Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (10,807)

Search Parameters:
Keywords = antioxidant addition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1081 KiB  
Article
Antioxidant and Anti-inflammatory Activities of Latilactobacillus curvatus and L. sakei Isolated from Green Tripe
by Ga Hun Lee, Sung Hyun Choi, Yong Hyun Lee and Jae Kweon Park
Nutrients 2025, 17(15), 2464; https://doi.org/10.3390/nu17152464 (registering DOI) - 28 Jul 2025
Abstract
Background/Objectives: Green tripe (GRET) is rich in essential fatty acids, vitamins, calcium, phosphorus, and other nutrients and contains various beneficial microorganisms, including lactobacillus, along with feed components consumed by ruminants. Methods: In this study, Latilactobacillus sakei and L. curvatus were isolated from GRET [...] Read more.
Background/Objectives: Green tripe (GRET) is rich in essential fatty acids, vitamins, calcium, phosphorus, and other nutrients and contains various beneficial microorganisms, including lactobacillus, along with feed components consumed by ruminants. Methods: In this study, Latilactobacillus sakei and L. curvatus were isolated from GRET and evaluated for their potential as probiotics, focusing on their anti-inflammatory properties and ability to modulate inflammatory responses. Results: When heat-killed L. sakei or L. curvatus (108 CFU/mL) and their metabolites (0.5 mg/mL) were applied to RAW 264.7 macrophages stimulated with LPS, nitric oxide (NO) production was reduced by approximately 10–35% and 2–11%, respectively. Furthermore, the expression levels of key anti-inflammatory cytokines, TNF-α and IL-6, were suppressed by more than 5%. These effects were not due to cytotoxicity but instead due to genuine anti-inflammatory activity. In addition, both strains exhibited antioxidant activity, as demonstrated by their performance in ABTS and FRAP assays. Conclusions: These findings suggest that L. sakei and L. curvatus have significant antioxidant and anti-inflammatory properties, highlighting their potential as probiotics and prebiotics. Moreover, these newly isolated strains from GRET are expected to serve as valuable functional ingredients for developing health-promoting foods and dietary supplements. Full article
(This article belongs to the Section Prebiotics and Probiotics)
22 pages, 5646 KiB  
Article
Preparation and Characterization of D-Carvone-Doped Chitosan–Gelatin Bifunctional (Antioxidant and Antibacterial Properties) Film and Its Application in Xinjiang Ramen
by Cong Zhang, Kai Jiang, Yilin Lin, Rui Cui and Hong Wu
Foods 2025, 14(15), 2645; https://doi.org/10.3390/foods14152645 - 28 Jul 2025
Abstract
In this study, a composite film with dual antioxidant and antibacterial properties was prepared by combining 2% chitosan and 7% gelatin (2:1, w:w), with D-carvone (0–4%) as the primary active component. The effect of D-carvone content on the performance of the composite films [...] Read more.
In this study, a composite film with dual antioxidant and antibacterial properties was prepared by combining 2% chitosan and 7% gelatin (2:1, w:w), with D-carvone (0–4%) as the primary active component. The effect of D-carvone content on the performance of the composite films was systematically investigated. The results showed that adding 1% D-carvone increased the water contact angle by 28%, increased the elongation at break by 35%, and decreased the WVTR by 18%. FTIR and SEM confirmed that ≤2% D-carvone uniformly bonded with the substrate through hydrogen bonds, and the film was dense and non-porous. In addition, the DPPH scavenging rate of the 1–2% D-carvone composite film increased to about 30–40%, and the ABTS+ scavenging rate increased to about 35–40%; the antibacterial effect on Escherichia coli and Staphylococcus aureus increased by more than 70%. However, when the addition amount was too high (exceeding 2%), the composite film became agglomerated, microporous, and phase-separated, affecting the film performance, and due to its own taste, it reduced the sensory quality of the noodles. Comprehensively, the composites showed better performance when the content of D-carvone was 1–2% and also the best effect for freshness preservation in Xinjiang ramen. This study provides a broad application prospect for natural terpene compound-based composite films in the field of high-moisture, multi-fat food preservation, and provides a theoretical basis and practical guidance for the development of efficient and safe food packaging materials. In the future, the composite film can be further optimized, and the effect of flavor can be further explored to meet the needs of different food preservation methods. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Graphical abstract

