Factors of Bottom Sediment Variability in an Abandoned Alkaline Waste Settling Pond: Mineralogical and Geochemical Evidence
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Site
2.2. Sediment Sampling Methodology
2.3. Sample Preparation and Laboratory Analysis Methods
2.4. Data Processing Methods
3. Results
3.1. Description of the Physical Parameters of the Sediments
3.2. Mineral Composition of the Sediments
3.3. Chemical Composition of the Sediments
3.4. Trace Element Composition of Sediments
4. Discussion
4.1. Regularities of Changes in the Material Composition of Sediments
4.2. Trace and Toxic Elements in Sediments
- Class 0: Igeo ≤ 0—practically uncontaminated.
- Class 1: 0 < Igeo ≤ 1—uncontaminated to moderately contaminated.
- Class 2: 1 < Igeo ≤ 2—moderately contaminated.
- Class 3: 2 < Igeo ≤ 3—moderately to strongly contaminated.
- Class 4: 3 < Igeo ≤ 4—strongly contaminated.
- Class 5: 4 < Igeo ≤ 5—strongly to extremely contaminated.
- Class 6: 5 < Igeo—extremely contaminated.
- -
- Arsenic and antimony show peak concentrations in deeper layers with a gradual upward decrease (cores W, S, and N) or relatively uniform distribution (cores C, E).
- -
- Vanadium, chromium, and lead show increasing concentrations from deep to intermediate layers, followed by a decrease toward the surface.
- -
- Notable concurrent depletion of V, Cr, and Pb occurs in layers N6, W6, E7, and S8, with subsequent enrichment in overlying layers.
- -
- Copper (with the highest UCC enrichment factors) follows a similar distribution pattern to V, Cr, and Pb, but reaches maximum concentrations in deeper layers (C5, W5, and E5) coinciding with the depletion intervals of the other metals.
4.3. Areas of Reclamation
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maltsev, A.E.; Leonova, G.A.; Bobrov, V.A.; Krivonogov, S.K. Geochemistry of Holocene Sapropels from Small Lakes of the Southern Western Siberia and Eastern Baikal Regions; Academic Publishing House «Geo»: Moscow, Russia, 2019; 445p. [Google Scholar] [CrossRef]
- Strakhovenko, V.D.; Solotchina, E.P.; Goosl, Y.S.; Solotchin, P.A. Geochemical factors for endogenic mineral formation in the bottom sediments of the Tazheran lakes (Baikal area). Russ. Geol. Geophys. 2015, 56, 1437–1450. [Google Scholar] [CrossRef]
- Solotchina, E.P.; Kuzmin, M.I.; Solotchin, P.A.; Maltsev, A.E.; Leonova, G.A.; Danilenko, I.V. Authigenic carbonates from holocene sediments of Lake Itkul (South of West Siberia) as indicators of climate changes. Dokl. Earth Sci. 2019, 487, 54–59. [Google Scholar] [CrossRef]
- Solotchin, P.A.; Solotchina, E.P.; Maltsev, A.E.; Leonova, G.A.; Krivonogov, S.K.; Zhdanova, A.N.; Danilenko, I.V. Carbonate sedimentation in high -mineralized Lake Bolshoi Bagan (South of West Siberia): Dependence on holocene climate changes. Geol. Geophys. 2023, 64, 1318–1329. [Google Scholar] [CrossRef]
- Saccò, M.; White, N.E.; Harrod, C.; Salazar, G.; Aguilar, P.; Cubillos, C.F.; Meredith, K.; Baxter, B.K.; Oren, A.; Anufriieva, E.; et al. Salt to conserve: A review on the ecology and preservation of hypersaline ecosystems. Biol. Rev. 2021, 96, 2828–2850. [Google Scholar] [CrossRef]
