Suppressing Calcium Deactivation in Selective Catalytic Reduction of NOx from Diesel Engines Using Antimony
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemical Materials Used in the Production of Catalysts
2.2. The Production of Catalysts
2.3. Experimental Setup
3. Results and Discussion
3.1. The Properties of Catalysts
3.2. Reaction Mechanism Analysis
3.3. Activity of Catalysts
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AgNO3 | Silver nitrate | NO | Nitrogen Oxide |
Al2O3 | Aluminium Oxide | NO2 | Nitrogen Dioxide |
BET | Brunauer-Emmett-Teller | NOx | Nitrogen Oxides |
Ca | Calcium | PM | Particulate Matter |
CaO | Calcium oxide | Pt | Platinum |
CO | Carbon monoxide | Sb | Antimony |
C2H2O4 | Oxalic acid | SCR | Selective Catalytic Reduction |
DOC | Diesel Oxidation Catalyst | SO2 | Sulfur Dioxide |
HC | Hydrocarbon | TiO2 | Titanium Dioxide |
NH3 | Ammonia | V2O5 | Vanadium Pentoxide |
References
- Bej, D.; Chattaraj, N. Air pollution from vehicle-tailpipe emissions and diagnostic approaches through cyber–physical platform—A review. Microprocess. Microsyst. 2023, 98, 104805. [Google Scholar] [CrossRef]
- Islam, A.; Teo, S.H.; Ng, C.H.; Taufig-Yap, Y.H.; Choong, S.Y.T.; Awual, M.R. Progress in recent sustainable materials for greenhouse gas (NOx and SOx) emission mitigation. Prog. Mater. Sci. 2023, 132, 101033. [Google Scholar] [CrossRef]
- Resitoglu, I.A. NOx pollutants from diesel vehicles and trends in the control technologies. In Diesel and Gasoline Engines; Viskup, R., Ed.; Intechopen: London, UK, 2020; pp. 161–176. [Google Scholar]
- Gill, S.S. Controlling Diesel NOx and PM Emissions Using Fuel Components and Enhanced Aftertreatment Techniques. Ph.D. Thesis, The University of Birmingham, Birmingham, UK, 2012. [Google Scholar]
- Zhao, M.; Xue, P.; Liu, J.; Liao, J.; Guo, J. A review of removing SO2 and NOx by wet scrubbing. Sustain. Energy Technol. Assess. 2021, 47, 101451. [Google Scholar] [CrossRef]
- Sawatmongkhon, B. Modelling of Catalytic Aftertreatment of NOx Emissions Using Hydrocarbon as a Reductant. Ph.D. Thesis, School of Mechanical Engineering, The University of Birmingham, Birmingham, UK, 2011. [Google Scholar]
- Elkaee, S.; Phule, A.D.; Yang, J.H. Advancements in (SCR) technologies for NOx reduction: A comprehensive review of reducing agents. Process Saf. Environ. 2024, 184, 854–880. [Google Scholar] [CrossRef]
- Piumetti, M.; Bensaid, S.; Fino, D.; Russo, N. Catalysis in Diesel Engine NOx Aftertreatment: A review. Catal. Struct. React. 2015, 1, 155–173. [Google Scholar]
- Zhao, H.; Meng, P.; Gao, S.; Wang, Y.; Sun, P.; Wu, Z. Recent advances in simultaneous removal of NOx and VOCs over bifunctional catalysts via SCR and oxidation reaction. Sci. Total Environ. 2024, 906, 167553. [Google Scholar] [CrossRef]
- Chang, H.; Ma, L.; Yang, S.; Li, J.; Chen, L.; Wang, W.; Hao, J. Comparison of preparation methods for ceria catalyst and the effect of surface and bulk sulfates on its activity toward NH3-SCR. J. Hazard. Mater. 2013, 262, 782–788. [Google Scholar] [CrossRef] [PubMed]
- Kang, K.; Yao, X.; Huang, Y.; Cao, J.; Rong, J.; Zhao, W.; Luo, W.; Chen, Y. Insights into the co-doping effect of Fe3+ and Zr4+ on the anti-K performance of CeTiOx catalyst for NH3-SCR reaction. J. Hazard. Mater. 2021, 416, 125821. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, X.; Yang, R.T.; Mo, J.; Li, J.; Hao, J. The poisoning effects of calcium on V2O5-WO3/TiO2 catalyst for the SCR reaction: Comparison of different forms of calcium. Mol. Catal. 2017, 434, 16–24. [Google Scholar] [CrossRef]
- Liu, S.M.; Guo, R.T.; Wang, S.X.; Pan, W.G.; Sun, P.; Li, M.Y.; Liu, S. Deactivation mechanism of Ca on Ce/TiO2 catalyst for selective catalytic reduction of NOx with NH3. J. Taiwan. Ins. Chem. Eng. 2017, 78, 290–298. [Google Scholar] [CrossRef]
