The Effects of Dietary Glycerol Fatty Acid Esters on the Production Performance, Serum Biochemistry, and Rumen Microbial Community of Crossbred Simmental Bulls
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Location and Materials
2.2. Experimental Design
2.3. Production Performance
2.4. Apparent Nutrient Digestibility
2.5. Serum Biochemical Parameters
2.6. Rumen Fluid Sample Collection and Analysis
2.7. Rumen Microbiota Analysis
2.8. Data Statistics and Analysis
3. Results
3.1. Production Performance of Beef Cattle
3.2. Apparent Digestibility of Nutrients in Beef Cattle
3.3. Serum Biochemical Parameters in Beef Cattle
3.4. Rumen Fermentation Parameters in Beef Cattle
3.5. Overview of Rumen Microbiota in Beef Cattle
3.6. Impacts of GFAE on Beef Cattle Rumen Microbiota
3.7. Correlation Between Rumen Fermentation Parameters and Microbial Community Composition
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Henchion, M.; Hayes, M.; Mullen, A.M.; Fenelon, M.; Tiwari, B. Future protein supply and demand: Strategies and factors influencing a sustainable equilibrium. Foods 2017, 6, 53. [Google Scholar] [CrossRef] [PubMed]
- Lau, C.S.; Fulgoni, V.L., III; Van Elswyk, M.E.; McNeill, S.H. Trends in beef intake in the United States: Analysis of the national health and nutrition examination survey, 2001–2018. Nutrients 2023, 15, 2475. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wang, P.; Liu, S.; Yan, M.; Zhang, Q.; Clark, E.; Wang, J. Meta-analyses of the global impact of non-antibiotic feed additives on livestock performance and health. J. Adv. Res. 2025; in press. [Google Scholar] [CrossRef]
- Kanwal, A.; Ahmad, S.; Ur Rehman, M.; Khan, M.O. The Crucial Role of Feed Additives and Nutrition in Animal Health. In Complementary and Alternative Medicine: Feed Additives; Unique Scientific Publishers: Faisalabad, Pakistan, 2024; pp. 75–83. [Google Scholar]
- Babayan, V.K.; McIntyre, R.T. Preparation and properties of some polyglycerol esters of short and medium chain length fatty acids. J. Am. Oil Chem. Soc. 1971, 48, 307–309. [Google Scholar] [CrossRef]
- Schönfeld, P.; Wojtczak, L. Short-and medium-chain fatty acids in energy metabolism: The cellular perspective. J. Lipid Res. 2016, 57, 943–954. [Google Scholar] [CrossRef] [PubMed]
- Gracia, M.I.; Vazquez, P.; Ibáñez-Pernía, Y.; Pos, J.; Tawde, S. Performance Evaluation of a Novel Combination of Four-and Five-Carbon [Butyric and Valeric] Short-Chain Fatty Acid Glyceride Esters in Broilers. Animals 2024, 14, 617. [Google Scholar] [CrossRef] [PubMed]
- Onrust, L.; Van Driessche, K.; Ducatelle, R.; Schwarzer, K.; Haesebrouck, F.; Van Immerseel, F. Valeric acid glyceride esters in feed promote broiler performance and reduce the incidence of necrotic enteritis. Poult. Sci. 2018, 97, 2303–2311. [Google Scholar] [CrossRef] [PubMed]
- Jadhav, H.B.; Annapure, U.S. Triglycerides of medium-chain fatty acids: A concise review. J. Food Sci. Technol. 2023, 60, 2143–2152. [Google Scholar] [CrossRef] [PubMed]