- Liang, C.; Yang, B.; Cao, Y.; Liu, K.; Wu, J.; Hao, F.; Han, Y.; Han, W. Salinization mechanism of lakes and controls on organic matter enrichment: From present to deep-time records. Earth-Sci. Rev. 2024, 251, 104720. [Google Scholar] [CrossRef]
- Raudsepp, M.J.; Wilson, S.; Morgan, B. Making Salt from Water: The Unique Mineralogy of Alkaline Lakes. Elements 2023, 19, 22–29. [Google Scholar] [CrossRef]
- Raudsepp, M.J.; Wilson, S.; Zeyen, N.; Arizaleta, M.L.; Power, I.M. Magnesite everywhere: Formation of carbonates in the alkaline lakes and playas of the Cariboo Plateau, British Columbia, Canada. Chem. Geol. 2024, 648, 121951. [Google Scholar] [CrossRef]
- Womble, R.N.; Driscoll, C.T. Calcium carbonate deposition in Ca2+ polluted Onondaga Lake, New York, USA. Water Res. 1996, 30, 2139–2147. [Google Scholar] [CrossRef]
- Roche, A.; Vennin, E.; Bundeleva, I.; Bouton, A.; Payandi-Rolland, D.; Amiotte-Suchet, P.; Gaucher, E.C.; Courvoisier, H.; Visscher, P.T. The Role of the Substrate on the Mineralization Potential of Microbial Mats in A Modern Freshwater River (Paris Basin, France). Minerals 2019, 9, 359. [Google Scholar] [CrossRef]
- Zeyen, N.; Benzerara, K.; Beyssac, O.; Daval, D.; Muller, E.; Thomazo, C.; Tavera, R.; López-García, P.; Moreira, D.; Duprat, E. Integrative analysis of the mineralogical and chemical composition of modern microbialites from ten Mexican lakes: What do we learn about their formation? Geochim. Cosmochim. Acta 2021, 305, 148–184. [Google Scholar] [CrossRef]
- Armstrong, I.; Cury, L.F.; Titon, B.G.; Athayde, G.B.; Fedalto, G.; da Rocha Santos, L.; Soares, A.P.; de Vasconcelos Müller Athayde, C.; Manuela Bahniuk Rumbeslperger, A. The Occurrence of Authigenic Clay Minerals in Alkaline-Saline Lakes, Pantanal Wetland (Nhecolândia Region, Brazil). Minerals 2020, 10, 718. [Google Scholar] [CrossRef]
- Gao, D.; Wang, F.-P.; Wang, Y.-T.; Zeng, Y.-N. Sustainable Utilization of Steel Slag from Traditional Industry and Agriculture to Catalysis. Sustainability 2020, 12, 9295. [Google Scholar] [CrossRef]
- Li, G.; Liu, J.; Yi, L.; Luo, J.; Jiang, T. Bauxite residue (red mud) treatment: Current situation and promising solution. Sci. Total Environ. 2024, 948, 174757. [Google Scholar] [CrossRef]
- Mayes, W.M.; Younger, P.L.; Aumônier, J. Hydrogeochemistry of Alkaline Steel Slag Leachates in the UK. Water Air Soil Pollut. 2008, 195, 35–50. [Google Scholar] [CrossRef]
- Gomes, H.I.; Mayes, W.M.; Rogerson, M. Alkaline residues and the environment: A review of impacts, management practices and opportunities. J. Clean. Prod. 2015, 112, 3571–3582. [Google Scholar] [CrossRef]
- Spyra, A.; Cieplok, A.; Kaszyca-Taszakowska, N. From extremely acidic to alkaline: Aquatic invertebrates in forest mining lakes under the pressure of acidification. Int. Rev. Hydrobiol. 2023, 108, 5–16. [Google Scholar] [CrossRef]
