Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (689)

Search Parameters:
Keywords = antimony

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1303 KiB  
Article
Extracellular Vesicle Release from Immune Cells in Cutaneous Leishmaniasis: Modulation by Leishmania (V.) braziliensis and Reversal by Antimonial Therapy
by Vanessa Fernandes de Abreu Costa, Thaize Quiroga Chometon, Katherine Kelda Gomes de Castro, Melissa Silva Gonçalves Ponte, Maria Inês Fernandes Pimentel, Marcelo Rosandiski Lyra, Rienk Nieuwland and Alvaro Luiz Bertho
Pathogens 2025, 14(8), 771; https://doi.org/10.3390/pathogens14080771 (registering DOI) - 4 Aug 2025
Abstract
Human cutaneous leishmaniasis (CL) caused by Leishmania (Viannia) braziliensis is a complex parasitic disease marked by dynamic host–parasite interactions and immunomodulation. Extracellular vesicles (EV) derived from immune cells have emerged as key mediators of intercellular communication and potential biomarkers in infectious diseases. In [...] Read more.
Human cutaneous leishmaniasis (CL) caused by Leishmania (Viannia) braziliensis is a complex parasitic disease marked by dynamic host–parasite interactions and immunomodulation. Extracellular vesicles (EV) derived from immune cells have emerged as key mediators of intercellular communication and potential biomarkers in infectious diseases. In this study, we combined a modified lymphocyte proliferation assay with nano-flow cytometry to quantify and phenotype EV released by CD4+, CD8+, and CD14+ cells in PBMC cultures from CL patients at different clinical stages: before treatment (PBT), during treatment (PDT), and post-treatment (PET) with antimonial. Healthy individuals (HI) were included as physiological controls. Upon stimulation with L. (V.) braziliensis antigens, we observed a distinct modulation of EV subsets. In the PBT group, CD4+ and CD14+ EV were significantly reduced, while CD8+ EV remained elevated. During PDT and PET, EV concentrations were restored across all subsets. These findings suggest that L. (V.) braziliensis selectively modulates the release of immune cell–derived EV, possibly as an immune evasion mechanism. The restoration of EV release following antimonial therapy highlights their potential as sensitive biomarkers for disease activity and treatment monitoring. This study offers novel insights into the immunoregulatory roles of EV in CL and underscores their relevance in host–parasite interactions. Full article
(This article belongs to the Special Issue Leishmania & Leishmaniasis)
Show Figures

Figure 1

24 pages, 5797 KiB  
Article
Topical Meglumine Antimoniate Gel for Cutaneous Leishmaniasis: Formulation, Evaluation, and In Silico Insights
by Lilian Sosa, Lupe Carolina Espinoza, Alba Pujol, José Correa-Basurto, David Méndez-Luna, Paulo Sarango-Granda, Diana Berenguer, Cristina Riera, Beatriz Clares-Naveros, Ana Cristina Calpena, Rafel Prohens and Marcelle Silva-Abreu
Gels 2025, 11(8), 601; https://doi.org/10.3390/gels11080601 - 1 Aug 2025
Viewed by 167
Abstract
Leishmaniasis is an infectious disease common in tropical and subtropical regions worldwide. This study aimed to develop a topical meglumine antimoniate gel (MA-gel) for the treatment of cutaneous leishmaniasis. The MA-gel was characterized in terms of morphology, pH, swelling, porosity, rheology, and thermal [...] Read more.
Leishmaniasis is an infectious disease common in tropical and subtropical regions worldwide. This study aimed to develop a topical meglumine antimoniate gel (MA-gel) for the treatment of cutaneous leishmaniasis. The MA-gel was characterized in terms of morphology, pH, swelling, porosity, rheology, and thermal properties by differential scanning calorimetry (DSC). Biopharmaceutical evaluation included in vitro drug release and ex vivo skin permeation. Safety was evaluated through biomechanical skin property measurements and cytotoxicity in HaCaT and RAW 267 cells. Leishmanicidal activity was tested against promastigotes and amastigotes of Leishmania infantum, and in silico studies were conducted to explore possible mechanisms of action. The composition of the MA-gel included 30% MA, 20% Pluronic® F127 (P407), and 50% water. Scanning electron microscopy revealed a sponge-like and porous internal structure of the MA-gel. This formula exhibited a pH of 5.45, swelling at approximately 12 min, and a porosity of 85.07%. The DSC showed that there was no incompatibility between MA and P407. Drug release followed a first-order kinetic profile, with 22.11 µg/g/cm2 of the drug retained in the skin and no permeation into the receptor compartment. The MA-gel showed no microbial growth, no cytotoxicity in keratinocytes, and no skin damage. The IC50 for promastigotes and amastigotes of L. infantum were 3.56 and 23.11 µg/mL, respectively. In silico studies suggested that MA could act on three potential therapeutic targets according to its binding mode. The MA-gel demonstrated promising physicochemical, safety, and antiparasitic properties, supporting its potential as a topical treatment for cutaneous leishmaniasis. Full article
(This article belongs to the Special Issue Functional Hydrogels: Design, Processing and Biomedical Applications)
Show Figures