- Bedford, A.; Yu, H.; Squires, E.J.; Leeson, S.; Gong, J. Effects of supplementation level and feeding schedule of butyrate glycerides on the growth performance and carcass composition of broiler chickens. Poult. Sci. 2017, 96, 3221–3228. [Google Scholar] [CrossRef] [PubMed]
- Dahmer, P.L.; Leubcke, G.E.; Lerner, A.B.; Jones, C.K. Effects of medium-chain fatty acids as alternatives to ZnO or antibiotics in nursery pig diets. Transl. Anim. Sci. 2020, 4, txaa151. [Google Scholar] [CrossRef] [PubMed]
- Gharib-Naseri, K.; Kheravii, S.K.; Li, L.; Wu, S.-B. Buffered formic acid and a monoglyceride blend coordinately alleviate subclinical necrotic enteritis impact in broiler chickens. Poult. Sci. 2021, 100, 101214. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z.; Wang, X.; Hou, Z.; Liao, S.; Qi, M.; Zha, A.; Yang, Z.; Zuo, G.; Liao, P.; Chen, Y.; et al. Low-Protein Diet Supplemented with Medium-Chain Fatty Acid Glycerides Improves the Growth Performance and Intestinal Function in Post-Weaning Piglets. Animals 2020, 10, 1852. [Google Scholar] [CrossRef] [PubMed]
- Giovagnoni, G.; Tugnoli, B.; Piva, A.; Grilli, E. Dual Antimicrobial Effect of Medium-Chain Fatty Acids against an Italian Multidrug Resistant Brachyspira hyodysenteriae Strain. Microorganisms 2022, 10, 301. [Google Scholar] [CrossRef] [PubMed]
- Schlievert, P.M.; Peterson, M.L. Glycerol monolaurate antibacterial activity in broth and biofilm cultures. PLoS ONE 2012, 7, e40350. [Google Scholar] [CrossRef] [PubMed]
- Masmeijer, C.; Devriendt, B.; Rogge, T.; van Leenen, K.; De Cremer, L.; Deprez, P.; Cox, E.; Pardon, B. Effects of glycerol-esters of saturated short-and medium chain fatty acids on immune, health and growth variables in male dairy calves. Int. Congr. Membr. Lipids 2019, 178, 9–11. [Google Scholar]
- Vinolo, M.; Rodrigues, H.G.; Nachbar, R.T.; Curi, R. Regulation of inflammation by short chain fatty acids. Nutrients 2011, 3, 858–876. [Google Scholar] [CrossRef] [PubMed]
- NY/T 815; Feeding Standard of Beef Cattle. Ministry of Agriculture and Rural Affairs, PRC: Beijing, China, 2004.
- Zhang, W.; Ren, F.; Zang, C.; Yang, F.; Li, X.; Huang, X.; Chen, K.; Li, X. Effects of dietary addition of ellagic acid on rumen metabolism, nutrient apparent digestibility, and growth performance in Kazakh sheep. Front. Vet. Sci. 2024, 11, 1334026. [Google Scholar] [CrossRef] [PubMed]
- Soest, P.V.; Robertson, J.B.; Lewis, B.A. Methods of dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Jin, E.; Liu, X.; Ji, X.; Hu, H. Effect of dietary Fructus mume and Scutellaria baicalensis Georgi on the fecal microbiota and its correlation with apparent nutrient digestibility in weaned piglets. Animals 2022, 12, 2418. [Google Scholar] [CrossRef] [PubMed]
- GB/T 6433-2006; Determination of Crude Fat in Feeds. Standards Press of China: Beijing, China, 2006.
- GB/T 23742-2009; Animal Feeding Stuffs-Determination of Ash Insoluble in Hydrochloric Acid. Standards Press of China: Beijing, China, 2009.
