Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = antitermination

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1969 KiB  
Article
Mutational Analysis Supports Three-Hairpin Model of Attenuator for Transcription Regulation of ilvBNC Operon in Corynebacterium glutamicum
by Ludmila E. Ryabchenko, Igor I. Titov, Tatyana E. Leonova, Tatyana I. Kalinina, Tatyana V. Gerasimova, Marina E. Sheremetieva, Nikolay A. Kolchanov, Tamara M. Khlebodarova and Alexander S. Yanenko
Microorganisms 2025, 13(2), 291; https://doi.org/10.3390/microorganisms13020291 - 28 Jan 2025
Viewed by 992
Abstract
The ilvBNC operon in Corynebacterium glutamicum encodes key enzymes for the biosynthesis of branched-chain amino acids (L-isoleucine, L-leucine, and L-valine). This operon has been studied for quite a long time, and it is assumed that three hairpin mRNA structures can be formed in [...] Read more.
The ilvBNC operon in Corynebacterium glutamicum encodes key enzymes for the biosynthesis of branched-chain amino acids (L-isoleucine, L-leucine, and L-valine). This operon has been studied for quite a long time, and it is assumed that three hairpin mRNA structures can be formed in its regulatory region; however, their functionality and role in the attenuation mechanism of the ilvBNC operon are not completely clear. In the present work, we performed a mutational analysis of mRNA secondary structures in the regulatory region of the C. glutamicum ilvBNC operon, which allowed us to propose a model of the regulation of its transcription involving three mRNA hairpins that essentially act as a transcription terminator, an antiterminator, and an antiantiterminator. In this work, we proved the existence of a transcription terminator in this operon and experimentally confirmed the effectiveness of its influence on the expression of the ilvBNC operon, AHAS enzyme activity, and valine production. We demonstrated the unique functional features of this attenuator, which, due to the overlapping of the terminator and antiterminator hairpins, is capable of rapid low-energy transitions between them without the complete disruption of the hairpin structures. Full article
(This article belongs to the Special Issue Genetics and Physiology of Corynebacteria II)
Show Figures

Figure 1

22 pages, 3126 KiB  
Article
Rli51 Attenuates Transcription of the Listeria Pathogenicity Island 1 Gene mpl and Functions as a Trans-Acting sRNA in Intracellular Bacteria
by Álvaro Morón, Laura Ortiz-Miravalles, Marcos Peñalver, Francisco García-del Portillo, M. Graciela Pucciarelli and Alvaro Darío Ortega
Int. J. Mol. Sci. 2024, 25(17), 9380; https://doi.org/10.3390/ijms25179380 - 29 Aug 2024
Cited by 1 | Viewed by 1189
Abstract
Listeria pathogenicity island 1 (LIPI-1) is a genetic region containing a cluster of genes essential for virulence of the bacterial pathogen Listeria monocytogenes. Main virulence factors in LIPI-1 include long 5′ untranslated regions (5′UTRs), among which is Rli51, a small RNA (sRNA) [...] Read more.
Listeria pathogenicity island 1 (LIPI-1) is a genetic region containing a cluster of genes essential for virulence of the bacterial pathogen Listeria monocytogenes. Main virulence factors in LIPI-1 include long 5′ untranslated regions (5′UTRs), among which is Rli51, a small RNA (sRNA) in the 5′UTR of the Zn-metalloprotease-coding mpl. So far, Rli51 function and molecular mechanisms have remained obscure. Here, we show that Rli51 exhibits a dual mechanism of regulation, functioning as a cis- and as a trans-acting sRNA. Under nutrient-rich conditions, rli51-mpl transcription is prematurely terminated, releasing a short 121-nucleotide-long sRNA. Rli51 is predicted to function as a transcription attenuator that can fold into either a terminator or a thermodynamically more stable antiterminator. We show that the sRNA Rli21/RliI binds to a single-stranded RNA loop in Rli51, which is essential to mediate premature transcription termination, suggesting that sRNA binding could stabilize the terminator fold. During intracellular infection, rli51 transcription is increased, which generates a higher abundance of the short Rli51 sRNA and allows for transcriptional read-through into mpl. Comparative intracellular bacterial transcriptomics in rli51-null mutants and the wild-type reference strain EGD-e suggests that Rli51 upregulates iron-scavenging proteins and downregulates virulence factors from LIPI-1. MS2 affinity purification confirmed that Rli51 binds transcripts of the heme-binding protein Lmo2186 and Lmo0937 in vivo. These results prove that Rli51 functions as a trans-acting sRNA in intracellular bacteria. Our research shows a growth condition-dependent mechanism of regulation for Rli51, preventing unintended mpl transcription in extracellular bacteria and regulating genes important for virulence in intracellular bacteria. Full article
(This article belongs to the Special Issue Host-Pathogen Interactions during Persistent Bacterial Infections)
Show Figures