15 pages, 1641 KiB  
Article
Optimization of TEMPO-Mediated Oxidation of Chitosan to Enhance Its Antibacterial and Antioxidant Activities
by Abdellah Mourak, Aziz Ait-Karra, Mourad Ouhammou, Abdoussadeq Ouamnina, Abderrahim Boutasknit, Mohamed El Hassan Bouchari, Najat Elhadiri and Abdelhakim Alagui
Polysaccharides 2025, 6(3), 65; https://doi.org/10.3390/polysaccharides6030065 - 28 Jul 2025
Abstract
This study systematically investigated the oxidation of chitosan using the TEMPO/NaClO/NaBr catalytic system under varying experimental conditions, namely temperature, reaction time, and pH, in order to optimize the oxidation process. Response surface methodology (RSM) was employed to determine the optimal parameters for maximizing [...] Read more.
This study systematically investigated the oxidation of chitosan using the TEMPO/NaClO/NaBr catalytic system under varying experimental conditions, namely temperature, reaction time, and pH, in order to optimize the oxidation process. Response surface methodology (RSM) was employed to determine the optimal parameters for maximizing the efficiency of the reaction. The structural modifications to the chitosan following oxidation were confirmed using Fourier-transform infrared spectroscopy (FTIR), alongside additional analytical techniques, which validated the successful introduction of carbonyl and carboxyl functional groups. Solvent-cast films were prepared from both native and oxidized chitosan in order to evaluate their functional performance. The antibacterial activity of these films was assessed against Gram-negative (Salmonella) and Gram-positive (Streptococcus faecalis) bacterial strains. The oxidized chitosan films exhibited significantly enhanced antibacterial effects, particularly at shorter incubation periods. In addition, antioxidant activity was evaluated using DPPH radical scavenging and ferrous ion chelation assays, which both revealed a marked improvement in radical scavenging ability and metal ion binding capacity in oxidized chitosan. These findings confirm that TEMPO-mediated oxidation effectively enhances the physicochemical and bioactive properties of chitosan, highlighting its potential for biomedical and environmental applications. Full article
29 pages, 953 KiB  
Review
Comprehensive Review of Alternative Proteins in Pet Food: Research Publications, Patents, and Product Trends in Plant, Aquatic, Insect, and Cell-Based Sources
by Phatthranit Klinmalai, Pitiya Kamonpatana, Arisara Thongpech, Janenutch Sodsai, Khwanchat Promhuad, Atcharawan Srisa, Yeyen Laorenza, Attawit Kovitvadhi, Sathita Areerat, Anusorn Seubsai, Shyam S. Sablani and Nathdanai Harnkarnsujarit
Foods 2025, 14(15), 2640; https://doi.org/10.3390/foods14152640 - 28 Jul 2025
Abstract
The increasing demand for sustainable pet-food solutions has driven interest in alternative protein sources, as researchers seek to avoid allergenic foods while maintaining optimal pet nutrition. This review explores recent scientific publications, patent trends, and market trends relating to various alternative protein sources, [...] Read more.
The increasing demand for sustainable pet-food solutions has driven interest in alternative protein sources, as researchers seek to avoid allergenic foods while maintaining optimal pet nutrition. This review explores recent scientific publications, patent trends, and market trends relating to various alternative protein sources, including plant-based, aquatic, insect-derived, and cell-based sources. Their nutritional composition, functional properties, and potential benefits for pet health were assessed. Plant-based proteins, such as soy, pea, and lentils, provide essential amino acids and functional properties suitable for meat analogues. Microalgae and seaweed offer rich sources of omega-3 fatty acids, antioxidants, and bioactive compounds. Insect-based proteins such as black-soldier-fly larvae and mealworms are highly digestible and rich in essential nutrients, with additional benefits for gut health. Emerging cell-based proteins present a novel, lab-grown alternative with promising sustainability and nutritional advantages. While these protein sources offer significant benefits, challenges related to digestibility, palatability, regulatory approval, and consumer acceptance must be addressed. The emphasis of the present research is on current developments for industry uses and future potential. The analysis sheds light on the contributions of alternative protein sources to the promotion of sustainable and nutrient meals for pets. Full article
Show Figures