- Zhao, H.; Hua, J.; Lu, W.; Yan, L.; Zhang, M.; Chen, C.; Lv, X. Effects of increasing levels of rubber seed cake on growth performance, nutrient digestion metabolism, serum biochemical parameters, and rumen microbiota of Hu sheep. Bmc Vet. Res. 2025, 21, 52. [Google Scholar] [CrossRef] [PubMed]
- Luan, J.; Feng, X.; Du, Y.; Yang, D.; Geng, C. Medium-chain fatty acid triglycerides improve feed intake and oxidative stress of finishing bulls by regulating ghrelin concentration and gastrointestinal tract microorganisms and rumen metabolites. Microbiome 2024, 12, 230. [Google Scholar] [CrossRef] [PubMed]
- Righi, F.; Simoni, M.; Bresciani, C.; Cabassi, C.S.; Flisi, S.; Hanlon, M.E.; Sala, A.; Spadini, C.; Festuccia, M.; Morini, G.; et al. Adding monoglycerides containing short and medium chain fatty acids to milk replacer: Effects on health and performance of preweaned calves. Ital. J. Anim. Sci. 2020, 19, 1417–1427. [Google Scholar] [CrossRef]
- Lan, R.; Kim, I. Effects of organic acid and medium chain fatty acid blends on the performance of sows and their piglets. Anim. Sci. J. 2018, 89, 1673–1679. [Google Scholar] [CrossRef] [PubMed]
- Ee, W.H.; Ramiah, K.S.; Mookiah, S.; Idrus, Z. Effects of medium-chain fatty acids on growth performance, microbial attributes, and fat deposition in broiler chicken. Czech J. Anim. Sci. 2024, 69, 119–128. [Google Scholar] [CrossRef]
- Mellick, D.; De Souza, A.; Iseri, V.; Mani, V. 133 Effect of a proprietary medium chain fatty acid blend on nursery pig performance. J. Anim. Sci. 2019, 97, 71. [Google Scholar] [CrossRef]
- Zhuang, J.; Wang, Y.; Shen, W.; Zheng, W.; Liu, T.; Wang, J.; Feng, F. Evaluating dynamic effects of dietary glycerol monolaurate on the productive performance and flesh quality of large yellow croaker (Larimichthys crocea). Food Chem. 2022, 387, 132833. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Gao, Y.; Peng, Z.; Ma, X.; You, Y.; Hu, Z.; He, A.; Liao, Y. Isoacids supplementation improves growth performance and feed fiber digestibility associated with ruminal bacterial community in yaks. Front. Microbiol. 2023, 14, 1175880. [Google Scholar] [CrossRef] [PubMed]
- Luan, J.; Feng, X.; Yang, D.; Yang, M.; Zhou, J.; Geng, C. Effects of medium-chain fatty acids (MCFAs) on in vitro rumen fermentation, methane production, and nutrient digestibility under low-and high-concentrate diets. Anim. Sci. J. 2023, 94, e13818. [Google Scholar] [CrossRef] [PubMed]
- De Souza, J.; Lock, A.L. Milk production and nutrient digestibility responses to triglyceride or fatty acid supplements enriched in palmitic acid. J. Dairy Sci. 2019, 102, 4155–4164. [Google Scholar] [CrossRef] [PubMed]
- Sears, A.; Hentz, F.; de Souza, J.; Wenner, B.; Ward, R.E.; Batistel, F. Supply of palmitic, stearic, and oleic acid changes rumen fiber digestibility and microbial composition. J. Dairy Sci. 2024, 107, 902–916. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Zhang, N.; Wang, J.; Cao, Y.; Johnston, L.J.; Ma, Y. Effects of Medium- and Short-Chain Fatty Acids on Growth Performance, Nutrient Digestibility, Gut Microbiota and Immune Function in Weaned Piglets. Animals 2024, 15, 37. [Google Scholar] [CrossRef] [PubMed]