- Xue, S.G.; Wu, Y.J.; Li, Y.W.; Kong, X.F.; Zhu, F.; William, H.; Li, X.F.; Ye, Y.Z. Industrial wastes applications for alkalinity regulation in bauxite residue: A comprehensive review. J. Cent. South Univ. 2019, 26, 268–288. [Google Scholar] [CrossRef]
- Moyo, A.; Parbhakar-Fox, A.; Meffre, S.; Cooke David, R. Alkaline industrial wastes—Characteristics, environmental risks, and potential for mine waste management. Environ. Pollut. 2023, 323, 121292. [Google Scholar] [CrossRef]
- Brito, E.M.S.; Piñón-Castillo, H.A.; Guyoneaud, R.; Caretta, C.A.; Gutiérrez-Corona, J.F.; Duran, R.; Reyna-López, G.E.; Nevárez-Moorillón, G.V.; Fahy, A.; Goñi-Urriza, M. Bacterial biodiversity from anthropogenic extreme environments: A hyper-alkaline and hyper-saline industrial residue contaminated by chromium and iron. Appl. Microbiol. Biotechnol. 2013, 97, 369–378. [Google Scholar] [CrossRef]
- Macías-Pérez, L.A.; Levard, C.; Barakat, M.; Angeletti, B.; Borschneck, D.; Poizat, L.; Achouak, W.; Auffan, M. Contrasted microbial community colonization of a bauxite residue deposit marked by a complex geochemical context. J. Hazard Mater. 2022, 424, 127470. [Google Scholar] [CrossRef]
- Steinhauser, G. Cleaner production in the Solvay Process: General strategies and recent developments. J. Clean. Prod. 2008, 16, 833–841. [Google Scholar] [CrossRef]
- Kalwasińska, A.; Felföldi, T.; Szabó, A.; Deja-Sikora, E.; Kosobucki, P.; Walczak, M. Microbial communities associated with the anthropogenic, highly alkaline environment of a saline soda lime. Poland. Antonie Leeuwenhoek 2017, 110, 945–962. [Google Scholar] [CrossRef]
- Krasilnikova, S.; Blinov, S.; Krasilnikov, P.; Belkin, P. World experience using of soda production waste. Ecol. Ind. Russ. 2021, 25, 48–53. [Google Scholar] [CrossRef]
- Likus-Cieślik, J.; Pietrzykowski, M. The Influence of Sedimentation Ponds of the Former Soda “Solvay” Plant in Krakow on the Chemistry of the Wilga River. Sustainability 2021, 13, 993. [Google Scholar] [CrossRef]
- Rahimpour, H.; Fahmi, A.; Zinatloo-Ajabshir, S. Toward sustainable soda ash production: A critical review on eco-impacts, modifications, and innovative approaches. Results Eng. 2024, 23, 102399. [Google Scholar] [CrossRef]
- Matthews, D.A.; Effler, S.W. Decreases in Pollutant Loading from Residual Soda Ash Production Waste. Water Air Soil Pollut. 2003, 146, 55–73. [Google Scholar] [CrossRef]
- Kalinina, E.V.; Rudakova, L.V. Decrease of toxic properties of soda production sludge and its utilization. Bull. Tomsk. Polytech. Univ. Geo Assets Eng. 2018, 329, 85–96. [Google Scholar]
- Belkin, P.; Nechaeva, Y.; Blinov, S.; Vaganov, S.; Perevoshchikov, R.; Plotnikova, E. Sediment microbial communities of a technogenic saline-alkaline reservoir. Heliyon 2024, 10, e33640. [Google Scholar] [CrossRef] [PubMed]
- Vaganov, S.; Perevoshchikov, R.; Menshikova, E.; Ushakova, E. Method for Sampling Bottom Sediments for Environmental Studies and a Device for Its Implementation. RU Patent 2762631, 21 June 2021. [Google Scholar]
- ISO 17025; General Requirements for the Competence of Testing and Calibration Laboratories. International Organization for Standardization: Geneva, Switzerland, 2021.