Figure 1

22 pages, 2394 KiB  
Article
Synthesis and Molecular Modeling of Antioxidant and Anti-Inflammatory Five-Membered Heterocycle–Cinnamic Acid Hybrids
by Konstantinos Theodoridis, Eleftherios Charissopoulos, Dimitra Tsioumela and Eleni Pontiki
Molecules 2025, 30(15), 3148; https://doi.org/10.3390/molecules30153148 - 27 Jul 2025
Abstract
In this study, the design and synthesis of a novel series of cinnamic acid and 1,2,4-triazole hybrids were reported, aiming to enhance antioxidant and lipoxygenase inhibitory activities through pharmacophore combination. Cinnamic acid derivatives and 1,2,4-triazoles exhibit a broad spectrum of biological activities; therefore, [...] Read more.
In this study, the design and synthesis of a novel series of cinnamic acid and 1,2,4-triazole hybrids were reported, aiming to enhance antioxidant and lipoxygenase inhibitory activities through pharmacophore combination. Cinnamic acid derivatives and 1,2,4-triazoles exhibit a broad spectrum of biological activities; therefore, by synthesizing hybrid molecules, we would like to exploit the beneficial characteristics of each scaffold. The general synthetic procedure comprises three synthetic steps, starting from the reaction of appropriate substituted cinnamic acid with hydrazine monohydrate in acetonitrile with cyclohexane and resulting in the formation of hydrazides. Consequently, the hydrazides reacted with phenylisothiocyanate under microwave irradiation conditions. Then, cyclization proceeded to the 1,2,4-triazole after the addition of NaOH solution and microwave irradiation. All the synthesized derivatives have been studied for their ability (a) to interact with the free radical DPPH, (b) inhibit lipid peroxidation induced by AAPH, and (c) inhibit soybean lipoxygenase. The synthesized derivatives have shown significant antioxidant activity and have been proved to be very good lipoxygenase inhibitors. Compounds 4b and 4g (IC50 = 4.5 μM) are the most potent within the series followed by compound 6a (IC50 = 5.0 μM). All the synthesized derivatives have been subjected to docking studies related to soybean lipoxygenase. Compound 4g exhibited a docking score of −9.2 kcal/mol and formed hydrophobic interactions with Val126, Tyr525, Lys526, Arg533, and Trp772, as well as a π−cation interaction with Lys526. Full article
Show Figures

Figure 1

14 pages, 692 KiB  
Article
Prebiotic and Health-Promoting Benefits of Dextran-Type Exopolysaccharide Produced by Leuconostoc mesenteroides SJC113
by Dominika Jurášková, Susana C. Ribeiro and Célia C. G. Silva
Foods 2025, 14(15), 2635; https://doi.org/10.3390/foods14152635 - 27 Jul 2025
Abstract
The exopolysaccharide (EPS) produced by Leuconostoc mesenteroides SJC113 is a glucan with α-1,6 and α-3,6 branched glycosidic linkages that may promote human health. The aim of this study was to investigate in vitro the antioxidant, cholesterol-binding, and prebiotic activities of this EPS and [...] Read more.
The exopolysaccharide (EPS) produced by Leuconostoc mesenteroides SJC113 is a glucan with α-1,6 and α-3,6 branched glycosidic linkages that may promote human health. The aim of this study was to investigate in vitro the antioxidant, cholesterol-binding, and prebiotic activities of this EPS and its effect on the gut microbiota. The EPS exhibited moderate antioxidant activity, showing free radical scavenging activity (10.94 ± 1.33%) and hydroxyl scavenging activity (6.29 ± 1.59%) at 1 mg/mL. Notably, it showed high cholesterol-binding activity, lowering cholesterol levels by 40% at 1 mg/mL EPS. Ln. mesenteroides SJC113 showed strong adhesion to mucin, and its EPS enhanced the adhesion of the probiotic Lacticaseibacillus rhamnosus GG. The application of this EPS stimulated the growth of several lactic acid bacteria (LAB) strains in vitro, indicating its potential as a prebiotic. In addition, the use of a human gastrointestinal simulator inoculated with fecal microbiota showed that the EPS favored the growth of Bifidobacterium spp. and lactobacilli while reducing Enterobacteriaceae. These results emphasize the multifunctional nature of the EPS produced by Ln. mesenteroides SJC113 with antioxidant, cholesterol-lowering, and prebiotic properties. Further research is required to investigate the specific mechanisms of action and health benefits in vivo. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