- Couch, C.E.; Movius, M.A.; Jolles, A.E.; Gorman, M.E.; Rigas, J.D.; Beechler, B.R.; Ferron, E.S. Serum biochemistry panels in African buffalo: Defining reference intervals and assessing variability across season, age and sex. PLoS ONE 2017, 12, e176830. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Qu, M.; Li, L.; Mei, W.; Zhang, F.; Hu, Z.; Li, G.; Xu, L.; Liang, H. Effects of glycyrrhetinic acid on production performance, serum biochemical indexes, ruminal parameters, and rumen microflora of beef cattle. Front. Vet. Sci. 2025, 12, 1529383. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; An, N.; Chen, H.; Liu, D. Effects of yeast culture on growth performance, antioxidant capacity, immune function, and intestinal microbiota structure in Simmental beef cattle. Front. Vet. Sci. 2025, 11, 1533081. [Google Scholar] [CrossRef] [PubMed]
- Śpitalniak-Bajerska, K.; Szumny, A.; Pogoda-Sewerniak, K.; Kupczyński, R. Effects of n-3 fatty acids on growth, antioxidant status, and immunity of preweaned dairy calves. J. Dairy Sci. 2020, 103, 2864–2876. [Google Scholar] [CrossRef] [PubMed]
- Getahun, D.; Alemneh, T.; Akeberegn, D.; Getabalew, M.; Zewdie, D. Urea metabolism and recycling in ruminants. Biomed. J. Sci. Tech. Res. 2019, 20, 14790–14796. [Google Scholar] [CrossRef]
- Barmore, W.; Azad, F.; Stone, W.L. Physiology, urea cycle. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2018. [Google Scholar]
- Siri-Tarino, P.W.; Sun, Q.; Hu, F.B.; Krauss, R.M. Saturated fatty acids and risk of coronary heart disease: Modulation by replacement nutrients. Curr. Atheroscler. Rep. 2010, 12, 384–390. [Google Scholar] [CrossRef] [PubMed]
- Shokrollahi, B.; Yavari, Z.; Kordestani, A.H. Effects of dietary medium-chain fatty acids on performance, carcass characteristics, and some serum parameters of broiler chickens. Br. Poult. Sci. 2014, 55, 662–667. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.H.; Hsu, H.S.; Chiang, M.T. Influence of Varied Dietary Cholesterol Levels on Lipid Metabolism in Hamsters. Nutrients 2024, 16, 2472. [Google Scholar] [CrossRef] [PubMed]
- Wanapat, M.; Viennasay, B.; Matra, M.; Totakul, P.; Phesatcha, B.; Ampapon, T.; Wanapat, S. Supplementation of fruit peel pellet containing phytonutrients to manipulate rumen pH, fermentation efficiency, nutrient digestibility and microbial protein synthesis. J. Sci. Food Agr. 2021, 101, 4543–4550. [Google Scholar] [CrossRef] [PubMed]
- Bergman, E.N. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev. 1990, 70, 567–590. [Google Scholar] [CrossRef] [PubMed]
- Penner, G.B. Mechanisms of volatile fatty acid absorption and metabolism and maintenance of a stable rumen environment. In Proceedings of the 25th Florida Ruminant Nutrition Symposium, Gainesville, FL, USA, 4–5 February 2014; pp. 92–104. [Google Scholar]