Figure 1

21 pages, 4673 KiB  
Article
Assembly of the Tripartite and RNA Condensates of the Respiratory Syncytial Virus Factory Proteins In Vitro: Role of the Transcription Antiterminator M2-1
by Araceli Visentin, Nicolás Demitroff, Mariano Salgueiro, Silvia Susana Borkosky, Vladimir N. Uversky, Gabriela Camporeale and Gonzalo de Prat-Gay
Viruses 2023, 15(6), 1329; https://doi.org/10.3390/v15061329 - 6 Jun 2023
Cited by 5 | Viewed by 2840
Abstract
A wide variety of viruses replicate in liquid-like viral factories. Non-segmented negative stranded RNA viruses share a nucleoprotein (N) and a phosphoprotein (P) that together emerge as the main drivers of liquid–liquid phase separation. The respiratory syncytial virus includes the transcription antiterminator M [...] Read more.
A wide variety of viruses replicate in liquid-like viral factories. Non-segmented negative stranded RNA viruses share a nucleoprotein (N) and a phosphoprotein (P) that together emerge as the main drivers of liquid–liquid phase separation. The respiratory syncytial virus includes the transcription antiterminator M2-1, which binds RNA and maximizes RNA transcriptase processivity. We recapitulate the assembly mechanism of condensates of the three proteins and the role played by RNA. M2-1 displays a strong propensity for condensation by itself and with RNA through the formation of electrostatically driven protein–RNA coacervates based on the amphiphilic behavior of M2-1 and finely tuned by stoichiometry. M2-1 incorporates into tripartite condensates with N and P, modulating their size through an interplay with P, where M2-1 is both client and modulator. RNA is incorporated into the tripartite condensates adopting a heterogeneous distribution, reminiscent of the M2-1-RNA IBAG granules within the viral factories. Ionic strength dependence indicates that M2-1 behaves differently in the protein phase as opposed to the protein–RNA phase, in line with the subcompartmentalization observed in viral factories. This work dissects the biochemical grounds for the formation and fate of the RSV condensates in vitro and provides clues to interrogate the mechanism under the highly complex infection context. Full article
(This article belongs to the Special Issue Transcription and Replication of the Negative-Strand RNA Viruses)
Show Figures

Figure 1

17 pages, 2941 KiB  
Article
tRNA Fusion to Streamline RNA Structure Determination: Case Studies in Probing Aminoacyl-tRNA Sensing Mechanisms by the T-Box Riboswitch
by Jason C. Grigg, Ian R. Price and Ailong Ke
Crystals 2022, 12(5), 694; https://doi.org/10.3390/cryst12050694 - 13 May 2022
Cited by 2 | Viewed by 2882
Abstract
RNAs are prone to misfolding and are often more challenging to crystallize and phase than proteins. Here, we demonstrate that tRNA fusion can streamline the crystallization and structure determination of target RNA molecules. This strategy was applied to the T-box riboswitch system to [...] Read more.
RNAs are prone to misfolding and are often more challenging to crystallize and phase than proteins. Here, we demonstrate that tRNA fusion can streamline the crystallization and structure determination of target RNA molecules. This strategy was applied to the T-box riboswitch system to capture a dynamic interaction between the tRNA 3′-UCCA tail and the T-box antiterminator, which senses aminoacylation. We fused the T-box antiterminator domain to the tRNA anticodon arm to capture the intended interaction through crystal packing. This approach drastically improved the probability of crystallization and successful phasing. Multiple structure snapshots captured the antiterminator loop in an open conformation with some resemblance to that observed in the recent co-crystal structures of the full-length T box riboswitch–tRNA complex, which contrasts the resting, closed conformation antiterminator observed in an earlier NMR study. The anticipated tRNA acceptor–antiterminator interaction was captured in a low-resolution crystal structure. These structures combined with our previous success using prohead RNA–tRNA fusions demonstrates tRNA fusion is a powerful method in RNA structure determination. Full article
(This article belongs to the Special Issue Nucleic Acid Crystallography)
Show Figures