- Guo, R.T.; Wang, S.X.; Pan, W.G.; Li, M.Y.; Sun, P.; Liu, S.M.; Sun, X.; Liu, S.; Liu, J. Different poisoning effect of K and Mg on the Mn/TiO2 catalyst for selective catalytic reduction of NOx with NH3: A mechanistic Study. J. Phys. Chem. C 2017, 121, 7881–7891. [Google Scholar] [CrossRef]
- Tang, F.; Xu, B.; Shi, H.; Qiu, J.; Fan, Y. The poisoning effect of Na+ and Ca+ ions doped on the V2O5/TiO2 catalysts for selective catalytic reduction of NO by NH3. Appl. Catal. B-Environ. 2010, 94, 71–76. [Google Scholar] [CrossRef]
- Berdys, M.; Koreniuk, A.; Maresz, K.; Pudlo, W.; Jarzebski, A.B.; Mrowiec-Bialon, J. Fabrication and performance of monolithic continuous-flow silica microreactors. Chem. Eng. J. 2015, 282, 137–141. [Google Scholar] [CrossRef]
- Bai, S.; Han, J.; Liu, M.; Qin, S.; Wang, G.; Li, G. Experimental investigation of exhaust thermal management on NOx emissions of heavy-duty diesel engine under the world Harmonized transient cycle (WHTC). Appl. Therm. Eng. 2018, 142, 421–432. [Google Scholar] [CrossRef]
- Boriboonsomsin, K.; Durbin, T.; Scora, G.; Johnson, K.; Sandez, D.; Vu, A.; Jiang, Y.; Burnette, A.; Yoon, S.; Collins, J.; et al. Real-world exhaust temperature profiles of on-road heavy-duty diesel vehicles equipped with selective catalytic reduction. Sci. Total Environ. 2018, 634, 909–921. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Choi, B.; Kim, C.; Lee, C.; Oh, K. De-NOx characteristics of HC-SCR system employing combined Ag/Al2O3 and CuSn/ZSM-5 catalyst. J. Ind. Eng. Chem. 2021, 93, 461–475. [Google Scholar] [CrossRef]
- Khatri, P.; Bhatia, D. Influence of catalyst composition on NOx storage and reduction characteristics of Ag catalyst supported on MgO-doped alumina. Chem. Eng. Res. Des. 2023, 197, 476–495. [Google Scholar] [CrossRef]
Chemical Material | Brand | Density (g/cm3) | Mol. Weight (g/mol) | Boiling Point (°C) | Melting Point (°C) |
---|---|---|---|---|---|
Oxalic acid (C2H2O4) | Fisher, Waltham, MA, USA | 1.65 | 126.07 | 149–160 | 98–100 |
Silver nitrate (AgNO3) | Merck, Darmstadt, Germany | 4.35 | 169.872 | 440 | 210 |
Calcium hydroxide (Ca(OH)2) | Sigma-Aldrich, St. Louis, MO, USA | - | 74.1 | - | - |
Antimony Trioxide (Sb2O3) | Sigma-Aldrich, St. Louis, MO, USA | 5.2 | 291.52 | 1425 | 656 |
Titanium dioxide (TiO2) | Merck, Darmstadt, Germany | - | 79.87 | 2900 | 1855 |
Ethanol (CH3CH2OH) | Merck, Darmstadt, Germany | 0.790 | 46.7 | 78.3 | −114.5 |
Catalyst/Elements | AT | ACT | ACS1T | ACS2T | ACS3T |
---|---|---|---|---|---|
Silver (Ag) | 2% = 1 g | 2% = 1 g | 2% = 1 g | 2% = 1 g | 2% = 1 g |
Calcium (Ca) | - | 1.5% = 0.75 g | 1.5% = 0.75 g | 1.5% = 0.75 g | 1.5% = 0.75 g |
Antimony (Sb) | - | - | 1% = 0.5 g | 2% = 1 g | 3% = 1.5 g |
Titanium (TiO2) | 98% = 49 g | 96.5% = 48.25 g | 95.5% = 47.75 g | 94.5% = 47.25 g | 93.5% = 46.75 g |
Parameters | Percent Uncertainty (%) |
---|---|
NOx | 1.37 |
Exhaust gas temperatures | 1.04 |
Engine load | 0.25 |
Catalyst | BET Surface Area (m2/g) |
---|---|
Acidic cordierite material | 22.88 |
AT | 12.59 |
ACT | 10.81 |
ACS1T | 6.43 |
ACS2T | 6.12 |
ACS3T | 6.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Resitoglu, I.A.; Keskin, A.; Karaman, B.; Ozarslan, H. Suppressing Calcium Deactivation in Selective Catalytic Reduction of NOx from Diesel Engines Using Antimony. Processes 2025, 13, 1914. https://doi.org/10.3390/pr13061914
Resitoglu IA, Keskin A, Karaman B, Ozarslan H. Suppressing Calcium Deactivation in Selective Catalytic Reduction of NOx from Diesel Engines Using Antimony. Processes. 2025; 13(6):1914. https://doi.org/10.3390/pr13061914
Chicago/Turabian StyleResitoglu, Ibrahim Aslan, Ali Keskin, Bugra Karaman, and Himmet Ozarslan. 2025. "Suppressing Calcium Deactivation in Selective Catalytic Reduction of NOx from Diesel Engines Using Antimony" Processes 13, no. 6: 1914. https://doi.org/10.3390/pr13061914
APA StyleResitoglu, I. A., Keskin, A., Karaman, B., & Ozarslan, H. (2025). Suppressing Calcium Deactivation in Selective Catalytic Reduction of NOx from Diesel Engines Using Antimony. Processes, 13(6), 1914. https://doi.org/10.3390/pr13061914