- Li, Z.; Wang, X.; Wang, W.; An, R.; Wang, Y.; Ren, Q.; Xuan, J. Benefits of tributyrin on growth performance, gastrointestinal tract development, ruminal bacteria and volatile fatty acid formation of weaned Small-Tailed Han lambs. Anim. Nutr. 2023, 15, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Cholewińska, P.; Czyż, K.; Nowakowski, P.; Wyrostek, A. The microbiome of the digestive system of ruminants—A review. Anim. Health Res. Rev. 2020, 21, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Yan, F.; Liu, T.; Zhang, Y.; Li, X.; Wang, M.; Zhang, C.; Xu, X.; Deng, L.; Yao, J.; et al. Ruminal microbiota determines the high-fiber utilization of ruminants: Evidence from the ruminal microbiota transplant. Microbiol. Spectr. 2022, 10, e422–e446. [Google Scholar] [CrossRef] [PubMed]
- Kholif, A.E.; Anele, A.; Anele, U.Y. Microbial feed additives in ruminant feeding. Aims Microbiol. 2024, 10, 542–571. [Google Scholar] [CrossRef] [PubMed]
- Hai, C.; Hao, Z.; Bu, L.; Lei, J.; Liu, X.; Zhao, Y.; Bai, C.; Su, G.; Yang, L.; Li, G. Increased rumen Prevotella enhances BCAA synthesis, leading to synergistically increased skeletal muscle in myostatin-knockout cattle. Commun. Biol. 2024, 7, 1575. [Google Scholar] [CrossRef] [PubMed]
- Dias, B.D.C.; Lamarca, A.P.; Machado, D.T.; Kloh, V.P.; de Carvalho, F.M.; Vasconcelos, A.T.R. Metabolic pathways associated with Firmicutes prevalence in the gut of multiple livestock animals and humans. Anim. Microbiome 2025, 7, 20. [Google Scholar] [CrossRef] [PubMed]
- Hristov, A.N.; Vander, P.M.; Agle, M.; Zaman, S.; Schneider, C.; Ndegwa, P.; Vaddella, V.; Johnson, K.; Shingfield, K.; Karnati, S. Effect of lauric acid and coconut oil on ruminal fermentation, digestion, ammonia losses from manure, and milk fatty acid composition in lactating cows. J. Dairy Sci. 2009, 92, 5561–5582. [Google Scholar] [CrossRef] [PubMed]
- Gharechahi, J.; Vahidi, M.F.; Bahram, M.; Han, J.-L.; Ding, X.-Z.; Salekdeh, G.H. Metagenomic analysis reveals a dynamic microbiome with diversified adaptive functions to utilize high lignocellulosic forages in the cattle rumen. Isme J. 2021, 15, 1108–1120. [Google Scholar] [CrossRef] [PubMed]
- Windham, W.R.; Akin, D.E. Rumen fungi and forage fiber degradation. Appl. Environ. Microb. 1984, 48, 473–476. [Google Scholar] [CrossRef] [PubMed]
- Ndeh, D.A.; Nakjang, S.; Kwiatkowski, K.J.; Sawyers, C.; Koropatkin, N.M.; Hirt, R.P.; Bolam, D.N. A Bacteroides thetaiotaomicron genetic locus encodes activities consistent with mucin O-glycoprotein processing and N-acetylgalactosamine metabolism. Nat. Commun. 2025, 16, 3485. [Google Scholar] [CrossRef] [PubMed]
- Silva, É.B.R.D.; Silva, J.A.R.D.; Silva, W.C.D.; Belo, T.S.; Sousa, C.E.L.; Santos, M.R.P.d.; Neves, K.A.L.; Rodrigues, T.C.G.d.C.; Camargo-Júnior, R.N.C.; Lourenço-Júnior, J.d.B. A review of the rumen microbiota and the different molecular techniques used to identify microorganisms found in the rumen fluid of ruminants. Animals 2024, 14, 1448. [Google Scholar] [CrossRef] [PubMed]