Figure 1

14 pages, 1807 KiB  
Communication
Conjugation Operons in Gram-Positive Bacteria with and without Antitermination Systems
by Andrés Miguel-Arribas, Ling Juan Wu, Claudia Michaelis, Ken-ichi Yoshida, Elisabeth Grohmann and Wilfried J. J. Meijer
Microorganisms 2022, 10(3), 587; https://doi.org/10.3390/microorganisms10030587 - 8 Mar 2022
Cited by 4 | Viewed by 3902
Abstract
Genes involved in the same cellular process are often clustered together in an operon whose expression is controlled by an upstream promoter. Generally, the activity of the promoter is strictly controlled. However, spurious transcription undermines this strict regulation, particularly affecting large operons. The [...] Read more.
Genes involved in the same cellular process are often clustered together in an operon whose expression is controlled by an upstream promoter. Generally, the activity of the promoter is strictly controlled. However, spurious transcription undermines this strict regulation, particularly affecting large operons. The negative effects of spurious transcription can be mitigated by the presence of multiple terminators inside the operon, in combination with an antitermination system. Antitermination systems modify the transcription elongation complexes and enable them to bypass terminators. Bacterial conjugation is the process by which a conjugative DNA element is transferred from a donor to a recipient cell. Conjugation involves many genes that are mostly organized in one or a few large operons. It has recently been shown that many conjugation operons present on plasmids replicating in Gram-positive bacteria possess a bipartite antitermination system that allows not only many terminators inside the conjugation operon to be bypassed, but also the differential expression of a subset of genes. Here, we show that some conjugation operons on plasmids belonging to the Inc18 family of Gram-positive broad host-range plasmids do not possess an antitermination system, suggesting that the absence of an antitermination system may have advantages. The possible (dis)advantages of conjugation operons possessing (or not) an antitermination system are discussed. Full article
Show Figures

Graphical abstract

19 pages, 3767 KiB  
Article
Insertion Sequence (IS) Element-Mediated Activating Mutations of the Cryptic Aromatic β-Glucoside Utilization (BglGFB) Operon Are Promoted by the Anti-Terminator Protein (BglG) in Escherichia coli
by Zhongge Zhang, Kingswell Zhou, Dennis Tran and Milton Saier
Int. J. Mol. Sci. 2022, 23(3), 1505; https://doi.org/10.3390/ijms23031505 - 28 Jan 2022
Cited by 6 | Viewed by 2537
Abstract
The cryptic β-glucoside GFB (bglGFB) operon in Escherichia coli (E. coli) can be activated by mutations arising under starvation conditions in the presence of an aromatic β-glucoside. This may involve the insertion of an insertion sequence (IS) element into [...] Read more.
The cryptic β-glucoside GFB (bglGFB) operon in Escherichia coli (E. coli) can be activated by mutations arising under starvation conditions in the presence of an aromatic β-glucoside. This may involve the insertion of an insertion sequence (IS) element into a “stress-induced DNA duplex destabilization” (SIDD) region upstream of the operon promoter, although other types of mutations can also activate the bgl operon. Here, we show that increased expression of the bglG gene, encoding a well-characterized transcriptional antiterminator, dramatically increases the frequency of both IS-mediated and IS-independent Bgl+ mutations occurring on salicin- and arbutin-containing agar plates. Both mutation rates increased with increasing levels of bglG expression but IS-mediated mutations were more prevalent at lower BglG levels. Mutations depended on the presence of both BglG and an aromatic β-glucoside, and bglG expression did not influence IS insertion in other IS-activated operons tested. The N-terminal mRNA-binding domain of BglG was essential for mutational activation, and alteration of BglG’s binding site in the mRNA nearly abolished Bgl+ mutant appearances. Increased bglG expression promoted residual bgl operon expression in parallel with the increases in mutation rates. Possible mechanisms are proposed explaining how BglG enhances the frequencies of bgl operon activating mutations. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