11 pages, 371 KiB  
Article
Impact of Capsaicinoid Supplementation in Health and Performance of Broiler Chickens Subjected to Lipopolysaccharide Challenge
by Rayanne A. Nunes, Kelly M. M. Dias, Marcio S. Duarte, Claudson O. Brito, Ricardo V. Nunes, Tiago G. Petrolli, Samuel O. Borges, Larissa P. Castro, Beatriz G. Vale and Arele A. Calderano
Animals 2025, 15(15), 2203; https://doi.org/10.3390/ani15152203 - 26 Jul 2025
Viewed by 13
Abstract
This study investigated the effects of dietary capsaicinoid (CAP) supplementation on broiler chickens subjected to an inflammatory challenge induced by lipopolysaccharide (LPS). A total of 144 Cobb500™ male broilers (Rivelli Alimentos SA, Matheus Leme, Brazil), raised from 1 to 21 days, were randomly [...] Read more.
This study investigated the effects of dietary capsaicinoid (CAP) supplementation on broiler chickens subjected to an inflammatory challenge induced by lipopolysaccharide (LPS). A total of 144 Cobb500™ male broilers (Rivelli Alimentos SA, Matheus Leme, Brazil), raised from 1 to 21 days, were randomly assigned to three treatments, with eight replicates of six birds. Treatments were a control diet (CON), a control diet with LPS administration (CON+LPS), and a control diet supplemented with 1 mg CAP/kg feed and LPS (CAP+LPS). LPS was administered intraperitoneally on days 14, 16, 18, and 20. Performance, intestinal morphometry, serum metabolites, and jejunal gene expression related to oxidative and inflammatory responses were evaluated. Slaughter was at 20 days. Data were subjected to ANOVA and means compared by Tukey’s test at 0.05 significance. CON broilers exhibited the highest feed intake and a better feed conversion ratio (p < 0.05) compared to CON+LPS. CAP+LPS broilers showed higher body weight gain than CON+LPS but lower than CON broilers (p < 0.001). CON+LPS broilers had the highest crypt depth (p = 0.002). Higher mRNA expression of superoxide dismutase and catalase (p > 0.05) was observed in CON broilers. In conclusion, supplementation with a 1 mg CAP/kg diet improves the growth performance and intestinal morphometry of LPS-challenged broiler chickens. Full article
(This article belongs to the Special Issue Plant Extracts as Feed Additives in Animal Nutrition and Health)
22 pages, 3781 KiB  
Article
Enhancing Parenteral Nutrition via Supplementation with Antioxidant Lutein in Human Serum Albumin-Based Nanosuspension
by Izabela Żółnowska, Aleksandra Gostyńska-Stawna, Katarzyna Dominiak, Barbara Jadach and Maciej Stawny
Pharmaceutics 2025, 17(8), 971; https://doi.org/10.3390/pharmaceutics17080971 - 26 Jul 2025
Viewed by 63
Abstract
Background/Objectives: Parenteral nutrition (PN) supports patients unable to receive nutrients via the gastrointestinal tract, but it lacks the health-promoting natural bioactive compounds found in a typical oral diet. This study aimed to develop a human serum albumin-based intravenous delivery system for lutein [...] Read more.
Background/Objectives: Parenteral nutrition (PN) supports patients unable to receive nutrients via the gastrointestinal tract, but it lacks the health-promoting natural bioactive compounds found in a typical oral diet. This study aimed to develop a human serum albumin-based intravenous delivery system for lutein (an antioxidant carotenoid with vision-supportive and hepatoprotective properties) as a PN additive. Methods: An albumin–lutein nanosuspension (AlbLuteN) was synthesized using a modified nanoparticle albumin-bound (nabTM) technology and characterized physicochemically. The nanoformulation was added to four commercial PN admixtures to assess the supplementation safety throughout the maximum infusion period. Visual inspection and measurements of fat globules larger than 5 µm (PFAT5) and the mean hydrodynamic diameter (Z-average), zeta potential, pH, osmolality, and lutein content were performed to detect potential interactions and evaluate the physicochemical stability. Results: AlbLuteN consisted of uniform particles (Z-average of 133.5 ± 2.8 nm) with a zeta potential of −28.1 ± 1.8 mV, lutein content of 4.76 ± 0.39%, and entrapment efficiency of 84.4 ± 6.3%. Differential scanning calorimetry confirmed the amorphous state of lutein in the nanosuspension. AlbLuteN was successfully incorporated into PN admixtures, without visible phase separation or significant changes in physicochemical parameters. The PFAT5 and Z-average values remained within pharmacopeial limits over 24 h. No substantial shifts in zeta potential, pH, or osmolality were observed. The lutein content remained stable, with losses below 3%. Conclusions: AlbLuteN can be safely added to representative PN admixtures without compromising their stability. This approach offers a novel strategy for intravenous lutein delivery and may contribute to improving the nutritional profile of PN. Full article
Show Figures