- Husson, F.; Josse, J.; Le, S. FactoMineR: An R package for multivariate analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef]
- Simpson, G.L. ggvegan: ‘ggplot2’ Plots for the ‘vegan’ Package R Package Version 0.1-0. 2019. Available online: https://www.rdocumentation.org/packages/ggvegan/versions/0.1-0 (accessed on 22 April 2025).
- Alamdari, A.; Alamdari, A.; Mowla, D. Kinetics of calcium carbonate precipitation through CO2 absorption from flue gas into distiller waste of soda ash plant. J. Ind. Eng. Chem. 2014, 20, 3480–3486. [Google Scholar] [CrossRef]
- Wedepohl, K.H. The composition of the continental crust. Geochim. Cosmochim. Acta 1995, 59, 1217–1232. [Google Scholar] [CrossRef]
- Muller, G. Index of geoaccumulation in sediments of the Rhine river. GeoJournal 1969, 2, 108–118. [Google Scholar]
- Krepysheva, I.V.; Rudakova, L.V.; Kozlov, S.G. Physicochemical and toxicological properties of slime at soda ash production. Min. Inform. Anal. Bull. 2015, 1, 335–342. [Google Scholar]
- Kalinina, E.V.; Glushankova, I.S.; Rudakova, L.V. Modification of the sludge from soda production for producing oil sorbents. Theor. Appl. Ecol. 2018, 2, 79–86. [Google Scholar] [CrossRef]
- Maksimova, Y.G.; Shilova, A.V.; Shchetko, V.A.; Maksimov, A.Y. Soda Slurry Pits: The Problem of Waste Recovery and the Search for Microorganisms-Producers of Industrially Significant Enzymes. Ecol. Ind. Russ. 2021, 25, 20–25. [Google Scholar] [CrossRef]
- Ruiz-Agudo, E.; Kudłacz, K.; Putnis, C.V.; Putnis, A.; Rodriguez-Navarro, C. Dissolution and Carbonation of Portlandite [Ca(OH)2] Single Crystals. Environ. Sci. Technol. 2013, 47, 11342–11349. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Yang, Y.; Caggiano, A.; Ukrainczyk, N.; Koenders, E. A phase-field approach for portlandite carbonation and application to self-healing cementitious materials. Mater. Struct. 2022, 55, 46. [Google Scholar] [CrossRef]
- Van Driessche, A.E.S.; Benning, L.G.; Rodriguez-Blanco, J.D.; Ossorio, M.; Bots, P.; García-Ruiz, J.M. The role and implications of bassanite as a stable precursor phase to gypsum precipitation. Science 2012, 336, 69–72. [Google Scholar] [CrossRef] [PubMed]
- Jia, C.; Zhu, G.; Legg, B.; Guan, B.; De Yoreo, J. Bassanite Grows Along Distinct Coexisting Pathways and Provides a Low Energy Interface for Gypsum Nucleation. Cryst. Growth Des. 2022, 22, 6582–6587. [Google Scholar] [CrossRef]
- Wang, X.; Yan, X.; Li, X. Environmental risk for application of ammonia-soda white mud in soils in China. J. Integr. Agric. 2020, 19, 601–611. [Google Scholar] [CrossRef]
- Sutkowska, K.; Teper, L.; Stania, M. Tracing potential soil contamination in the historical Solvay soda ash plant area, Jaworzno, Southern Poland. Environ. Monit. Assess. 2015, 187, 704. [Google Scholar] [CrossRef] [PubMed]
- Dzyuba, E.A. Determination of the local background content of some macro- and microelements in the soils of Perm Krai. Geogr. Bull. 2021, 56, 95–108. [Google Scholar] [CrossRef]
- Ushakova, E.S.; Belkin, P.A.; Drobinina, E.V. Sewage sludge formation characteristics and environmental status of the industrial wastewater channel. Bull. Tomsk. Polytech. Univ. Geo Assets Eng. 2023, 334, 75–91. [Google Scholar] [CrossRef]
- GOST R 54534-2011; Resource Saving. Sewage Sludge. Requirements for Recultivation of Disturbed Lands. Standardinform: Moscow, Russia, 2012.
