appl. Energy 2024, 361, 122900. [Google Scholar] [CrossRef]
- Louka, P.; Galanis, G.; Siebert, N.; Kariniotakis, G.; Katsafados, P.; Pytharoulis, I.; Kallos, G. Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering. J. Wind. Eng. Ind. Aerodyn. 2008, 96, 2348–2362. [Google Scholar] [CrossRef]
- Abuella, M.; Chowdhury, B. Random forest ensemble of support vector regression models for solar power forecasting. In Proceedings of the 2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 23–26 April 2017; pp. 1–5. [Google Scholar]
- Zendehboudi, A.; Baseer, M.A.; Saidur, R. Application of support vector machine models for forecasting solar and wind energy resources: A review. J. Clean. Prod. 2018, 199, 272–285. [Google Scholar] [CrossRef]
- Zhou, X.; Wu, J.; Liang, W.; Wang, K.I.K.; Yan, Z.; Yang, L.T.; Jin, Q. Reconstructed graph neural network with knowledge distillation for lightweight anomaly detection. IEEE Trans. Neural Netw. Learn. Syst. 2024, 35, 11817–11828. [Google Scholar] [CrossRef]
- Li, C.; Zhu, D.; Hu, C.; Li, X.; Nan, S.; Huang, H. ECDX: Energy consumption prediction model based on distance correlation and XGBoost for edge data center. Inf. Sci. 2023, 643, 119218. [Google Scholar] [CrossRef]
- Yang, M.; Ju, C.; Huang, Y.; Guo, Y.; Jia, M. Short-term power forecasting of wind farm cluster based on global information adaptive perceptual graph convolution network. IEEE Trans. Sustain. Energy 2024, 15, 2063–2076. [Google Scholar] [CrossRef]
- Zhou, X.; Li, Y.; Liang, W. CNN-RNN based intelligent recommendation for online medical pre-diagnosis support. IEEE/ACM Trans. Comput. Biol. Bioinform. 2020, 18, 912–921. [Google Scholar] [CrossRef]
- Yao, L. Global exponential convergence of neutral type shunting inhibitory cellular neural networks with D operator. Neural Process. Lett. 2017, 45, 401–409. [Google Scholar] [CrossRef]
- Pan, Z.; Wang, Y.; Cao, Y.; Gui, W. VAE-based interpretable latent variable model for process monitoring. IEEE Trans. Neural Netw. Learn. Syst. 2023, 35, 6075–6088. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Liang, W.; Kevin, I.; Wang, K.; Wang, H.; Yang, L.T.; Jin, Q. Deep-learning-enhanced human activity recognition for internet of healthcare things. IEEE Internet Things J. 2020, 7, 6429–6438. [Google Scholar] [CrossRef]
- Zhou, X.; Xu, X.; Liang, W.; Zeng, Z.; Yan, Z. Deep-learning-enhanced multitarget detection for end–edge–cloud surveillance in smart IoT. IEEE Internet Things J. 2021, 8, 12588–12596. [Google Scholar] [CrossRef]
- Jiang, L.; Hu, R.; Wang, X.; Tu, W.; Zhang, M. Nonlinear prediction with deep recurrent neural networks for non-blind audio bandwidth extension. China Commun. 2018, 15, 72–85. [Google Scholar] [CrossRef]
- Liu, B.; Zhao, S.; Yu, X.; Zhang, L.; Wang, Q. A novel deep learning approach for wind power forecasting based on WD-LSTM model. Energies 2020, 13, 4964. [Google Scholar] [CrossRef]
- Zhao, S.; Xu, Z.; Zhu, Z.; Liang, X.; Zhang, Z.; Jiang, R. Short and long-term renewable electricity demand forecasting based on CNN-Bi-GRU model. IECE Trans. Emerg. Top. Artif. Intell. 2025, 2, 1–15. [Google Scholar] [CrossRef]
- Ghanbari, E.; Avar, A. Short-term wind power forecasting using the hybrid model of multivariate variational mode decomposition (MVMD) and long short-term memory (LSTM) neural networks. Electr. Eng. 2025, 107, 2903–2933. [Google Scholar] [CrossRef]
- Li, G.; Ding, C.; Zhao, N.; Wei, J.; Guo, Y.; Meng, C.; Huang, K.; Zhu, R. Research on a novel photovoltaic power forecasting model based on parallel long and short-term time series network. Energy 2024, 293, 130621. [Google Scholar] [CrossRef]
- Yang, S. A novel study on deep learning framework to predict and analyze the financial time series information. Future Gener. Comput. Syst. 2021, 125, 812–819. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, S.; Peng, J.; Zhang, S.; Li, J.; Xiong, H.; Zhang, W. Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual, 2–9 February 2021; Volume 35, pp. 11106–11115. [Google Scholar]
- Wang, J.; Liang, Y.; Liu, X. An Ultra-Short-Term Wind Power Prediction Method Based on MGWO-VMD-Informer. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4872799 (accessed on 21 June 2025).