Figure 1

7 pages, 1048 KiB  
Data Descriptor
Dataset of Morphometry and Metal Concentrations in Coptodon rendalli and Oreochromis mossambicus from the Shongweni Dam, South Africa
by Smangele Ncayiyana, Neo Mashila Maleka and Jeffrey Lebepe
Data 2025, 10(8), 124; https://doi.org/10.3390/data10080124 - 1 Aug 2025
Viewed by 164
Abstract
The uMlazi River receives effluents from wastewater work before feeding the Shongweni Dam. However, local communities are consuming fish from this dam for protein supplements. This study was undertaken to investigate the metal concentrations in the water and sediment, the general health of [...] Read more.
The uMlazi River receives effluents from wastewater work before feeding the Shongweni Dam. However, local communities are consuming fish from this dam for protein supplements. This study was undertaken to investigate the metal concentrations in the water and sediment, the general health of Coptodon rendalli and Oreochromis mossambicus, and metal bioaccumulation. Sampling was conducted during the dry (July–August) and wet seasons (November and December) in 2021. Water was sampled using acid-pre-treated sampling bottles, whereas sediment was collected using the Van Veen grab at the inflow, middle, and dam wall. Fish were collected, and their tissues were digested using aqua regia. Metal concentrations were measured using inductively coupled plasma optical emission spectroscopy (ICP-OES). This data manuscript reports the physical parameters of the water and concentrations of antimony, arsenic, cadmium, copper, iron, manganese, lead, selenium, and strontium in the water and sediment from the Shongweni Dam. Moreover, the fish morphometric data and metal concentrations observed in the muscle are also presented. This data could be used as baseline information on metal concentrations in the Shongweni Dam. Moreover, it provides insight into the potential impact of wastewater effluents on metal increases in freshwater bodies. Full article
Show Figures

Figure 1

15 pages, 526 KiB  
Article
Experiences of Individuals with Cutaneous Leishmaniasis Receiving Intralesional Sodium Stibogluconate or Liquid Nitrogen Cryotherapy in Addis Ababa, Ethiopia—A Cross-Sectional Study
by Mirna S. Abd El Aziz, Shimelis N. Doni, Edelawit L. Dereje, Petros H. Gebre, Hanna B. Temesgen, Yeabsera W. Zegeye, Saba M. Lambert and Stephen L. Walker
Trop. Med. Infect. Dis. 2025, 10(8), 203; https://doi.org/10.3390/tropicalmed10080203 - 23 Jul 2025
Viewed by 234
Abstract
Localised cutaneous leishmaniasis (LCL) is a common neglected tropical disease in Ethiopia, which is mainly treated with intralesional (IL) pentavalent antimonial such as sodium stibogluconate (SSG) and/or cryotherapy. Both treatments are painful, and studies are lacking on the pain associated with these or [...] Read more.
Localised cutaneous leishmaniasis (LCL) is a common neglected tropical disease in Ethiopia, which is mainly treated with intralesional (IL) pentavalent antimonial such as sodium stibogluconate (SSG) and/or cryotherapy. Both treatments are painful, and studies are lacking on the pain associated with these or affected individuals’ experiences of them. A cross-sectional, observational study was conducted at ALERT Comprehensive Specialized Hospital, Addis Ababa/Ethiopia. The socio-demographic and clinical data of individuals affected by LCL receiving IL SSG and/or cryotherapy was gathered, and their treatment was observed. Participants quantified their treatment-associated pain using the Wong–Baker Pain Scale. Health-related quality of life was measured using the (Children’s) Dermatology Life Quality Index. Adverse effects, participant experiences with local therapies, and dermatologists’ experiences and opinions of local LCL treatment were assessed using structured questionnaires. Of the thirty-six individuals with LCL included (64% male, 14% children), 52% reported a treatment-associated pain score ≥ 8. Cryotherapy administered with a cotton bud was associated with lower pain scores ≤ 6 (odds ratio: 0.15, 95% confidence interval: 0.03–0.89) compared to a cryotherapy spray device. There was wide variation in treatment administration. Local LCL treatment is painful, and most individuals experience significant pain. This study highlights the need for less painful but effective treatments, structured training, and clear standard operating procedures. Full article
(This article belongs to the Special Issue Advances in Parasitic Neglected Tropical Diseases)
Show Figures

