Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (703)

Search Parameters:
Keywords = antifungal essential oil

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 3951 KiB  
Article
Exploring the Bioactive Potential and Chemical Profile of Schinus molle Essential Oil: An Integrated In Silico and In Vitro Evaluation
by Rómulo Oses, Matías Ferrando, Flavia Bruna, Patricio Retamales, Myriam Navarro, Katia Fernández, Waleska Vera, María José Larrazábal, Iván Neira, Adrián Paredes, Manuel Osorio, Osvaldo Yáñez, Martina Jacobs and Jessica Bravo
Plants 2025, 14(15), 2449; https://doi.org/10.3390/plants14152449 - 7 Aug 2025
Abstract
Chilean Schinus molle has been used in traditional medicine for effects such as antibacterial, antifungal, anti-inflammatory, analgesic, antiviral, antitumoral, antioxidant, antispasmodic, astringent, antipyretic, cicatrizant, cytotoxic, diuretic, among others. In this study, we evaluated the pharmacological potential of Schinus molle seed essential oil extract [...] Read more.
Chilean Schinus molle has been used in traditional medicine for effects such as antibacterial, antifungal, anti-inflammatory, analgesic, antiviral, antitumoral, antioxidant, antispasmodic, astringent, antipyretic, cicatrizant, cytotoxic, diuretic, among others. In this study, we evaluated the pharmacological potential of Schinus molle seed essential oil extract (SM_EO) through in vitro and in silico approaches. In vitro, the antioxidant potential was analyzed, and antitumor activity was evaluated in non-tumor and human epithelial tumor cell lines. Caenorhabditis elegans was used as a model for evaluating toxicity, and the chemical composition of the SM_EO was analyzed using gas chromatography–mass spectrometry. The oil contained four major monoterpenes: α-phellandrene (34%), β-myrcene (23%), limonene (13%), and β-phellandrene (7%). Based on quantum mechanical calculations, the reactivity of the molecules present in the SM_EO was estimated. The results indicated that α- phellandrene, β-phellandrene, and β-myrcene showed the highest nucleophilic activity. In addition, the compounds following these as candidates for antioxidant and antiproliferative activities were α-phellandrene, β-phellandrene, ρ-cymene, sabinene, caryophyllene, l-limonene, and α-pinene, highlighting β-myrcene. Based on ADME-Tox properties, it is feasible to use these compounds as new drug candidates. Moreover, the antibacterial activity MIC value obtained for B. cereus was equivalent to 2 μg/mL, and for Y. enterocolitica, S. enteritidis, and S. typhimurium, the MIC value was 32.5 μg/μL. SM_EO could selectively inhibit the proliferation of human epithelial mammary tumor MCF7 cells treated with SM_EOs at 64 and 16 ug/mL—a significant increase in BCL-2 in a dose-dependent manner—and showed low toxicity against Caenorhabditis elegans (from 10 to 0.078 mg·mL−1). These findings suggest that SM_EO may be a potential source of bioactive compounds, encouraging further investigation for applications in veterinary medicine, cosmetics, and sanitation. Full article
Show Figures

Graphical abstract

21 pages, 12523 KiB  
Article
Essential Oils as an Antifungal Alternative for the Control of Various Species of Fungi Isolated from Musa paradisiaca: Part I
by Maritza D. Ruiz Medina and Jenny Ruales
Microorganisms 2025, 13(8), 1827; https://doi.org/10.3390/microorganisms13081827 - 5 Aug 2025
Viewed by 37
Abstract
This study evaluated the antifungal potential of essential oils (EOs): oregano (Origanum vulgare), rosemary (Salvia rosmarinus), clove (Syzygium aromaticum), thyme (Thymus vulgaris), cinnamon (Cinnamomum verum), and basil (Ocimum basilicum). These oils [...] Read more.
This study evaluated the antifungal potential of essential oils (EOs): oregano (Origanum vulgare), rosemary (Salvia rosmarinus), clove (Syzygium aromaticum), thyme (Thymus vulgaris), cinnamon (Cinnamomum verum), and basil (Ocimum basilicum). These oils were tested against fungi isolated from banana peels (Musa paradisiaca). The fungi tested were identified through macroscopic and microscopic analyses and DNA sequencing, after being isolated in potato dextrose agar (PDA) medium modified with 0.05% chloramphenicol. Subsequently, the antifungal properties of the tested essential oils were evaluated in vitro at concentrations of 200, 400, 600, 800, and 1000 ppm prepared in a 0.05% Tween 80 solution. Cinnamon EOs showed the highest antifungal activity, significantly inhibiting the growth of pathogens at a concentration of 400 ppm. Other EOs showed moderate effects at higher concentrations: rosemary inhibited fungal growth at 600 ppm, oregano at 800 ppm, and clove at 1000 ppm. These findings highlight the potential of EOs as eco-friendly alternatives to synthetic fungicides, contributing to the development of sustainable agricultural practices and the post-harvest management of bananas. It is recommended to conduct future research to assess the economic viability and practical impacts of large-scale applications. Full article
(This article belongs to the Special Issue Current Pattern in Epidemiology and Antifungal Resistance)
Show Figures