15 pages, 2969 KiB  
Article
The Serine Biosynthesis of Paenibacillus polymyxa WLY78 Is Regulated by the T-Box Riboswitch
by Haowei Zhang, Qin Li, Yongbin Li and Sanfeng Chen
Int. J. Mol. Sci. 2021, 22(6), 3033; https://doi.org/10.3390/ijms22063033 - 16 Mar 2021
Cited by 3 | Viewed by 2787
Abstract
Serine is important for nearly all microorganisms in protein and downstream amino acids synthesis, however, the effect of serine on growth and nitrogen fixation was not completely clear in many bacteria, besides, the regulatory mode of serine remains to be fully established. In [...] Read more.
Serine is important for nearly all microorganisms in protein and downstream amino acids synthesis, however, the effect of serine on growth and nitrogen fixation was not completely clear in many bacteria, besides, the regulatory mode of serine remains to be fully established. In this study, we demonstrated that L-serine is essential for growth and nitrogen fixation of Paenibacillus polymyxa WLY78, but high concentrations of L-serine inhibit growth, nitrogenase activity, and nifH expression. Then, we revealed that expression of the serA whose gene product catalyzes the first reaction in the serine biosynthetic pathway is regulated by the T-box riboswitch regulatory system. The 508 bp mRNA leader region upstream of the serA coding region contains a 280 bp T-box riboswitch. The secondary structure of the T-box riboswitch with several conserved features: three stem-loop structures, a 14-bp T-box sequence, and an intrinsic transcriptional terminator, is predicted. Mutation and the transcriptional leader-lacZ fusions experiments revealed that the specifier codon of serine is AGC (complementary to the anticodon sequence of tRNAser). qRT-PCR showed that transcription of serA is induced by serine starvation, whereas deletion of the specifier codon resulted in nearly no expression of serA. Deletion of the terminator sequence or mutation of the continuous seven T following the terminator led to constitutive expression of serA. The data indicated that the T-box riboswitch, a noncoding RNA segment in the leader region, regulates expression of serA by a transcription antitermination mechanism. Full article
(This article belongs to the Collection Feature Papers in Molecular Microbiology)
Show Figures

Figure 1

19 pages, 3809 KiB  
Article
Insights into Interactions of Flavanones with Target Human Respiratory Syncytial Virus M2-1 Protein from STD-NMR, Fluorescence Spectroscopy, and Computational Simulations
by Hêmily M. R. Piva, Jéssica M. Sá, Artemiza S. Miranda, Ljubica Tasic, Marcelo A. Fossey, Fátima P. Souza and Ícaro P. Caruso
Int. J. Mol. Sci. 2020, 21(6), 2241; https://doi.org/10.3390/ijms21062241 - 24 Mar 2020
Cited by 16 | Viewed by 3938
Abstract
The human Respiratory Syncytial Virus (hRSV) is the most frequent agent of respiratory infections in infants and children with no currently approved vaccine. The M2-1 protein is an important transcriptional antitermination factor and a potential target for viral replication inhibitor development. Hesperetin [...] Read more.
The human Respiratory Syncytial Virus (hRSV) is the most frequent agent of respiratory infections in infants and children with no currently approved vaccine. The M2-1 protein is an important transcriptional antitermination factor and a potential target for viral replication inhibitor development. Hesperetin (HST) and hesperidin (HSD) are flavonoids from the flavanone group, naturally found in citrus and have, as one of their properties, antiviral activity. The present study reports on the interactions between hRSV M2-1 and these flavanones using experimental techniques in association with computational tools. STD-NMR results showed that HST and HSD bind to M2-1 by positioning their aromatic rings into the target protein binding site. Fluorescence quenching measurements revealed that HST had an interaction affinity greater than HSD towards M2-1. The thermodynamic analysis suggested that hydrogen bonds and van der Waals interactions are important for the molecular stabilization of the complexes. Computational simulations corroborated with the experimental results and indicated that the possible interaction region for the flavonoids is the AMP-binding site in M2-1. Therefore, these results point that HST and HSD bind stably to a critical region in M2-1, which is vital for its biological function, and thus might play a possible role antiviral against hRSV. Full article
(This article belongs to the Special Issue Recent Advances in Biomolecular Recognition)
Show Figures