- Wei, H.; Wang, W.-S.; Kao, X.-X. A novel approach to ultra-short-term wind power prediction based on feature engineering and informer. Energy Rep. 2023, 9, 1236–1250. [Google Scholar] [CrossRef]
- Ren, S.-Q.; Song, W. Feature extraction and prediction of multidimensional time series based on GGInformer model. Comput. Eng. Sci. 2024, 46, 590. [Google Scholar]
- Wang, H.-K.; Song, K.; Cheng, Y. A hybrid forecasting model based on CNN and Informer for short-term wind power. Front. Energy Res. 2022, 9, 788320. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, J.; Wei, D.; Xia, Y. An improved temporal convolutional network with attention mechanism for photovoltaic generation forecasting. Eng. Appl. Artif. Intell. 2023, 123, 106273. [Google Scholar] [CrossRef]
- Limouni, T.; Yaagoubi, R.; Bouziane, K.; Guissi, K.; Baali, E.H. Accurate one step and multistep forecasting of very short-term PV power using LSTM-TCN model. Renew. Energy 2023, 205, 1010–1024. [Google Scholar] [CrossRef]
- Misra, D. Mish: A self regularized non-monotonic activation function. arXiv 2019, arXiv:1908.08681. [Google Scholar]
- Liang, W.; Chen, X.; Huang, S.; Xiong, G.; Yan, K.; Zhou, X. Federal learning edge network based sentiment analysis combating global COVID-19. Comput. Commun. 2023, 204, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Yu, S.; Wang, X.; Wang, C.; Wang, T. A new source-filter model audio bandwidth extension using high frequency perception feature for IoT communications. Concurr. Comput. Pract. Exp. 2020, 32, e4638. [Google Scholar] [CrossRef]
- Zhao, J.; Nguyen, H.; Nguyen-Thoi, T.; Asteris, P.G.; Zhou, J. Improved Levenberg–Marquardt backpropagation neural network by particle swarm and whale optimization algorithms to predict the deflection of RC beams. Eng. Comput. 2022, 38 (Suppl. S5), 3847–3869. [Google Scholar] [CrossRef]
- Jiang, W.; Lv, S.; Wang, Y.; Chen, J.; Liu, X.; Sun, Y. Computational experimental study on social organization behavior prediction problems. IEEE Trans. Comput. Soc. Syst. 2020, 8, 148–160. [Google Scholar] [CrossRef]
- Jiang, W.; Ye, F.; Liu, W.; Liu, X.; Liang, G.; Xu, Y.; Tan, L. Research on Prediction Methods of Prevalence Perception under Information Exposure. Comput. Mater. Contin. 2020, 65, 3. [Google Scholar] [CrossRef]
- Feng, Y.; Qin, Y.; Zhao, S. Correlation-split and Recombination-sort Interaction Networks for air quality forecasting. Appl. Soft Comput. 2023, 145, 110544. [Google Scholar] [CrossRef]
Factor | Pearson Correlation |
---|---|
Wind speed at height of 10 m | 0.762343 |
Wind direction at height of 10 m | −0.269798 |
Wind speed at height of 30 m | 0.766938 |
Wind direction at height of 30 m | −0.316535 |
Wind speed at height of 50 m | 0.764895 |
Wind direction at height of 50 m | −0.342492 |
Wind speed at the height of wheel hub | 0.767563 |
Wind direction at the height of wheel hub | −0.315980 |
Air temperature | −0.329322 |
Atmosphere | 0.023260 |
Relative humidity | −0.211927 |
Parameter | Settings |
---|---|
Input dimension | 5 |
Basic learning rate | 0.0001 |
Batch size | 128 |
Training rounds | 50 |
Dropout coefficient | 0.1 |
Fully connected network dimension | 2048 |
Number of encoder blocks | 2 |
Number of decoder blocks | 1 |
Model | MAE | RMSE | R2 |
---|---|---|---|
TF–Informer | 2.4325 | 3.0783 | 0.9873 |
T–Informer | 2.7151 | 3.6384 | 0.9822 |
F–Informer | 2.6773 | 3.5208 | 0.9815 |
Informer | 2.8316 | 3.8993 | 0.9786 |
Model | MAE | RMSE | R2 |
---|---|---|---|
TF–Informer | 2.4325 | 3.0783 | 0.9873 |
CNN-LSTM-A | 4.2168 | 5.8746 | 0.9457 |
CNN-GRU-A | 3.8953 | 5.2785 | 0.9526 |
TF–Transformer | 2.7956 | 3.7285 | 0.9797 |
VMD–Informer | 2.9154 | 4.0117 | 0.9779 |
Model | Training Time | Inference Time |
---|---|---|
TF–Informer | 409 s | 43 s |
CNN-LSTM-A | 373 s | 47 s |
CNN-GRU-A | 357 s | 45 s |
TF–Transformer | 551 s | 51 s |
VMD–Informer | 698 s | 67 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Tang, J.; Ye, L.; Liu, J.; Zhao, W. An Improved Wind Power Forecasting Model Considering Peak Fluctuations. Electronics 2025, 14, 3050. https://doi.org/10.3390/electronics14153050
Yang S, Tang J, Ye L, Liu J, Zhao W. An Improved Wind Power Forecasting Model Considering Peak Fluctuations. Electronics. 2025; 14(15):3050. https://doi.org/10.3390/electronics14153050
Chicago/Turabian StyleYang, Shengjie, Jie Tang, Lun Ye, Jiangang Liu, and Wenjun Zhao. 2025. "An Improved Wind Power Forecasting Model Considering Peak Fluctuations" Electronics 14, no. 15: 3050. https://doi.org/10.3390/electronics14153050
APA StyleYang, S., Tang, J., Ye, L., Liu, J., & Zhao, W. (2025). An Improved Wind Power Forecasting Model Considering Peak Fluctuations. Electronics, 14(15), 3050. https://doi.org/10.3390/electronics14153050