Figure 1

23 pages, 21927 KiB  
Article
Assessing the Potential of PlanetScope Imagery for Iron Oxide Detection in Antimony Exploration
by Douglas Santos, Joana Cardoso-Fernandes, Alexandre Lima and Ana Claúdia Teodoro
Remote Sens. 2025, 17(14), 2511; https://doi.org/10.3390/rs17142511 - 18 Jul 2025
Viewed by 775
Abstract
The increasing demand for critical raw materials, such as antimony—a semimetal with strategic relevance in fire-retardant applications, electronic components, and national security—has made the identification of European sources essential for the European Union’s strategic autonomy. Remote sensing offers a valuable tool for detecting [...] Read more.
The increasing demand for critical raw materials, such as antimony—a semimetal with strategic relevance in fire-retardant applications, electronic components, and national security—has made the identification of European sources essential for the European Union’s strategic autonomy. Remote sensing offers a valuable tool for detecting alteration minerals associated with subsurface gold and antimony deposits that reach the surface. However, the coarse spatial resolution of the most freely available satellite data remains a limiting factor. The PlanetScope satellite constellation presents a promising low-cost alternative for the academic community, providing 3 m spatial resolution and eight spectral bands. In this study, we evaluated PlanetScope’s capacity to detect Fe3+-bearing iron oxides—key indicators of hydrothermal alteration—by applying targeted band ratios (BRs) in northern Portugal. A comparative analysis was conducted to validate its performance using established BRs from Sentinel-2, ASTER, and Landsat 9. The results were assessed through relative comparison methods, enabling both quantitative and qualitative evaluation of the spectral similarity among sensors. Spatial patterns were analyzed, and points of interest were identified and subsequently validated through fieldwork. Our findings demonstrate that PlanetScope is a viable option for mineral exploration applications, capable of detecting iron oxide anomalies associated with alteration zones while offering finer spatial detail than most freely accessible satellites. Full article
(This article belongs to the Special Issue Advances in Remote Sensing Used in Mineral Exploration)
Show Figures

Figure 1

48 pages, 5755 KiB  
Review
Accelerated Carbonation of Waste Incineration Residues: Reactor Design and Process Layout from Laboratory to Field Scales—A Review
by Quentin Wehrung, Davide Bernasconi, Fabien Michel, Enrico Destefanis, Caterina Caviglia, Nadia Curetti, Meissem Mezni, Alessandro Pavese and Linda Pastero
Clean Technol. 2025, 7(3), 58; https://doi.org/10.3390/cleantechnol7030058 - 11 Jul 2025
Viewed by 867
Abstract
Municipal solid waste (MSW) and refuse-derived fuel (RDF) incineration generate over 20 million tons of residues annually in the EU. These include bottom ash (IBA), fly ash (FA), and air pollution control residues (APCr), which pose significant environmental challenges due to their leaching [...] Read more.
Municipal solid waste (MSW) and refuse-derived fuel (RDF) incineration generate over 20 million tons of residues annually in the EU. These include bottom ash (IBA), fly ash (FA), and air pollution control residues (APCr), which pose significant environmental challenges due to their leaching potential and hazardous properties. While these residues contain valuable metals and reactive mineral phases suitable for carbonation or alkaline activation, chemical, techno-economic, and policy barriers have hindered the implementation of sustainable, full-scale management solutions. Accelerated carbonation technology (ACT) offers a promising approach to simultaneously sequester CO2 and enhance residue stability. This review provides a comprehensive assessment of waste incineration residue carbonation, covering 227 documents ranging from laboratory studies to field applications. The analysis examines reactor designs and process layouts, with a detailed classification based on material characteristics, operating conditions, investigated parameters, and the resulting pollutant stabilization, CO2 uptake, or product performance. In conclusion, carbonation-based approaches must be seamlessly integrated into broader waste management strategies, including metal recovery and material repurposing. Carbonation should be recognized not only as a CO2 sequestration process, but also as a binding and stabilization strategy. The most critical barrier remains chemical: the persistent leaching of sulfates, chromium(VI), and antimony(V). We highlight what we refer to as the antimony problem, as this element can become mobilized by up to three orders of magnitude in leachate concentrations. The most pressing research gap hindering industrial deployment is the need to design stabilization approaches specifically tailored to critical anionic species, particularly Sb(V), Cr(VI), and SO42−. Full article
(This article belongs to the Collection Review Papers in Clean Technologies)
Show Figures