Graphical abstract

23 pages, 4152 KiB  
Article
Altered Growth and Envelope Properties of Polylysogens Containing Bacteriophage Lambda NcI Prophages
by Sailen Barik and Nitai C. Mandal
Int. J. Mol. Sci. 2020, 21(5), 1667; https://doi.org/10.3390/ijms21051667 - 28 Feb 2020
Viewed by 4042
Abstract
The bacterial virus lambda (λ) is a temperate bacteriophage that can lysogenize host Escherichia coli (E. coli) cells. Lysogeny requires λ repressor, the cI gene product, which shuts off transcription of the phage genome. The λ N protein, in contrast, [...] Read more.
The bacterial virus lambda (λ) is a temperate bacteriophage that can lysogenize host Escherichia coli (E. coli) cells. Lysogeny requires λ repressor, the cI gene product, which shuts off transcription of the phage genome. The λ N protein, in contrast, is a transcriptional antiterminator, required for expression of the terminator-distal genes, and thus, λ N mutants are growth-defective. When E. coli is infected with a λ double mutant that is defective in both N and cI (i.e., λN-cI-), at high multiplicities of 50 or more, it forms polylysogens that contain 20–30 copies of the λN-cI- genome integrated in the E. coli chromosome. Early studies revealed that the polylysogens underwent “conversion” to long filamentous cells that form tiny colonies on agar. Here, we report a large set of altered biochemical properties associated with this conversion, documenting an overall degeneration of the bacterial envelope. These properties reverted back to those of nonlysogenic E. coli as the metastable polylysogen spontaneously lost the λN-cI- genomes, suggesting that conversion is a direct result of the multiple copies of the prophage. Preliminary attempts to identify lambda genes that may be responsible for conversion ruled out several candidates, implicating a potentially novel lambda function that awaits further studies. Full article
(This article belongs to the Special Issue Bacteriophage—Molecular Studies)
Show Figures