Figure 1

16 pages, 7201 KiB  
Article
Carnauba Wax Coatings Enriched with Essential Oils or Fruit By-Products Reduce Decay and Preserve Postharvest Quality in Organic Citrus
by Lorena Martínez-Zamora, Rosa Zapata, Marina Cano-Lamadrid and Francisco Artés-Hernández
Foods 2025, 14(15), 2616; https://doi.org/10.3390/foods14152616 - 25 Jul 2025
Viewed by 377
Abstract
This research analyzes the innovative development of carnauba wax coatings enriched with essential oils (EOs: lemon, orange, grapefruit, clove, oregano, and cinnamon) or fruit by-products (FBPs: avocado, tomato, carrot, orange, lemon, and grapefruit) to improve postharvest preservation of organic oranges and lemons. Six [...] Read more.
This research analyzes the innovative development of carnauba wax coatings enriched with essential oils (EOs: lemon, orange, grapefruit, clove, oregano, and cinnamon) or fruit by-products (FBPs: avocado, tomato, carrot, orange, lemon, and grapefruit) to improve postharvest preservation of organic oranges and lemons. Six EOs and six FBPs were evaluated for total phenolic content (TPC) and in vitro antifungal activity against Penicillium digitatum. Based on results, grapefruit, oregano, and clove EOs were selected for lemons, while avocado, orange, and grapefruit FBPs were selected for oranges. An in vivo test at 20 °C for 15 days with carnauba wax coatings assessed antifungal performance. Clove EO and avocado FBP showed strong in vitro inhibition and consistent hyphal suppression (~100 and ~82%, respectively). In vivo, coatings with grapefruit EO and avocado FBP significantly reduced fungal decay and sporulation (~75%) in lemons and oranges, respectively. Coated fruits also retained weight losses by ~25% compared to uncoated ones. These findings suggest that phenolic-rich natural extracts, especially from agro-industrial residues like avocado peels, offer a promising and sustainable strategy for postharvest citrus disease control. Further studies should test coating effectiveness in large-scale trials under refrigeration combined with other preservation strategies. Full article
Show Figures