- Neumann, A.P.; McCormick, C.A.; Suen, G. Fibrobacter communities in the gastrointestinal tracts of diverse hindgut-fermenting herbivores are distinct from those of the rumen. Environ. Microbiol. 2017, 19, 3768–3783. [Google Scholar] [CrossRef] [PubMed]
- Burdick, M.; Zhou, M.; Guan, L.L.; Oba, M. Effects of medium-chain fatty acid supplementation on performance and rumen fermentation of lactating Holstein dairy cows. Animal 2022, 16, 100491. [Google Scholar] [CrossRef] [PubMed]
- Mahoney-Kurpe, S.C.; Palevich, N.; Noel, S.J.; Gagic, D.; Biggs, P.J.; Soni, P.; Reid, P.M.; Koike, S.; Kobayashi, Y.; Janssen, P.H.; et al. Aristaeella hokkaidonensis gen. nov. sp. nov. and Aristaeella lactis sp. nov., two rumen bacterial species of a novel proposed family, Aristaeellaceae fam. nov. Int. J. Syst. Evol. Micr. 2023, 73, 5831. [Google Scholar] [CrossRef] [PubMed]
- Mlinar, S.; Weig, A.R.; Freitag, R. Influence of NH3 and NH4+ on anaerobic digestion and microbial population structure at increasing total ammonia nitrogen concentrations. Bioresour. Technol. 2022, 361, 127638. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Cui, H.; Mu, Z.; Yao, C.; Yang, M.; Jin, Y.; Ning, C.; Zhang, H. Non-targeted metabolomics analysis of fermented traditional Chinese medicine and its impact on growth performance, serum biochemistry, and intestinal microbiome of weaned lambs. Sci. Rep. 2024, 14, 20385. [Google Scholar] [CrossRef] [PubMed]
- Ranilla, M.J.; Andrés, S.; Gini, C.; Biscarini, F.; Saro, C.; Martín, A.; Mateos, I.; López, S.; Giráldez, F.J.; Abdennebi-Najar, L.; et al. Effects of Thymbra capitata essential oil on in vitro fermentation end-products and ruminal bacterial communities. Sci. Rep. 2023, 13, 4153. [Google Scholar] [CrossRef] [PubMed]
- Ljungdahl, L.G.; Hugenholtz, J.; Wiegel, J. Acetogenic and acid-producing clostridia. In Clostridia; Springer: Berlin/Heidelberg, Germany, 1989; pp. 145–191. [Google Scholar]
- Yao, Q.; Li, Y.; Meng, Q.; Zhou, Z. The effect of calcium propionate on the ruminal bacterial community composition in finishing bulls. Asian Austral. J. Anim. 2016, 30, 495. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Nagata, R.; Ohkubo, A.; Ohtani, N.; Kushibiki, S.; Ichijo, T.; Sato, S. Changes in ruminal and reticular pH and bacterial communities in Holstein cattle fed a high-grain diet. BMC Vet. Res. 2018, 14, 310. [Google Scholar] [CrossRef] [PubMed]
Ingredients (%) DM | Percentage (%) |
---|---|
Corn Stover | 2.66 |
Peanut Hay | 2.72 |
Baijiu Distillers’ Grains | 9.32 |
Corn Silage | 10.2 |
Corn Germ Meal | 30.8 |
Premix-Containing Concentrate Feed | 44.3 |
Total | 100 |
Nutrient levels | |
NEg, Mcal/kg | 1.22 |
DM | 56.5 |
CP | 11.7 |
NDF | 56.8 |
ADF | 25.4 |
EE | 3.98 |
Item | CON | GFAE1 | GFAE2 | SEM | p-Value |
---|---|---|---|---|---|