Figure 1

15 pages, 1101 KiB  
Article
Multidimensional Effects of Revegetation on Antimony Mine Waste Slag: From Geochemical Responses to Ecological Risk Regulation
by Xiaozhe Zhu, Jianmei Lan, Fengcun Huang, Dan Wang, Liangliang Dai, Chuang Chen, Li Xiang and Wenbin Wu
Appl. Sci. 2025, 15(13), 7587; https://doi.org/10.3390/app15137587 - 7 Jul 2025
Viewed by 189
Abstract
Revegetation is considered a sustainable option for mine area remediation. However, the sustainability and risk evolution of revegetation for large antimony mine slag remain incompletely understood. In this study, we focused on the revegetation project of the waste slag heap of XKS, the [...] Read more.
Revegetation is considered a sustainable option for mine area remediation. However, the sustainability and risk evolution of revegetation for large antimony mine slag remain incompletely understood. In this study, we focused on the revegetation project of the waste slag heap of XKS, the world’s largest antimony mine. Systematically analyzed the physicochemical properties, total metal(loid) content, and BCR sequential extraction and applied the modified comprehensive pollution risk assessment (MCR) method to evaluate ecological risk evolution. The results showed that revegetation can effectively increase the nutrient content, and the total content of nitrogen and phosphorus maximally increased by 5.15 and 1.89 times, respectively, after 10 years of remediation. Long-term revegetation could mitigate the metal(loid) contamination, and the average contents of As and Sb decreased by 88.72–93.18% and 93.47–89.87%, respectively. BCR analysis showed that the percentage of residual As and residual Sb increased from 64.75% and 85.88% to 78.38% and 91.58%, respectively. The MCR assessment method showed that revegetation could effectively reduce the ecological risk level. This study provides important multidimensional evidence for the ecological restoration of antimony mining areas, which can provide practical guidance for subsequent slag management and risk control. Full article
(This article belongs to the Section Green Sustainable Science and Technology)
Show Figures

Figure 1

13 pages, 1831 KiB  
Article
Sialic Acid and Colchicine Functionalized Silica Nanoparticles: A Novel Approach to Leishmanicidal Selective Treatments
by Adan Jesus Galue-Parra, Sandra Jimenez-Falcao, Esther Arribas-Yuste, Clotilde Marin and Jose Manuel Mendez-Arriaga
Biomedicines 2025, 13(7), 1648; https://doi.org/10.3390/biomedicines13071648 - 6 Jul 2025
Viewed by 508
Abstract
Background/Objectives: Leishmaniasis remains a neglected tropical disease, with nearly one million new cases annually and limited investment in research. Current treatments, primarily based on pentavalent antimonials, are associated with severe side effects and increasing resistance. This study aims to develop a novel therapeutic [...] Read more.
Background/Objectives: Leishmaniasis remains a neglected tropical disease, with nearly one million new cases annually and limited investment in research. Current treatments, primarily based on pentavalent antimonials, are associated with severe side effects and increasing resistance. This study aims to develop a novel therapeutic strategy using a nanomaterial functionalized with sialic acid (SA) and colchicine (COL) to selectively target Leishmania braziliensis parasites. Methods: A nanostructured system was engineered by functionalizing its surface with SA and COL. SA was chosen to mimic host cell surfaces, enhancing parasite attraction, while COL was selected for its known leishmanicidal properties. The nanomaterial was designed to concentrate extracellular parasites on its surface via SA-mediated interactions, thereby increasing local COL efficacy. Results: The functionalized nanomaterial demonstrated a dual mechanism: SA facilitated the selective accumulation of Leishmania braziliensis parasites on the nanostructure surface, while COL exerted a cytotoxic effect. This synergistic interaction resulted in enhanced parasite mortality in vitro, suggesting improved selectivity and potency compared to conventional treatments. Conclusions: The proposed nanomaterial offers a promising alternative for leishmaniasis treatment by combining targeted parasite attraction with localized drug delivery. This strategy may reduce systemic toxicity and improve therapeutic outcomes. Full article
Show Figures