Graphical abstract

29 pages, 2840 KiB  
Review
Compositional Variability of Essential Oils and Their Bioactivity in Native and Invasive Erigeron Species
by Asta Judžentienė
Molecules 2025, 30(14), 2989; https://doi.org/10.3390/molecules30142989 - 16 Jul 2025
Viewed by 346
Abstract
To date, various species of Erigeron genus have been used both in the ethnopharmacology of numerous nations across the world and in contemporary herbal practices. The objective of this study is to revise the phytochemical data on the essential oils (EOs) of various [...] Read more.
To date, various species of Erigeron genus have been used both in the ethnopharmacology of numerous nations across the world and in contemporary herbal practices. The objective of this study is to revise the phytochemical data on the essential oils (EOs) of various fleabanes species and to evaluate the variability of their biological activities. Up to June 2025, this review provides an updated overview of 105 literature sources (published during last 25 years) related to 14 Erigeron sp. (native, naturalized, or invasive) which have been investigated extensively and are of the greatest significance. It summarizes the compositional variability of the EOs and their pharmacological and toxic effects, such as anti-inflammatory, anticancer, antiproliferative, skin regeneration, antioxidant, antifungal, antibacterial, insecticidal, larvicidal, repellent, and allelopathic activity. The EOs of each Erigeron species were characterized, and a chemical structure of 43 major constituents is presented herein. The most characteristic and prevalent compounds were found to be limonene, δ-3-carene, matricaria ester, lachnophyllum ester, germacrene D, β-caryophyllene, β-farnesene, α-bergamotene, allo-aromadendrene, etc., in the EOs from the E. acris, E. annuus, E. bonariensis, E. canadensis, E. floribundus E. mucronatus, and E. speciosus plants. Major constituents, such as borneol, bornyl acetate, modhephen-8-β-ol, cis-arteannuic alcohol, β-caryophyllene, and τ-cadinol, were found in the oils of E. graveolens (Inula graveolens). A paucity of data concerning E. incanus EOs was revealed, with the prevalence of 3-hydroxy-4-methoxy cinammic acid and thymol acetate noted in the oils. The EOs from E. multiradiatus and E. sublyratus were comprised mainly of matricaria and lachnophyllum esters. The available data on EOs of E. ramosus is limited, but the main constituents are known to be α-humulene, 1,8-cineole, eugenol, and globulol. The EOs containing appreciable amounts of matricaria and lachnophyllum esters exhibited strong anticancer, anti-inflammatory, antimicrobial, larvicidal, and repellent activities. Repellence is also related to borneol, bornyl acetate, caryophyllene derivatives, τ-cadinol, modhephen-8-β-ol, and cis-arteannuic alcohol. Cytotoxicity was determined due to the presence of limonene, δ-3-carene, α- and β-farnesene, (E)-β-ocimene, ledene oxide, sesquiphellandrene, and dendrolasin in the fleabanes EOs. Skin regeneration and antifungal properties were related to germacrene D; and anti-inflammatory effects were determined due to high amounts of limonene (E)-β-ocimene, lachnophyllum ester, and germacrene D. The antimicrobial properties of the oils were conditioned by appreciable quantities of limonene, β-pinene, 1,8-cineole, carvacrol, thymol acetae, β-eudesmol, 2,6,7,7α-tetrahydro-1,5-dimethyl-1H-indene-3-carboxaldehyde, caryophyllene and its oxide, allo-aromadendrene, α-humulene, farnesene, carvacrol, and eugenol. This review provides a foundation for further studies on volatile secondary metabolites to explore the potential sources of new biologically active compounds in Erigeron sp. Full article
(This article belongs to the Collection Featured Reviews in Natural Products Chemistry)
Show Figures

Graphical abstract

22 pages, 9507 KiB  
Article
Essential Oils as an Antifungal Alternative to Control Several Species of Fungi Isolated from Musa paradisiaca: Part III
by Maritza D. Ruiz Medina and Jenny Ruales
Microorganisms 2025, 13(7), 1663; https://doi.org/10.3390/microorganisms13071663 - 15 Jul 2025
Viewed by 363
Abstract
Essential oils (EOs) are widely recognized for their antifungal properties, but their efficacy against specific phytopathogenic fungi associated with banana (Musa paradisiaca) rot remains underexplored. This study aimed to evaluate the antifungal potential of EOs from Origanum vulgare, Salvia rosmarinus [...] Read more.
Essential oils (EOs) are widely recognized for their antifungal properties, but their efficacy against specific phytopathogenic fungi associated with banana (Musa paradisiaca) rot remains underexplored. This study aimed to evaluate the antifungal potential of EOs from Origanum vulgare, Salvia rosmarinus, Syzygium aromaticum, Thymus vulgaris, Cinnamomum verum, and Ocimum basilicum against five fungal species isolated from infected banana peels. Fungal isolates were obtained using PDA medium supplemented with chloramphenicol and were purified by weekly subculturing. Morphological and microscopic characterization was complemented by molecular identification based on ITS sequencing and phylogenetic reconstruction using Neighbor-Joining and UPGMA methods in MEGA v11. In vitro and ex vivo antifungal assays were performed at EO concentrations ranging from 200 to 1000 ppm. Thyme oil exhibited the strongest inhibitory effect, with complete growth suppression at 1000 ppm. Cinnamon and oregano also demonstrated effective inhibition at 600 ppm, while clove, rosemary, and basil were markedly less effective. Statistical analysis confirmed significant effects of EO type and concentration on fungal growth (p < 0.001). Molecular results showed strong phylogenetic support for isolate identification, with bootstrap values above 93% in most clades. These findings support the selective use of specific EOs as sustainable alternatives to synthetic fungicides in the postharvest management of banana diseases and provide a molecularly supported basis for their targeted application in integrated control strategies. Full article
(This article belongs to the Special Issue Current Pattern in Epidemiology and Antifungal Resistance)
Show Figures