- Zhao, X.; Liu, C.; Wang, L.; Zuo, L. Physical and mechanical properties and micro characteristics of fly ash-based geopolymers incorporating soda residue. Cem. Concr. Compos. 2019, 98, 125–136. [Google Scholar] [CrossRef]
Σcarb. | ΣAl-Si | ΣS | ΣCl | Portlandite | ||
---|---|---|---|---|---|---|
W | M | 66.6 | 4.7 | 5.1 | 18.3 | 3.3 |
σ | 6.9 | 4.1 | 4.4 | 7.9 | 3.1 | |
Cv | 10.3 | 88.7 | 87.0 | 43.2 | 94.2 | |
N | M | 73.6 | 9.5 | 2.8 | 12.1 | - |
σ | 9.8 | 10.4 | 0.6 | 3.4 | - | |
Cv | 13.3 | 110.3 | 21.6 | 28.3 | - | |
S | M | 70.7 | 11.4 | 5.5 | 9.2 | - |
σ | 9.8 | 4.4 | 1.8 | 3.0 | - | |
Cv | 13.8 | 38.9 | 33.1 | 32.9 | - | |
E | M | 74.2 | 2.7 | 7.6 | 12.8 | 0.8 |
σ | 9.9 | 1.5 | 4.4 | 7.2 | 0.4 | |
Cv | 13.3 | 55.2 | 58.5 | 56.5 | 53.5 | |
All samples | M | 71.2 | 7.1 | 5.3 | 13.1 | - |
σ | 9.3 | 6.8 | 3.5 | 6.5 | - | |
Cv | 13.0 | 96.5 | 67.8 | 49.6 | - |
CaO | Fe2O3 | SO3 | MgO | SiO2 | Na2O | Al2O3 | K2O | MnO | TiO2 | P2O5 | Cl | LOI | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
W | M | 28.1 | 1.5 | 7.2 | 3.0 | 5.6 | 5.2 | 1.3 | 3.1 | 0.3 | 0.9 | 0.04 | 9.2 | 34.6 |
σ | 7.2 | 1.1 | 4.0 | 2.0 | 2.8 | 1.4 | 1.0 | 1.4 | 0.2 | 0.8 | 0.01 | 2.3 | 4.0 | |
Cv | 25.8 | 73.5 | 55.1 | 67.4 | 49.9 | 26.8 | 77.5 | 46.2 | 89.5 | 85.2 | 31.8 | 25.2 | 11.5 | |
N | M | 42.0 | 2.4 | 3.0 | 4.1 | 4.7 | 2.1 | 1.2 | 0.5 | 0.5 | 1.5 | 0.04 | 12.6 | 25.5 |
σ | 3.7 | 0.9 | 0.9 | 1.2 | 1.8 | 0.5 | 0.5 | 0.2 | 0.2 | 1.0 | 0.01 | 2.1 | 2.5 | |
Cv | 8.8 | 37.7 | 28.6 | 28.9 | 38.8 | 23.3 | 38.7 | 42.7 | 48.4 | 66.2 | 23.1 | 16.5 | 9.7 | |
C | M | 43.1 | 2.1 | 2.7 | 3.6 | 4.7 | 1.7 | 1.1 | 0.6 | 0.4 | 1.4 | 0.03 | 11.6 | 26.9 |
σ | 5.8 | 0.9 | 0.7 | 2.0 | 2.5 | 0.9 | 0.5 | 0.4 | 0.2 | 1.0 | 0.01 | 4.1 | 5.4 | |
Cv | 13.5 | 43.3 | 27.4 | 56.6 | 52.1 | 50.9 | 47.9 | 59.0 | 62.2 | 68.1 | 45.3 | 35.7 | 20.1 | |
S | M | 42.1 | 3.2 | 3.3 | 3.7 | 5.3 | 1.5 | 1.4 | 0.9 | 0.5 | 1.7 | 0.05 | 8.1 | 28.7 |
σ | 8.2 | 1.4 | 0.6 | 1.1 | 3.1 | 0.5 | 0.7 | 0.5 | 0.3 | 1.4 | 0.01 | 1.2 | 4.2 | |