Figure 1

22 pages, 14055 KiB  
Article
Regulatory Effects of Codonopsis pilosula Alkali-extracted Polysaccharide Induced Intestinal Lactobacillus Enrichment on Peripheral Blood Proteomics in Tumor-Bearing Mice
by Yuting Fan, Chenqi Yang, Yiran Zhao, Xiao Han, Hongfei Ji, Zhuohao Ren, Wenjie Ding and Haiyu Ji
Microorganisms 2025, 13(8), 1750; https://doi.org/10.3390/microorganisms13081750 - 26 Jul 2025
Viewed by 71
Abstract
Codonopsis pilosula polysaccharides have demonstrated multiple biological activities including immune regulation, antitumor, and antioxidant properties. The rapid development and integrated application of multi-omics can facilitate the unraveling of the complex network of immune system regulation. In this study, C. pilosula alkali-extracted polysaccharide (CPAP) [...] Read more.
Codonopsis pilosula polysaccharides have demonstrated multiple biological activities including immune regulation, antitumor, and antioxidant properties. The rapid development and integrated application of multi-omics can facilitate the unraveling of the complex network of immune system regulation. In this study, C. pilosula alkali-extracted polysaccharide (CPAP) were prepared, and their effects on gut microbiota compositions, metabolic pathways, and protein expressions in peripheral blood and solid tumors in mice were further evaluated. The 16S rDNA sequencing results showed that CPAP could effectively promote the enrichment of intestinal Lactobacillus in tumor-bearing mice. In addition, it could be inferred from peripheral blood and solid tumor proteomics results that CPAP might activate T cell-mediated antitumor immune functions by regulating purine metabolism and alleviate tumor-caused inflammation by promoting neutrophil degranulation, finally inducing apoptosis in tumor cells by increasing oxidative stress. These results will provide a theoretical foundation and data support for the further development of CPAP as dietary adjuvants targeting immune deficiency-related diseases. Full article
(This article belongs to the Section Food Microbiology)
20 pages, 1716 KiB  
Article
Enhancing Antioxidants Performance of Ceria Nanoparticles in Biological Environment via Surface Engineering with o-Quinone Functionalities
by Pierluigi Lasala, Tiziana Latronico, Umberto Mattia, Rosa Maria Matteucci, Antonella Milella, Matteo Grattieri, Grazia Maria Liuzzi, Giuseppe Petrosillo, Annamaria Panniello, Nicoletta Depalo, Maria Lucia Curri and Elisabetta Fanizza
Antioxidants 2025, 14(8), 916; https://doi.org/10.3390/antiox14080916 - 25 Jul 2025
Viewed by 167
Abstract
The development of ceria (CeO2−x)-based nanoantioxidants requires fine-tuning of structural and surface properties for enhancing antioxidant behavior in biological environments. In this contest, here ultrasmall water-dispersible CeO2−x nanoparticles (NPs), characterized by a high Ce3+/Ce4+ ratio, were synthesized [...] Read more.
The development of ceria (CeO2−x)-based nanoantioxidants requires fine-tuning of structural and surface properties for enhancing antioxidant behavior in biological environments. In this contest, here ultrasmall water-dispersible CeO2−x nanoparticles (NPs), characterized by a high Ce3+/Ce4+ ratio, were synthesized in a non-polar solvent and phase-transfer to an aqueous environment through ligand-exchange reactions using citric acid (CeO2−x@Cit) and post-treatment with dopamine hydrochloride (CeO2−x@Dopa). The concept behind this work is to enhance via surface engineering the intrinsic antioxidant properties of CeO2−x NPs. For this purpose, thanks to electron transfer reactions between dopamine and CeO2−x, the CeO2−x@Dopa was obtained, characterized by increased surface Ce3+ sites and surface functionalized with polydopamine bearing o-quinone structures as demonstrated by complementary spectroscopic (UV–vis, FT-IR, and XPS) characterizations. To test the antioxidant properties of CeO2−x NPs, the scavenging activity before and after dopamine treatment against artificial radical 1,1-diphenyl-2-picrylhydrazyl (DPPH·) and the ability to reduce the reactive oxygen species in Diencephalic Immortalized Type Neural Cell line 1 were evaluated. CeO2−x@Dopa demonstrated less efficiency in DPPH· scavenging (%radical scavenging activity 13% versus 42% for CeO2−x@Cit before dopamine treatment at 33 μM DPPH· and 0.13 mg/mL loading of NPs), while it markedly reduced intracellular ROS levels (ROS production 35% compared to 66% of CeO2−x@Cit before dopamine treatment with respect to control—p < 0.001 and p < 0.01, respectively). While steric hindrance from the dopamine-derived polymer layer limited direct electron transfer from CeO2−x NP surface to DPPH·, within cells the presence of o-quinone groups contributed with CeO2−x NPs to break the autoxidation chain of organic substrates, enhancing the antioxidant activity. The functionalization of NPs with o-quinone structures represents a valuable approach to increase the inherent antioxidant properties of CeO2−x NPs, enhancing their effectiveness in biological systems by promoting additional redox pathways. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Graphical abstract