Figure 1

10 pages, 2690 KiB  
Article
Essential Oils as Active Ingredients in a Plant-Based Fungicide: An In Vitro Study Demonstrating Growth Inhibition of Gray Mold (Botrytis cinerea)
by Tyler M. Wilson, Alma Laney, Zabrina Ruggles and Richard E. Carlson
Agrochemicals 2025, 4(3), 11; https://doi.org/10.3390/agrochemicals4030011 - 15 Jul 2025
Viewed by 1332
Abstract
The conventional agricultural industry largely relies on pesticides to maintain healthy and viable crops. Application of fungicides, both pre- and post-harvest of crops, is the go-to method for avoiding and eliminating Botrytis cinerea, the fungal pathogen responsible for gray mold. However, conventional [...] Read more.
The conventional agricultural industry largely relies on pesticides to maintain healthy and viable crops. Application of fungicides, both pre- and post-harvest of crops, is the go-to method for avoiding and eliminating Botrytis cinerea, the fungal pathogen responsible for gray mold. However, conventional fungicides and their residues have purported negative environmental and health impacts. Natural products, such as essential oils, are viewed as a promising alternative to conventional fungicides. The current research is an in vitro study on the antifungal activity of a natural water-based fungicide (N.F.), which uses a blend of essential oils (ajowan, cassia, clove, eucalyptus, lemongrass, oregano) as the active ingredients against B. cinerea. Compared to conventional fungicides tested at the same concentration (50 μL/mL), those with active ingredients of myclobutanil or propiconazole; the N.F. demonstrated significant (F(3,16) = 54, p = <0.001) and complete fungal growth inhibition. While previous research has largely focused on the antifungal properties of single essential oils and/or isolated compounds from essential oils, this research focuses on the efficacy of using a blend of essential oils in a proprietary delivery system. This research is of importance to the fields of agronomy, ecology, and health sciences. Full article
Show Figures

Figure 1

19 pages, 1415 KiB  
Article
Essential Oil from the Aerial Parts of Artemisia serotina Bunge (Winter Wormwood) Growing in Kazakhstan—Phytochemical Profile and Bioactivity
by Arshyn Kadyrbay, Liliya N. Ibragimova, Magdalena Iwan, Agnieszka Ludwiczuk, Anna Biernasiuk, Zuriyadda B. Sakipova, Łukasz Świątek, Kinga Salwa, Agnieszka Korga-Plewko, Karlygash A. Zhaparkulova, Tolkyn S. Bekezhanova, Aleksandra Józefczyk, Jolanta Szymańska and Anna Malm
Molecules 2025, 30(14), 2956; https://doi.org/10.3390/molecules30142956 - 14 Jul 2025
Viewed by 519
Abstract
Artemisia serotina Bunge represents one of the endemic Artemisia L. species in flora of Central Asia. There is scant information on the phytochemistry and biological activity of this species. The aim of the present study was to analyze the chemical composition of essential [...] Read more.
Artemisia serotina Bunge represents one of the endemic Artemisia L. species in flora of Central Asia. There is scant information on the phytochemistry and biological activity of this species. The aim of the present study was to analyze the chemical composition of essential oil from A. serotina (ASEO) growing in south Kazakhstan, together with the determination of its biological activity. ASEO isolation was carried out by hydrodistillation according to the State Pharmacopoeia of the Republic of Kazakhstan. Analysis of GC/MS data revealed that the most characteristic components of ASEO were irregular monoterpenes from three families: santolinane, artemisane, and lavandulane. The major compound was santolina alcohol (34.6%). Antimicrobial activity was studied against the reference bacterial and fungal strains using the recommended methods, allowing for an estimation of MIC (minimum inhibitory concentration). ASEO was most effective against Candida albicans (MIC = 2 mg/mL), exerting fungicidal activity. Thw MIC for bacterial species was higher, i.e., 4–16 mg/mL. Antiviral activity was tested against Coxsackievirus B3 (CVB3) and Human Herpesvirus type 1 (HHV-1) propagated in VERO cells. No antiviral effect against either virus was found at an ASEO concentration of 0.25 mg/mL, but a noticeable decrease in the intensity of HHV-1-related cytopathic effects was observed. Anticancer activity studies included several cancer cell lines. Cytotoxicity, cell cycle, thiol levels, and cell vitality were analyzed. Among the cancer cell lines tested, the breast cancer T47-D cell line exhibited the highest sensitivity to ASEO (IC50 = 40.81 ± 4.21 µg/mL at 24 h; IC50 = 33.17 ± 2.11 µg/mL at 48 h). The anticancer effect was suggested to be mainly due to the induction of cytostatic effects, accompanied by a disturbance of the intracellular redox balance. The obtained data provide novel information on the unique chemical composition of ASEO from south Kazakhstan, representing a new chemotype. Its bioactivity, including promising antifungal and anticancer properties, was demonstrated for the first time. Full article
(This article belongs to the Special Issue Chemical Analyses and Applications of Essential Oils)
Show Figures