Graphical abstract

18 pages, 1110 KiB  
Article
Validation of Predicted Virulence Factors in Listeria monocytogenes Identified Using Comparative Genomics
by Hossam Abdelhamed, Mark L. Lawrence, Reshma Ramachandran and Attila Karsi
Toxins 2019, 11(9), 508; https://doi.org/10.3390/toxins11090508 - 30 Aug 2019
Cited by 7 | Viewed by 5653
Abstract
Listeria monocytogenes is an intracellular facultative pathogen that causes listeriosis, a foodborne zoonotic infection. There are differences in the pathogenic potential of L. monocytogenes subtypes and strains. Comparison of the genome sequences among L. monocytogenes pathogenic strains EGD-e and F2365 with nonpathogenic L. [...] Read more.
Listeria monocytogenes is an intracellular facultative pathogen that causes listeriosis, a foodborne zoonotic infection. There are differences in the pathogenic potential of L. monocytogenes subtypes and strains. Comparison of the genome sequences among L. monocytogenes pathogenic strains EGD-e and F2365 with nonpathogenic L. innocua CLIP1182 and L. monocytogenes strain HCC23 revealed a set of proteins that were present in pathogenic strains and had no orthologs among the nonpathogenic strains. Among the candidate virulence factors are five proteins: putrescine carbamoyltransferase; InlH/InlC2 family class 1 internalin; phosphotransferase system (PTS) fructose transporter subunit EIIC; putative transketolase; and transcription antiterminator BglG family. To determine if these proteins have a role in adherence and invasion of intestinal epithelial Caco-2 cells and/or contribute to virulence, five mutant strains were constructed. F2365ΔinlC2, F2365Δeiic, and F2365Δtkt exhibited a significant (p < 0.05) reduction in adhesion to Caco-2 cells compared to parent F2365 strain. The invasion of F2365ΔaguB, F2365ΔinlC2, and F2365ΔbglG decreased significantly (p < 0.05) compared with the parent strain. Bacterial loads in mouse liver and spleen infected by F2365 was significantly (p < 0.05) higher than it was for F2365ΔaguB, F2365ΔinlC2, F2365Δeiic, F2365Δtkt, and F2365ΔbglG strains. This study demonstrates that aguB, inlC2, eiic, tkt, and bglG play a role in L. monocytogenes pathogenicity. Full article
(This article belongs to the Special Issue Toxins and Virulence Factors of Listeria monocytogenes)
Show Figures

Figure 1

15 pages, 5763 KiB  
Article
Comparative Genomics and Characterization of the Late Promoter pR’ from Shiga Toxin Prophages in Escherichia coli
by Ling Xiao Zhang, David J. Simpson, Lynn M. McMullen and Michael G. Gänzle
Viruses 2018, 10(11), 595; https://doi.org/10.3390/v10110595 - 31 Oct 2018
Cited by 8 | Viewed by 4224
Abstract
Shiga-toxin producing Escherichia coli (STEC) causes human illness ranging from mild diarrhea to death. The bacteriophage encoded stx genes are located in the late transcription region, downstream of the antiterminator Q. The transcription of the stx genes is directly under the control of [...] Read more.
Shiga-toxin producing Escherichia coli (STEC) causes human illness ranging from mild diarrhea to death. The bacteriophage encoded stx genes are located in the late transcription region, downstream of the antiterminator Q. The transcription of the stx genes is directly under the control of the late promoter pR’, thus the sequence diversity of the region between Q and stx, here termed the pR’ region, may affect Stx toxin production. Here, we compared the gene structure of the pR’ region and the stx subtypes of nineteen STECs. The sequence alignment and phylogenetic analysis suggested that the pR’ region tends to be more heterogeneous than the promoter itself, even if the prophages harbor the same stx subtype. Furthermore, we established and validated transcriptional fusions of the pR’ region to the DsRed reporter gene using mitomycin C (MMC) induction. Finally, these constructs were transformed into native and non-native strains and examined with flow cytometry. The results showed that induction levels changed when pR’ regions were placed under different regulatory systems. Moreover, not every stx gene could be induced in its native host bacteria. In addition to the functional genes, the diversity of the pR’ region plays an important role in determining the level of toxin induction. Full article
(This article belongs to the Special Issue Viruses of Microbes V: Biodiversity and Future Applications)
Show Figures