15 pages, 1821 KiB  
Article
Antioxidant Enzyme Activity and mRNA Expression in the Reproductive Tissues of Male European Red Deer (Cervus elaphus elaphus)
by Nicoletta M. Neuman, Przemysław Gilun, Magdalena Koziorowska-Gilun, Paweł Janiszewski and Anna Dziekońska
Int. J. Mol. Sci. 2025, 26(15), 7221; https://doi.org/10.3390/ijms26157221 - 25 Jul 2025
Viewed by 98
Abstract
The aim of this study was to analyze the influence of season (rut and non-rut) on the antioxidant status of selected reproductive tissues in male European red deer (Cervus elaphus elaphus). Tissue samples were collected post mortem from the testes and [...] Read more.
The aim of this study was to analyze the influence of season (rut and non-rut) on the antioxidant status of selected reproductive tissues in male European red deer (Cervus elaphus elaphus). Tissue samples were collected post mortem from the testes and epididymides (caput, corpus, and cauda) of 24 animals. The activity of antioxidant enzymes (superoxide dismutase—SOD, glutathione peroxidase—GPx, and catalase—CAT) and the mRNA expression of SOD1, SOD2, SOD3, GPx4, GPx5, and CAT were examined. In addition, these proteins were identified by western blot. ANOVA revealed that season, type of tissue, and the interaction between these factors significantly (p ≤ 0.05) influenced the activity and mRNA expression of the analyzed enzymes. The activity of SOD and GPx peaked in the corpus epididymis in the rut season and in the caput epididymis in the non-rut season. Regardless of season, the relative abundances of GPx4, SOD1, SOD2, and SOD3 mRNA were highest in the testis, and GPx5 mRNA—in the caput epididymis. The activity of SOD and CAT was significantly higher during the non-rut season compared with the rut season, but only in the caput epididymis. This study demonstrated that the activity of antioxidant enzymes and the relative mRNA expression varies across tissues and seasons to provide the reproductive system of European red deer with the required antioxidant protection. Further research is needed to expand our understanding of the antioxidant defense system in the reproductive tract of European red deer. Full article
(This article belongs to the Special Issue Sperm Oxidative Stress and Male Infertility)
Show Figures

Figure 1

19 pages, 3748 KiB  
Article
Enhancement of Phenolic and Polyacetylene Production in Chinese Lobelia (Lobelia chinensis Lour.) Plant Suspension Culture by Employing Silver, Iron Oxide Nanoparticles and Multiwalled Carbon Nanotubes as Elicitors
by Xinlei Bai, Han-Sol Lee, Jong-Eun Han, Hosakatte Niranjana Murthy and So-Young Park
Processes 2025, 13(8), 2370; https://doi.org/10.3390/pr13082370 - 25 Jul 2025
Viewed by 98
Abstract
Silver nanoparticles (AgNPs), iron oxide nanoparticles (Fe2O4NPs), and multiwalled carbon nanotubes (MWCNTs) are widely used in various applications, such as biomedicine, environmental remediation, and agriculture. In addition, these nanomaterials can affect the production of bioactive compounds in plants that [...] Read more.
Silver nanoparticles (AgNPs), iron oxide nanoparticles (Fe2O4NPs), and multiwalled carbon nanotubes (MWCNTs) are widely used in various applications, such as biomedicine, environmental remediation, and agriculture. In addition, these nanomaterials can affect the production of bioactive compounds in plants that have pharmacological activities. In the current study, the in vitro plant cultures of Chinese lobelia (Lobelia chinensis Lour.) were established in MS medium and treated with 0, 12.5, 25, 37.5, and 50 mg L−1 AgNPs or Fe2O4NPs, or MWCNTs. Initially, plants were grown for four weeks without any elicitors, and after that, the cultures were treated with nano-elicitors for one week. After five weeks, the effects of nano-elicitors were estimated on growth, total phenolic, flavonoids, polyacetylenes, and ABTS/DPPH/FRAP antioxidant activity was investigated. The results showed that lower levels of AgNPs (25 mg L−1), Fe2O4NPs (25 mg L−1), and MWCNTs (12.5 mg L−1) favored the accumulation of fresh and dry biomass. Whereas, 37.5 mg L−1 AgNPs, 25 mg L−1 Fe2O4NPs, and 37.5 mg L−1 MWCNTs enhanced the accumulation of total phenolics, flavonoids, specific phenolic compounds including chlorogenic acid, catechin, phloretic acid, coumaric acid, salicylic acid, naringin, myricetin, linarin, and polyacetylenes viz. lobetylonin and lobetyolin in higher concentrations. The plant extracts elicited by nanomaterials also depicted very good antioxidant activities according to ABTS, DPPH, and FRAP assays. These results suggest that specific nanomaterials, and at specific levels, could be used for the production of bioactive compounds from shoot cultures of Chinese lobelia. Full article
Show Figures