IBW, (kg) | 514 | 513 | 496 | 9.59 | 0.70 |
FBW, (kg) | 588 | 597 | 573 | 10.7 | 0.72 |
ADG, kg/d | 1.23 b | 1.40 a | 1.29 ab | 0.03 | 0.04 |
DMI, kg/d | 10.6 | 11.0 | 10.8 | 0.17 | 0.59 |
F/G | 8.60 | 7.87 | 8.36 | 0.14 | 0.10 |
Items | CON | GFAE1 | GFAE2 | SEM | p-Value |
---|---|---|---|---|---|
DM | 81.6 | 83.3 | 82.7 | 0.34 | 0.14 |
CP | 60.3 | 64.4 | 63.2 | 1.36 | 0.46 |
EE | 83.6 | 85.4 | 85.5 | 0.36 | 0.18 |
NDF | 56.1 b | 58.5 a | 56.9 ab | 0.38 | 0.02 |
ADF | 34.9 b | 37.3 a | 35.7 b | 0.45 | 0.01 |
Items | CON | GFAE1 | GFAE2 | SEM | p-Value |
---|---|---|---|---|---|
MDA (nmol/mL) | 2.73 | 2.73 | 2.89 | 0.08 | 0.71 |
T-AOC (U/mL) | 10.5 b | 17.7 a | 18.0 a | 1.30 | 0.00 |
GPX (nmol/min/mL) | 288 | 246 | 225 | 16.6 | 0.34 |
SOD (U/mL) | 206 | 186 | 196 | 17.1 | 0.92 |
H2O2 (μmol/g) | 1.63 | 2.14 | 1.79 | 0.21 | 0.67 |
TP (g/L) | 79.6 | 87.7 | 70.0 | 4.39 | 0.29 |
ALB (g/L) | 35.3 | 42.5 | 34.1 | 1.88 | 0.13 |
UREA (mmol/L) | 2.00 b | 2.57 a | 2.20 b | 0.01 | 0.02 |
TG (mmol/L) | 0.20 b | 0.26 a | 0.22 b | 0.01 | 0.02 |
TC (mmol/L) | 5.46 | 5.41 | 5.63 | 0.07 | 0.41 |
HDL-C (mmol/L) | 2.11 a | 2.19 a | 0.80 b | 0.27 | 0.02 |
LDL-C (mmol/L) | 3.55 | 3.37 | 4.45 | 0.40 | 0.57 |
NEFA (mmol/L) | 1.48 | 1.26 | 1.33 | 0.09 | 0.63 |
Items | CON | GFAE1 | GFAE2 | SEM | p-Value |
---|---|---|---|---|---|
pH | 6.84 | 6.84 | 6.8 | 0.02 | 0.57 |
NH3-N, mg/100 mL | 17.2 | 20 | 19.2 | 0.65 | 0.21 |
Acetate, mmol/L | 55.5 b | 63.7 a | 63.1 a | 1.32 | 0.00 |
Propionate, mmol/L | 13.6 b | 15.1 a | 14.8 a | 0.28 | 0.04 |
Butyrate, mmol/L | 7.30 | 7.40 | 7.37 | 0.24 | 0.99 |
TVFA, mmol/L | 76.3 b | 86.2 a | 85.3 a | 1.67 | 0.01 |
Acetate/Propionate ratio | 4.10 | 4.22 | 4.26 | 0.06 | 0.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Tian, S.; Luo, Y.; Qiao, Z.; Chen, C.; Lv, X.; Hua, J. The Effects of Dietary Glycerol Fatty Acid Esters on the Production Performance, Serum Biochemistry, and Rumen Microbial Community of Crossbred Simmental Bulls. Animals 2025, 15, 2194. https://doi.org/10.3390/ani15152194
Yang L, Tian S, Luo Y, Qiao Z, Chen C, Lv X, Hua J. The Effects of Dietary Glycerol Fatty Acid Esters on the Production Performance, Serum Biochemistry, and Rumen Microbial Community of Crossbred Simmental Bulls. Animals. 2025; 15(15):2194. https://doi.org/10.3390/ani15152194
Chicago/Turabian StyleYang, Lei, Shijun Tian, Yongchang Luo, Zhanhong Qiao, Chao Chen, Xiaokang Lv, and Jinling Hua. 2025. "The Effects of Dietary Glycerol Fatty Acid Esters on the Production Performance, Serum Biochemistry, and Rumen Microbial Community of Crossbred Simmental Bulls" Animals 15, no. 15: 2194. https://doi.org/10.3390/ani15152194
APA StyleYang, L., Tian, S., Luo, Y., Qiao, Z., Chen, C., Lv, X., & Hua, J. (2025). The Effects of Dietary Glycerol Fatty Acid Esters on the Production Performance, Serum Biochemistry, and Rumen Microbial Community of Crossbred Simmental Bulls. Animals, 15(15), 2194. https://doi.org/10.3390/ani15152194