Figure 1

15 pages, 1481 KiB  
Article
Inhibitory Effects of Origanum vulgare Essential Oil on Mycogone perniciosa Growth in Agaricus bisporus Cultivation
by Jasmina Glamočlija, Marija Ivanov, Marina Soković, Ana Ćirić, Slavica Ninković, Danijela Mišić, Ivanka Milenković and Dejan Stojković
J. Fungi 2025, 11(7), 515; https://doi.org/10.3390/jof11070515 - 9 Jul 2025
Viewed by 468
Abstract
Mycogone perniciosa is the causative agent of wet bubble disease, which induces significant losses in the production of Agaricus bisporus, indicating the high importance of the development of novel inhibitory agents. The isolation, identification, and molecular characterization of five isolates of M. [...] Read more.
Mycogone perniciosa is the causative agent of wet bubble disease, which induces significant losses in the production of Agaricus bisporus, indicating the high importance of the development of novel inhibitory agents. The isolation, identification, and molecular characterization of five isolates of M. perniciosa from diseased fruit bodies of A. bisporus was done. Moreover, the study evaluated the in vitro and in situ potential of Origanum vulgare essential oil (EO) to limit M. perniciosa growth and provided chemical characterization of its volatile components. The obtained strains differed phenotypically and according to their molecular characteristics. O. vulgare EO has shown more promising antifungal activity than the commercial fungicide Prochloraz-Mn in the microatmospheric method. In the treatment of experimentally induced wet bubble disease on A. bisporus in the growing chambers with 2% of O. vulgare EO and simultaneous application of spore suspension of mycopathogen, O. vulgare EO totally inhibited the growth of M. perniciosa. Carvacrol, p-cymene, γ-terpinene, and thymol were dominant constituents of O. vulgare EO examined in this study. O. vulgare EO has shown promising potential to limit growth of M. perniciosa and should be further explored as a novel biofungicide. Full article
Show Figures

Figure 1

17 pages, 6326 KiB  
Review
Crithmum maritimum L.: Phytochemical Profile, Biological Activities, and Therapeutic Potential
by Velina Dzhoglova, Stanislava Ivanova, Michaela Shishmanova-Doseva and Kremena Saracheva
Molecules 2025, 30(13), 2832; https://doi.org/10.3390/molecules30132832 - 1 Jul 2025
Viewed by 524
Abstract
Members of the Apiaceae family have been recognized since antiquity for their health-promoting properties. The halophytic species Crithmum maritimum L. (commonly known as sea fennel) has been used in traditional medicine since antiquity, largely due to its diverse and bioactive phytochemical composition. The [...] Read more.
Members of the Apiaceae family have been recognized since antiquity for their health-promoting properties. The halophytic species Crithmum maritimum L. (commonly known as sea fennel) has been used in traditional medicine since antiquity, largely due to its diverse and bioactive phytochemical composition. The plant’s complex chemical composition includes terpenoids, phenolic acids, flavonoids, tannins, dietary fibers, fatty acids, and essential vitamins. Essential oils (EOs) extracted from C. maritimum L. have demonstrated a wide range of biological activities, including antibacterial, antifungal, anti-inflammatory, antioxidant, and anticancer effects. Moreover, recent evidence suggests additional biofunctional roles such as cognitive enhancement and the inhibition of melanin synthesis in the skin. Extracts of the plant exhibit significant bioactivity, having shown antiparasitic, hypoglycemic, vasodilatory, and probiotic effects in preliminary studies. Despite this pharmacological potential, the number of experimental studies (particularly in vivo investigations) remains limited. The present review consolidates existing in vitro and in vivo research on C. maritimum L. with an analysis of 79 scientific studies aimed at elucidating its therapeutic potential and identifying future research directions necessary to support its broader application in biomedical and functional food contexts. Full article
(This article belongs to the Special Issue Chemical Composition and Anti-Inflammatory Activity of Essential Oils)
Show Figures