Graphical abstract

20 pages, 3154 KiB  
Article
The Effect of Astaxanthin on Ochratoxin A-Induced Intestinal Injury in Chickens Through RIPK1/RIPK3/MLKL Pathway
by Ruiwen Fan, Wenqi Tian, Bo Jin, Yuhang Sun, Miao Long, Shuhua Yang and Peng Li
Antioxidants 2025, 14(8), 915; https://doi.org/10.3390/antiox14080915 - 25 Jul 2025
Viewed by 160
Abstract
Ochratoxin A (OTA), as a mycotoxin, can contaminate a variety of feeds and foods. Existing studies have shown that the main toxicity of OTA to organisms is nephrotoxicity, but the toxic mechanism to other organs is still worthy of further study. Whether OTA [...] Read more.
Ochratoxin A (OTA), as a mycotoxin, can contaminate a variety of feeds and foods. Existing studies have shown that the main toxicity of OTA to organisms is nephrotoxicity, but the toxic mechanism to other organs is still worthy of further study. Whether OTA causes intestinal damage through the necroptosis pathway mediated by RIPK1/RIPK3/MLKL remains to be elucidated. Astaxanthin (AST), a feed additive with strong antioxidant properties, was used as an antidote to evaluate the alleviation effect on OTA-induced intestinal injury and the underlying mechanism in this research. Chickens are the most sensitive animals to OTA except pigs. Therefore, 70 white-feathered chickens (n = 15) and Chicken Small Intestinal Epithelial Cells (CSIECs) were used as experimental subjects. Experimental models were established by single or combined exposure of OTA (1.0 mg/kg on chickens for 21 d; 2 μM on CSIEC for 24 h) and AST (100 mg/kg on chickens for 21 d; 40 μM on CSIEC for 24 h). In this study, AST significantly ameliorated OTA-induced intestinal damage by restoring the expression of tight junction proteins (Occludin-1, Claudin-1, and ZO-1), attenuating severe histopathological alterations, mitigating the inflammatory response (elevated pro-inflammatory cytokines and reduced anti-inflammatory mediators), and suppressing necroptosis through downregulation of RIPK1, RIPK3 and MLKL expression. Combined evidence from animal experiments and cell culture experiments demonstrated that AST alleviated the necroptosis and inflammation caused by OTA in CSIECs and the intestine of chickens through the RIPK1/RIPK3/MLKL signaling pathway, thereby reducing the damage caused by OTA. Full article
Show Figures