Figure 1

21 pages, 10536 KiB  
Article
Synthesis, Phase Formation, and Raman Spectroscopy of Ni and Zn(Mg) Codoped Bismuth Stibate Pyrochlore
by Nadezhda A. Zhuk, Sergey V. Nekipelov, Olga V. Petrova, Boris A. Makeev, Sergey I. Isaenko, Maria G. Krzhizhanovskaya, Kristina N. Parshukova, Roman I. Korolev and Ruslana A. Simpeleva
Chemistry 2025, 7(4), 110; https://doi.org/10.3390/chemistry7040110 - 30 Jun 2025
Cited by 1 | Viewed by 452
Abstract
Complex antimony pyrochlores Bi2.7M0.46Ni0.70Sb2O10+Δ (M = Zn, Mg) were synthesized from oxide precursors, using the solid-state reaction method. For each composition variant, the pyrochlore phase formation process was studied during solid-state synthesis in the [...] Read more.
Complex antimony pyrochlores Bi2.7M0.46Ni0.70Sb2O10+Δ (M = Zn, Mg) were synthesized from oxide precursors, using the solid-state reaction method. For each composition variant, the pyrochlore phase formation process was studied during solid-state synthesis in the range of 500–1050 °C. The influence of zinc and magnesium on the phase formation process was established. The interaction of oxide precursors occurs at a temperature of 600 °C and higher, resulting in the formation of bismuth stibate (Bi3SbO7) as a binary impurity phase. Oxide precursors, including bismuth(III) and antimony(III,V) oxides, are fixed in the samples up to 750 °C, at which point the intermediate cubic phase Bi3M2/3Sb7/3O11 (sp. gr. Pn-3, M = Zn, Ni) is formed in the zinc system. Interacting with transition element oxides, it is transformed into pyrochlore. An intermediate phase with the Bi4.66Ca1.09VO10.5 structure (sp. gr. Pnnm) was found in the magnesium system. The unit cell parameter of pyrochlore for two samples has a minimum value at 800 °C, which is associated with the onset of high-temperature synthesis of pyrochlore. The synthesis of phase-pure pyrochlores is confirmed by high-resolution Raman spectroscopy. The data interpretation showed that the cations in Ni/Zn pyrochlore are more likely to be incorporated into bismuth positions than in Ni/Mg pyrochlore. The nickel–magnesium pyrochlore is characterized by a low-porosity microstructure, with grain sizes of up to 3 μm, according to SEM data. Zinc oxide has a sintering effect on ceramics. Therefore, the grain size in ceramics is large and varies from 2 to 7 μm. Full article
(This article belongs to the Section Inorganic and Solid State Chemistry)
Show Figures