Figure 1

16 pages, 3703 KiB  
Article
RNA Chaperone Function of a Universal Stress Protein in Arabidopsis Confers Enhanced Cold Stress Tolerance in Plants
by Sarah Mae Boyles Melencion, Yong Hun Chi, Thuy Thi Pham, Seol Ki Paeng, Seong Dong Wi, Changyu Lee, Seoung Woo Ryu, Sung Sun Koo and Sang Yeol Lee
Int. J. Mol. Sci. 2017, 18(12), 2546; https://doi.org/10.3390/ijms18122546 - 27 Nov 2017
Cited by 52 | Viewed by 7144
Abstract
The physiological function of Arabidopsis thaliana universal stress protein (AtUSP) in plant has remained unclear. Thus, we report here the functional role of the Arabidopsis universal stress protein, AtUSP (At3g53990). To determine how AtUSP affects physiological responses towards cold stress, AtUSP overexpression (AtUSP [...] Read more.
The physiological function of Arabidopsis thaliana universal stress protein (AtUSP) in plant has remained unclear. Thus, we report here the functional role of the Arabidopsis universal stress protein, AtUSP (At3g53990). To determine how AtUSP affects physiological responses towards cold stress, AtUSP overexpression (AtUSP OE) and T-DNA insertion knock-out (atusp, SALK_146059) mutant lines were used. The results indicated that AtUSP OE enhanced plant tolerance to cold stress, whereas atusp did not. AtUSP is localized in the nucleus and cytoplasm, and cold stress significantly affects RNA metabolism such as by misfolding and secondary structure changes of RNA. Therefore, we investigated the relationship of AtUSP with RNA metabolism. We found that AtUSP can bind nucleic acids, including single- and double-stranded DNA and luciferase mRNA. AtUSP also displayed strong nucleic acid-melting activity. We expressed AtUSP in RL211 Escherichia coli, which contains a hairpin-loop RNA structure upstream of chloramphenicol acetyltransferase (CAT), and observed that AtUSP exhibited anti-termination activity that enabled CAT gene expression. AtUSP expression in the cold-sensitive Escherichia coli (E. coli) mutant BX04 complemented the cold sensitivity of the mutant cells. As these properties are typical characteristics of RNA chaperones, we conclude that AtUSP functions as a RNA chaperone under cold-shock conditions. Thus, the enhanced tolerance of AtUSP OE lines to cold stress is mediated by the RNA chaperone function of AtUSP. Full article
(This article belongs to the Special Issue Molecular Chaperones)
Show Figures

Graphical abstract

14 pages, 3991 KiB  
Article
Binding Specificities of the Telomere Phage ϕKO2 Prophage Repressor CB and Lytic Repressor Cro
by Jens Andre Hammerl, Claudia Jäckel, Erich Lanka, Nicole Roschanski and Stefan Hertwig
Viruses 2016, 8(8), 213; https://doi.org/10.3390/v8080213 - 3 Aug 2016
Cited by 4 | Viewed by 5302
Abstract
Temperate bacteriophages possess a genetic switch which regulates the lytic and lysogenic cycle. The genomes of the temperate telomere phages N15, PY54, and ϕKO2 harbor a primary immunity region (immB) comprising genes for the prophage repressor (cI or cB), [...] Read more.
Temperate bacteriophages possess a genetic switch which regulates the lytic and lysogenic cycle. The genomes of the temperate telomere phages N15, PY54, and ϕKO2 harbor a primary immunity region (immB) comprising genes for the prophage repressor (cI or cB), the lytic repressor (cro) and a putative antiterminator (q). The roles of these products are thought to be similar to those of the lambda proteins CI (CI prophage repressor), Cro (Cro repressor), and Q (antiterminator Q), respectively. Moreover, the gene order and the location of several operator sites in the prototype telomere phage N15 and in ϕKO2 are reminiscent of lambda-like phages. We determined binding sites of the ϕKO2 prophage repressor CB and lytic repressor Cro on the ϕKO2 genome in detail by electrophoretic mobility shift assay (EMSA) studies. Unexpectedly, ϕKO2 CB and Cro revealed different binding specificities. CB was bound to three OR operators in the intergenic region between cB and cro, two OL operators between cB and the replication gene repA and even to operators of N15. Cro bound exclusively to the 16 bp operator site OR3 upstream of the ϕKO2 prophage repressor gene. The ϕKO2 genes cB and cro are regulated by several strong promoters overlapping with the OR operators. The data suggest that Cro represses cB transcription but not its own synthesis, as already reported for PY54 Cro. Thus, not only PY54, but also phage ϕKO2 possesses a genetic switch that diverges significantly from the switch of lambda-like phages. Full article
(This article belongs to the Section Bacterial Viruses)
Show Figures