Figure 1

52 pages, 768 KiB  
Review
Cardioprotective Role of Captopril: From Basic to Applied Investigations
by Marko Stoiljkovic, Vladimir Jakovljevic, Jovan Milosavljevic, Sergey Bolevich, Nevena Jeremic, Petar Canovic, Vladimir Petrovich Fisenko, Dmitriy Alexandrovich Tikhonov, Irina Nikolaevna Krylova, Stefani Bolevich, Natalia Vasilievna Chichkova and Vladimir Zivkovic
Int. J. Mol. Sci. 2025, 26(15), 7215; https://doi.org/10.3390/ijms26157215 - 25 Jul 2025
Viewed by 81
Abstract
Captopril, a well-established angiotensin-converting enzyme (ACE) inhibitor, has garnered attention for its cardioprotective effects in preventing heart remodeling and maintaining cardiac function, significantly improving life quality. However, recent studies have revealed that in addition to known hemodynamic alterations, captopril exhibits significant antioxidant, anti-inflammatory, [...] Read more.
Captopril, a well-established angiotensin-converting enzyme (ACE) inhibitor, has garnered attention for its cardioprotective effects in preventing heart remodeling and maintaining cardiac function, significantly improving life quality. However, recent studies have revealed that in addition to known hemodynamic alterations, captopril exhibits significant antioxidant, anti-inflammatory, and immunomodulatory effects that may underlie its protective mechanisms. Although it appeared to be overlooked in clinical practice, in recent years, additional efforts have been made to uncover the mechanisms of all drug effects, as recent research studies predict a wide spectrum of diseases beyond the recommended indications. This review thoroughly examines the mechanisms by which captopril mediates its protective effects, bridging basic biochemical observations with applied clinical investigation, especially during ischemic reperfusion (I/R) injury, hypertension, and heart failure (HF). Evidence points to captopril as a promising agent for modulating oxidative and inflammatory pathways that are crucial for cardiovascular medicine. Directions for future research are defined to determine the molecular targets of captopril further and to optimize its clinical utility in the management of cardiovascular and possibly other diseases. Full article
(This article belongs to the Special Issue Oxidative Stress Responses in Cardiovascular Diseases)
Show Figures

Figure 1

17 pages, 3847 KiB  
Article
The Effects of Dietary Glycerol Fatty Acid Esters on the Production Performance, Serum Biochemistry, and Rumen Microbial Community of Crossbred Simmental Bulls
by Lei Yang, Shijun Tian, Yongchang Luo, Zhanhong Qiao, Chao Chen, Xiaokang Lv and Jinling Hua
Animals 2025, 15(15), 2194; https://doi.org/10.3390/ani15152194 - 25 Jul 2025
Viewed by 152
Abstract
Glycerol fatty acid esters (GFAEs) are recognized for their potential to improve lipid metabolism, energy utilization, and gut health due to their excellent emulsifying and antimicrobial properties. The objective of this research was to investigate the effects of dietary GFAE supplementation on production [...] Read more.
Glycerol fatty acid esters (GFAEs) are recognized for their potential to improve lipid metabolism, energy utilization, and gut health due to their excellent emulsifying and antimicrobial properties. The objective of this research was to investigate the effects of dietary GFAE supplementation on production performance, serum biochemical profiles, and rumen fermentation in beef cattle. Thirty crossbred Simmental bulls, averaging 507.42 ± 9.59 kg in body weight, were assigned to three distinct cohorts, with 10 animals in each cohort. The CON cohort was fed a basal diet devoid of GFAE, whereas the treatment cohorts (GFAE1 and GFAE2) received GFAE supplements at concentrations of 0.1% and 0.2% of the dietary dry matter, respectively. Compared with the control group, supplementation with 0.1% GFAE significantly increased the ADG of beef cattle by 12.14% (p < 0.05); compared with the GFAE2 group, ADG was 7.86% higher (p > 0.05). The digestibility of NDF and ADF was significantly enhanced in the GFAE1 group relative to the control group (p < 0.05). Dietary GFAE supplementation significantly elevated rumen acetate, propionate, and total volatile fatty acid concentrations in both the GFAE1 and GFAE2 groups compared to the control group (p < 0.05). In contrast to the control group, there was a notable rise in serum levels of T-AOC, UREA, and TG in both GFAE1 and GFAE2 groups (p < 0.05). Conversely, the concentration of HDL-C was significantly decreased in the GFAE2 group. Additionally, at the phylum level, the abundance of Fibrobacterota was significantly higher in the GFAE1 group than in the control group (p < 0.01). At the genus level, the proportions of Bacteroides and Fibrobacter were significantly higher in the GFAE1 group compared to the control group (p < 0.05). In conclusion, this study demonstrates that the addition of 0.1% GFAE to beef cattle diets significantly enhances the digestibility of ADF and NDF nutrients, increases serum total antioxidant capacity, urea, and triglycerides, optimizes rumen fermentation parameters and microbial community structure, and ultimately improves production performance. As a result of the findings from this research, it is suggested that 0.1% GFAE be incorporated into the diet for beef cattle. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

Back to TopTop