Figure 1

27 pages, 4959 KiB  
Article
Factors of Bottom Sediment Variability in an Abandoned Alkaline Waste Settling Pond: Mineralogical and Geochemical Evidence
by Pavel Belkin, Sergey Blinov, Elena Drobinina, Elena Menshikova, Sergey Vaganov, Roman Perevoshchikov and Elena Tomilina
Minerals 2025, 15(6), 662; https://doi.org/10.3390/min15060662 - 19 Jun 2025
Viewed by 244
Abstract
The aim of this study is to determine the characteristics of the chemical and mineral composition of sediment layers in a technogenic settling pond. This pond is located on urban land in Berezniki (Perm Krai, Russia), outside the territory of operating industrial facilities, [...] Read more.
The aim of this study is to determine the characteristics of the chemical and mineral composition of sediment layers in a technogenic settling pond. This pond is located on urban land in Berezniki (Perm Krai, Russia), outside the territory of operating industrial facilities, and contains alkaline saline industrial wastes. The origin of this waste was related to sludge from the Solvay soda production process, which had been deposited in this pond over a long period of time. However, along with the soda waste, the pond also received wastewater from other industries. As a result, the accumulated sediment is characterized by variation in morphological properties both in depth and laterally. Five undisturbed columns were taken to study the composition of the accumulated sediment. The obtained samples were analyzed by X-ray diffraction (XRD), synchronous thermal analysis (STA), and X-ray fluorescence (XRF) analysis. The results showed that the mineral composition of bottom sediments in each layer of all studied columns is characterized by the predominance of calcite precipitated from wastewater. Along with calcite, due to the presence of magnesium and sodium in the solution, other carbonates precipitated—dolomite and soda (natron), as well as complex transitional carbonate phases (northupite and trona). Together with carbonate minerals, the chloride salts halite and sylvin, sulfate minerals gypsum and bassanite, and pyrite and nugget sulfur were established. The group of terrigenous mineral components is represented by quartz, feldspars, and aluminosilicates. The chemical composition of sediments in the upper part of the section generally corresponds to the mineral composition. In the lower sediment layers, the role of amorphous phase and non-mineral compounds increased, which was determined by the results of thermal analysis. The content of heavy metals and metalloids also increases in the middle and lower sediment layers. When categorized according to the Igeo value, an excessive degree of contamination (class 6) was observed in all investigated columns for copper content (Igeo 5.2–6.1). Chromium content corresponds to class 5 (Igeo 4.1–4.6), antimony to class 4 (Igeo 3.0–4.0), and lead, arsenic, and vanadium to classes 2 and 3 (moderately polluted and highly polluted). The data obtained on variations in the mineral and chemical composition of sediments represent the initial information for the selection of methods of accumulated waste management. Full article
Show Figures

Figure 1

15 pages, 2052 KiB  
Article
Assessment of Potential Environmental Risks Posed by Soils of a Deactivated Coal Mining Area in Northern Portugal—Impact of Arsenic and Antimony
by Marcus Monteiro, Patrícia Santos, Jorge Espinha Marques, Deolinda Flores, Manuel Azenha and José A. Ribeiro
Pollutants 2025, 5(2), 15; https://doi.org/10.3390/pollutants5020015 - 18 Jun 2025
Viewed by 843
Abstract
Active and abandoned mining sites are significant sources of heavy metals and metalloid pollution, leading to serious environmental issues. This study assessed the environmental risks posed by potentially toxic elements (PTEs), specifically arsenic (As) and antimony (Sb), in the Technosols (mining residues) of [...] Read more.
Active and abandoned mining sites are significant sources of heavy metals and metalloid pollution, leading to serious environmental issues. This study assessed the environmental risks posed by potentially toxic elements (PTEs), specifically arsenic (As) and antimony (Sb), in the Technosols (mining residues) of the former Pejão coal mine complex in Northern Portugal, a site impacted by forest wildfires in October 2017 that triggered underground combustion within the waste heaps. Our methodology involved determining the “pseudo-total” concentrations of As and Sb in the collected heap samples using microwave digestion with aqua regia (ISO 12914), followed by analysis using hydride generation-atomic absorption spectroscopy (HG-AAS). The concentrations of As an Sb ranging from 31.0 to 68.6 mg kg−1 and 4.8 to 8.3 mg kg−1, respectively, were found to be above the European background values reported in project FOREGS (11.6 mg kg−1 for As and 1.04 mg kg−1 for Sb) and Portuguese Environment Agency (APA) reference values for agricultural soils (11 mg kg−1 for As and 7.5 mg kg−1 for Sb), indicating significant enrichment of these PTEs. Based on average Igeo values, As contamination overall was classified as “unpolluted to moderately polluted” while Sb contamination was classified as “moderately polluted” in the waste pile samples and “unpolluted to moderately polluted” in the downhill soil samples. However, total PTE content alone is insufficient for a comprehensive environmental risk assessment. Therefore, further studies on As and Sb fractionation and speciation were conducted using the Shiowatana sequential extraction procedure (SEP). The results showed that As and Sb levels in the more mobile fractions were not significant. This suggests that the enrichment in the burned (BCW) and unburned (UCW) coal waste areas of the mine is likely due to the stockpiling of lithic fragments, primarily coals hosting arsenian pyrites and stibnite which largely traps these elements within its crystalline structure. The observed enrichment in downhill soils (DS) is attributed to mechanical weathering, rock fragment erosion, and transport processes. Given the strong association of these elements with solid phases, the risk of leaching into surface waters and aquifers is considered low. This work underscores the importance of a holistic approach to environmental risk assessment at former mining sites, contributing to the development of sustainable remediation strategies for long-term environmental protection. Full article
(This article belongs to the Section Soil Pollution)
Show Figures