Cv | 19.5 | 45.7 | 19.6 | 30.7 | 59.0 | 33.0 | 52.3 | 50.5 | 55.6 | 81.6 | 30.6 | 15.4 | 14.8 | |
E | M | 28.5 | 1.8 | 6.4 | 4.6 | 6.1 | 3.3 | 1.7 | 0.3 | 0.3 | 1.2 | 0.04 | 13.7 | 32.2 |
σ | 8.9 | 1.1 | 2.6 | 3.3 | 3.1 | 0.8 | 1.0 | 0.2 | 0.3 | 0.7 | 0.01 | 4.7 | 5.1 | |
Cv | 31.2 | 64.3 | 41.1 | 70.9 | 51.5 | 24.7 | 58.8 | 53.2 | 105.4 | 64.5 | 35.1 | 34.5 | 15.8 |
Sc | V | Cr | Ni | Cu | As | Nb | Sb | Ba | Pb | ||
---|---|---|---|---|---|---|---|---|---|---|---|
W | M | 13.6 | 361 | 1490 | 37.7 | 1650 | 11.5 | 77.0 | 6.2 | 843 | 133 |
σ | 10.5 | 290 | 1060 | 27.3 | 1670 | 4.6 | 58.7 | 2.5 | 647 | 86.0 | |
Cv | 77.3 | 80.3 | 71.1 | 72.3 | 101 | 39.5 | 76.2 | 40.4 | 76.7 | 64.8 | |
M/UCC | 1.9 | 6.8 | 42.4 | 2.0 | 116 | 5.8 | 3.0 | 20.1 | 1.3 | 7.8 | |
Igeo | −0.4 | 1.5 | 4.2 | 0 | 5.2 | 1.8 | 0.2 | 3.6 | −1 | 2.1 | |
N | M | 15.5 | 366 | 1570 | 36.5 | 1670 | 12.8 | 75.8 | 6.0 | 2250 | 113 |
σ | 6.3 | 186 | 840 | 14.3 | 782 | 3.0 | 37.9 | 2.4 | 1830 | 80.2 | |
Cv | 40.3 | 50.7 | 53.5 | 39.2 | 46.9 | 23.4 | 50.1 | 40.8 | 81.2 | 70.8 | |
M/UCC | 2.2 | 6.9 | 44.9 | 2.0 | 117 | 6.4 | 2.9 | 19.2 | 3.4 | 6.7 | |
Igeo | 0.4 | 1.9 | 4.6 | 0.3 | 6.1 | 2.1 | 0.6 | 3.2 | 0.8 | 1.9 | |
C | M | 13.0 | 322 | 1350 | 48.5 | 2060 | 13.0 | 74.1 | 5.2 | 1610 | 132 |
σ | 7.8 | 159 | 705 | 45.4 | 2190 | 2.7 | 46.9 | 1.2 | 1580 | 76.2 | |
Cv | 60.2 | 49.3 | 52.4 | 93.6 | 107 | 20.5 | 63.3 | 23.6 | 98.0 | 57.8 | |
M/UCC | 1.9 | 6.1 | 38.4 | 2.6 | 144 | 6.5 | 2.9 | 16.8 | 2.4 | 7.8 | |
Igeo | 0.3 | 1.8 | 4.4 | 0.3 | 5.8 | 2.1 | 0.5 | 3.4 | −0.5 | 2.2 | |
S | M | 14.2 | 420 | 1490 | 37.4 | 1430 | 13.9 | 73.7 | 9.1 | 1760 | 145 |
σ | 10.5 | 249 | 961 | 16.5 | 1220 | 5.1 | 53.5 | 6.8 | 1190 | 95.9 | |
Cv | 73.7 | 59.3 | 64.6 | 44.1 | 84.9 | 36.8 | 72.5 | 74.6 | 67.8 | 66.3 | |
M/UCC | 2.0 | 7.9 | 42.5 | 2.0 | 100 | 6.9 | 2.8 | 29.4 | 2.6 | 8.5 | |
Igeo | 0.6 | 2.0 | 4.1 | 0.3 | 5.5 | 2.1 | 0.2 | 4.0 | 0.1 | 2.3 | |
E | M | 14.7 | 396 | 1620 | 35.8 | 1520 | 11.5 | 88.9 | 4.1 | 1090 | 167 |
σ | 9.8 | 242 | 1160 | 21.2 | 1360 | 3.2 | 62.0 | 1.4 | 711 | 150 | |