Figure 1

16 pages, 2591 KiB  
Article
Non-Conserved Residues in Clostridium acetobutylicum tRNAAla Contribute to tRNA Tuning for Efficient Antitermination of the alaS T Box Riboswitch
by Liang-Chun Liu, Frank J. Grundy and Tina M. Henkin
Life 2015, 5(4), 1567-1582; https://doi.org/10.3390/life5041567 - 28 Sep 2015
Cited by 8 | Viewed by 6133
Abstract
The T box riboswitch regulates expression of amino acid-related genes in Gram-positive bacteria by monitoring the aminoacylation status of a specific tRNA, the binding of which affects the folding of the riboswitch into mutually exclusive terminator or antiterminator structures. Two main pairing interactions [...] Read more.
The T box riboswitch regulates expression of amino acid-related genes in Gram-positive bacteria by monitoring the aminoacylation status of a specific tRNA, the binding of which affects the folding of the riboswitch into mutually exclusive terminator or antiterminator structures. Two main pairing interactions between the tRNA and the leader RNA have been demonstrated to be necessary, but not sufficient, for efficient antitermination. In this study, we used the Clostridium acetobutylicum alaS gene, which encodes alanyl-tRNA synthetase, to investigate the specificity of the tRNA response. We show that the homologous C. acetobutylicum tRNAAla directs antitermination of the C. acetobutylicum alaS gene in vitro, but the heterologous Bacillus subtilis tRNAAla (with the same anticodon and acceptor end) does not. Base substitutions at positions that vary between these two tRNAs revealed synergistic and antagonistic effects. Variation occurs primarily at positions that are not conserved in tRNAAla species, which indicates that these non-conserved residues contribute to optimal antitermination of the homologous alaS gene. This study suggests that elements in tRNAAla may have coevolved with the homologous alaS T box leader RNA for efficient antitermination. Full article
(This article belongs to the Special Issue Evolution of tRNA)
Show Figures

Figure 1

23 pages, 2256 KiB  
Article
The Molecular Switch of Telomere Phages: High Binding Specificity of the PY54 Cro Lytic Repressor to a Single Operator Site
by Jens Andre Hammerl, Nicole Roschanski, Rudi Lurz, Reimar Johne, Erich Lanka and Stefan Hertwig
Viruses 2015, 7(6), 2771-2793; https://doi.org/10.3390/v7062746 - 2 Jun 2015
Cited by 6 | Viewed by 6759
Abstract
Temperate bacteriophages possess a molecular switch, which regulates the lytic and lysogenic growth. The genomes of the temperate telomere phages N15, PY54 and ɸKO2 harbor a primary immunity region (immB) comprising genes for the prophage repressor, the lytic repressor and a [...] Read more.
Temperate bacteriophages possess a molecular switch, which regulates the lytic and lysogenic growth. The genomes of the temperate telomere phages N15, PY54 and ɸKO2 harbor a primary immunity region (immB) comprising genes for the prophage repressor, the lytic repressor and a putative antiterminator. The roles of these products are thought to be similar to those of the lambda proteins CI, Cro and Q, respectively. Moreover, the gene order and the location of several operator sites in the prototype telomere phage N15 and in ɸKO2 are also reminiscent of lambda-like phages. By contrast, in silico analyses revealed the presence of only one operator (O(_{ m{R}})3) in PY54. The purified PY54 Cro protein was used for EMSA studies demonstrating that it exclusively binds to a 16-bp palindromic site (O(_{ m{R}})3) upstream of the prophage repressor gene. The O(_{ m{R}})3 operator sequences of PY54 and ɸKO2/N15 only differ by their peripheral base pairs, which are responsible for Cro specificity. PY54 cI and cro transcription is regulated by highly active promoters initiating the synthesis of a homogenious species of leaderless mRNA. The location of the PY54 Cro binding site and of the identified promoters suggests that the lytic repressor suppresses cI transcription but not its own synthesis. The results indicate an unexpected diversity of the growth regulation mechanisms in lambda-related phages. Full article
Show Figures

Figure 1

Back to TopTop