Figure 1

13 pages, 1716 KiB  
Article
Suppressing Calcium Deactivation in Selective Catalytic Reduction of NOx from Diesel Engines Using Antimony
by Ibrahim Aslan Resitoglu, Ali Keskin, Bugra Karaman and Himmet Ozarslan
Processes 2025, 13(6), 1914; https://doi.org/10.3390/pr13061914 - 17 Jun 2025
Cited by 1 | Viewed by 381
Abstract
The selective catalytic reduction (SCR) of NOx emissions by hydrocarbons (HCs) using a silver (Ag)-based catalyst offers significant advantages over conventional SCR systems that rely on ammonia reductants and vanadium-based catalysts. However, the conversion rate of SCR is influenced by several factors, [...] Read more.
The selective catalytic reduction (SCR) of NOx emissions by hydrocarbons (HCs) using a silver (Ag)-based catalyst offers significant advantages over conventional SCR systems that rely on ammonia reductants and vanadium-based catalysts. However, the conversion rate of SCR is influenced by several factors, among which catalyst poisoning is a major concern. Toxic metals such as sodium (Na), potassium (K), magnesium (Mg), and calcium (Ca) can degrade catalyst activity and lead to deactivation. Poisoned catalysts suffer from reduced conversion rates and premature deactivation before reaching their intended operational lifespan. In particular, calcium poisoning results in the formation of CaO (calcium oxide), which reacts to produce a CaWO4 compound that severely impairs SCR performance. This study investigates the role of antimony (Sb) in mitigating Ca-induced deactivation in HC-SCR of NOx. Five catalysts with varying Sb loadings were prepared and tested to evaluate Sb’s effect on NOx conversion rate at a space velocity of 30,000 h−1. The results demonstrate that Sb effectively suppresses Ca deactivation, enhancing the conversion rate across all engine test conditions. The highest NOx conversion rate (95.88%) was achieved using a catalyst with 3% Sb. Full article
(This article belongs to the Special Issue Combustion Characteristics and Emission Control of Blended Fuels)
Show Figures

Figure 1

10 pages, 2314 KiB  
Article
One-Step Hydrothermal Synthesis and Characterization of Highly Dispersed Sb-Doped SnO2 Nanoparticles for Supercapacitor Applications
by Viet-Hung Hoang, Duc-Long Nguyen, Nguyen Tu, Van-Dang Tran, Van-Nang Lam and Thanh-Tung Duong
Electrochem 2025, 6(2), 22; https://doi.org/10.3390/electrochem6020022 - 16 Jun 2025
Cited by 1 | Viewed by 634
Abstract
Highly dispersion antimony-doped tin oxide (ATO) nanoparticles were synthesized using a (220 °C, 2 L autoclave, medium scale) one-step hydrothermal method with Na2SnO3 and KSb(OH)6 as precursors without a post-sintering process. The particle size reduces to a few nanometers [...] Read more.
Highly dispersion antimony-doped tin oxide (ATO) nanoparticles were synthesized using a (220 °C, 2 L autoclave, medium scale) one-step hydrothermal method with Na2SnO3 and KSb(OH)6 as precursors without a post-sintering process. The particle size reduces to a few nanometers with the increase in Sb content. The resulting various Sb-doping content ATO nanoparticles were coated onto a Ti foil substrate as an electrode for further electrochemical evaluation. The findings demonstrate that the prepared 30% Sb-doped ATO nanoparticles serve as a high-conductivity electrode material with excellent reversibility, substantial specific capacitance, and superior capacitance retention. The 30% ATO electrode exhibits the highest specific capacitance of 343.2 F g−1 at a current density of 1 A g−1 and maintains 93% of its capacitance after the first 10 charge/discharge cycles. The results indicate that ATO materials prepared by the hydrothermal method are promising candidates for supercapacitor electrodes. Full article
Show Figures