Cv | 66.8 | 61.3 | 71.7 | 59.3 | 89.3 | 28.1 | 69.7 | 35.1 | 65.1 | 90.2 | |
M/UCC | 2.1 | 7.5 | 46.3 | 1.9 | 107 | 5.7 | 3.4 | 13.1 | 1.6 | 9.8 | |
Igeo | 0.1 | 1.9 | 4.5 | 0 | 5.5 | 1.9 | 0.7 | 3.0 | −0.4 | 2.3 |
Studied Water Body (Mean Value) | Sewage Sludge from Berezniki Industrial Canal [47] | Spoil Heaps in Jaworzno, Poland [45] | Soda Sludge, China [44] | Soils of the Verkhnekamskoye Field [46] | RF Norms for Technical Reclamation [48] | |
---|---|---|---|---|---|---|
V | 373 | - | - | - | 78 | - |
Cr | 1500 | 84.8 | 6.24 | 20.6 | 152 | 2000 |
Ni | 39.2 | 34.2 | 2.35 | 7.81 | 31 | 800 |
Cu | 1670 | 33.0 | - | 37.9 | - | 1500 |
As | 12.5 | 1.62 | - | 3.63 | 6.3 | 40 |
Sb | 6.12 | 0.18 | - | - | - | - |
Ba | 1510 | 54.7 | - | - | - | - |
Pb | 138 | 18.1 | 46.89 | 10.4 | 15.2 | 1000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belkin, P.; Blinov, S.; Drobinina, E.; Menshikova, E.; Vaganov, S.; Perevoshchikov, R.; Tomilina, E. Factors of Bottom Sediment Variability in an Abandoned Alkaline Waste Settling Pond: Mineralogical and Geochemical Evidence. Minerals 2025, 15, 662. https://doi.org/10.3390/min15060662
Belkin P, Blinov S, Drobinina E, Menshikova E, Vaganov S, Perevoshchikov R, Tomilina E. Factors of Bottom Sediment Variability in an Abandoned Alkaline Waste Settling Pond: Mineralogical and Geochemical Evidence. Minerals. 2025; 15(6):662. https://doi.org/10.3390/min15060662
Chicago/Turabian StyleBelkin, Pavel, Sergey Blinov, Elena Drobinina, Elena Menshikova, Sergey Vaganov, Roman Perevoshchikov, and Elena Tomilina. 2025. "Factors of Bottom Sediment Variability in an Abandoned Alkaline Waste Settling Pond: Mineralogical and Geochemical Evidence" Minerals 15, no. 6: 662. https://doi.org/10.3390/min15060662
APA StyleBelkin, P., Blinov, S., Drobinina, E., Menshikova, E., Vaganov, S., Perevoshchikov, R., & Tomilina, E. (2025). Factors of Bottom Sediment Variability in an Abandoned Alkaline Waste Settling Pond: Mineralogical and Geochemical Evidence. Minerals, 15(6), 662. https://doi.org/10.3390/min15060662