Figure 1

16 pages, 832 KiB  
Article
Association of Urinary Cadmium and Antimony with Osteoporosis Risk in Postmenopausal Brazilian Women: Insights from a 20 Metal(loid) Biomonitoring Study
by Carlos Tadashi Kunioka, Vanessa Cristina de Oliveira Souza, Bruno Alves Rocha, Fernando Barbosa Júnior, Luís Belo, Maria Conceição Manso and Márcia Carvalho
Toxics 2025, 13(6), 489; https://doi.org/10.3390/toxics13060489 - 10 Jun 2025
Viewed by 552
Abstract
Osteoporosis is a major public health concern, particularly among postmenopausal women. Environmental exposure to metals has been proposed as a potential contributor to osteoporosis, but human data remain limited and inconsistent. This study investigated changes in urinary concentrations of 20 metal(loid)s in patients [...] Read more.
Osteoporosis is a major public health concern, particularly among postmenopausal women. Environmental exposure to metals has been proposed as a potential contributor to osteoporosis, but human data remain limited and inconsistent. This study investigated changes in urinary concentrations of 20 metal(loid)s in patients with osteoporosis, as well as the association of these elements with bone mineral density (BMD), in a cohort of 380 postmenopausal women aged 50–70 years from Cascavel, Paraná, Brazil. Demographic, lifestyle, and clinical data were collected, and urinary concentrations of aluminum (Al), barium (Ba), cadmium (Cd), cobalt (Co), cesium (Cs), copper (Cu), mercury (Hg), lithium (Li), manganese (Mn), molybdenum (Mo), nickel (Ni), lead (Pb), rubidium (Rb), antimony (Sb), selenium (Se), tin (Sn), strontium (Sr), thallium (Tl), uranium (U), and zinc (Zn) were measured by inductively coupled plasma mass spectrometry. BMD was assessed at the lumbar spine, femoral neck, and total hip using dual-energy X-ray absorptiometry. Osteoporosis was diagnosed in 73 participants (19.2%). Osteoporotic women had significantly higher urinary concentrations of Cd, Mn, Pb, Sb, Sn, and Zn (p < 0.05). Statistically significant negative correlations were observed between BMD and urinary concentrations of Al, Cd, Hg, Mn, Sb, and U. After adjustment for confounders, elevated urinary concentrations of Cd, Mn, Pb, and Sb remained independently and significantly associated with higher odds of osteoporosis, with Cd (aOR = 1.495; p = 0.026) and Sb (aOR = 2.059; p = 0.030) showing the strongest associations. In addition, women with urinary concentrations above the 90th percentile for both Cd and Sb had a significantly higher prevalence of osteoporosis compared to those with lower levels (44.4% vs. 18.0%; p = 0.011). Longitudinal studies are needed to confirm causality and inform prevention strategies. Full article
Show Figures

Graphical abstract

16 pages, 519 KiB  
Article
Clinical and Clinico-Pathological Observations of the Erythrocyte Sedimentation Rate in Dogs Affected by Leishmaniosis and Monitored During Antileishmanial Treatment
by George Lubas, Saverio Paltrinieri, Roberto Amerigo Papini, Ilaria Lensi, Silvia Benali, Oscar Cortadellas, Alessandra Fondati, Xavier Roura and Eric Zini
Animals 2025, 15(12), 1716; https://doi.org/10.3390/ani15121716 - 10 Jun 2025
Viewed by 453
Abstract
The erythrocyte sedimentation rate (ESR) is used in canine medicine in several disorders, especially to evaluate the levels of inflammation. ESR is a valid inflammatory marker in canine leishmaniosis (CanL), being markedly increased in sick dogs. This study evaluated the ESR together with [...] Read more.
The erythrocyte sedimentation rate (ESR) is used in canine medicine in several disorders, especially to evaluate the levels of inflammation. ESR is a valid inflammatory marker in canine leishmaniosis (CanL), being markedly increased in sick dogs. This study evaluated the ESR together with several other inflammatory and immune response markers in 43 dogs affected by severe leishmaniosis, treated with antileishmanial treatment. Dogs were monitored at the beginning (T1) of treatment, in the middle (T2) of treatment, and 7–10 days after the end of the treatment (T3). The antileishmanial treatment was based on meglumine antimoniate and allopurinol for four weeks plus adding prednisolone at the anti-inflammatory dosage progressively tapered within the T2 set point. The ESR was measured and compared to immune and/or inflammatory markers (C-reactive protein, fibrinogen, ferritin, gamma-globulins, IgG). ESR levels were statistically reduced during treatment and significantly decreased at the end of the treatment. This came along with an improvement in other blood markers. This study shows the utility of ESR as a point-of-care test that can be used to monitor the response of dogs to antileishmanial treatment. Full article
(This article belongs to the Section Veterinary Clinical Studies)
Show Figures

Figure 1

Back to TopTop