Figure 1

20 pages, 2564 KiB  
Article
Investigating the Mechanisms Underlying Citral-Induced Oxidative Stress and Its Contribution to Antifungal Efficacy on Magnaporthe oryzae Through a Multi-Omics Approach
by Yonghui Huang, Ruoruo Wang, Yumei Tan, Yongxiang Liu, Xiyi Ren, Congtao Guo, Rongyu Li and Ming Li
Plants 2025, 14(13), 2001; https://doi.org/10.3390/plants14132001 - 30 Jun 2025
Viewed by 347
Abstract
Citral, an organic compound found in lemongrass (Cymbopogon citratus) oil and Litsea cubeba essential oil, has been reported to exhibit notable antifungal activity against Magnaporthe oryzae (M. oryzae), the pathogen of rice blast, which causes significant economic losses in [...] Read more.
Citral, an organic compound found in lemongrass (Cymbopogon citratus) oil and Litsea cubeba essential oil, has been reported to exhibit notable antifungal activity against Magnaporthe oryzae (M. oryzae), the pathogen of rice blast, which causes significant economic losses in rice production. However, the role of citral in inducing oxidative stress related to antifungal ability and its underlying regulatory networks in M. oryzae remain unclear. In this study, we investigated the oxidative effects of citral on M. oryzae and conducted transcriptomic and widely targeted metabolomic (WTM) analyses on the mycelia. The results showed that citral induced superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) activities but reduced glutathione S-transferase (GST) activity with 25% maximal effective concentration (EC25) and 75% maximal effective concentration (EC75). Importantly, citral at EC75 reduced the activities of mitochondrial respiratory chain complex I, complex III and ATP content, while increasing the activity of mitochondrial respiratory chain complex II. In addition, citral triggered a burst of reactive oxygen species (ROS) and a loss of mitochondrial membrane potential (MMP) through the observation of fluorescence. Furthermore, RNA-seq analysis and metabolomics analysis identified a total of 466 differentially expression genes (DEGs) and 32 differential metabolites (DAMs) after the mycelia were treated with citral. The following multi-omics analysis revealed that the metabolic pathways centered on AsA, GSH and melatonin were obviously suppressed by citral, indicating a disrupted redox equilibrium in the cell. These findings provide further evidences supporting the antifungal activity of citral and offer new insights into the response of M. oryzae under oxidative stress induced by citral. Full article
Show Figures

Figure 1

14 pages, 1796 KiB  
Article
In Vitro Efficacy of Thymbra capitata (L.) Cav. Essential Oil Against Olive Phytopathogenic Fungi
by Gabriele Simone, Margherita Campo, Silvia Urciuoli, Lorenzo Moncini, Maider Giorgini, Francesca Ieri and Pamela Vignolini
Microorganisms 2025, 13(7), 1503; https://doi.org/10.3390/microorganisms13071503 - 27 Jun 2025
Viewed by 389
Abstract
In recent years, the excessive use of pesticides has raised environmental and health concerns, which has led to research into natural alternatives. Essential oils may represent a sustainable solution to this problem. In this study, essential oils from Thymbra capitata (L.) Cav., Eucalyptus [...] Read more.
In recent years, the excessive use of pesticides has raised environmental and health concerns, which has led to research into natural alternatives. Essential oils may represent a sustainable solution to this problem. In this study, essential oils from Thymbra capitata (L.) Cav., Eucalyptus globulus Labill, and Mentha piperita L. were analyzed by GC–MS and tested in vitro using the poisoned food technique against six olive pathogen fungi: Alternaria sp., Arthrinium marii, Colletotrichum acutatum, Fomitiporia mediterranea, Fusarium solani, and Verticillium dahliae. T. capitata essential oil (0.1 g/L) showed the highest antifungal activity when compared to E. globulus and M. piperita essential oils, which exhibited significantly lower efficacy against the tested olive phytopathogenic fungi. GC–MS analysis revealed that carvacrol is the main compound (76.1%) in T. capitata essential oil. A comparison of the inhibitory effect of T. capitata essential oil (0.1 g/L) and carvacrol (0.07 g/L) on selected fungal strains showed similar results, with carvacrol slightly more effective, although the differences were mostly statistically insignificant, except for C. acutatum. To the authors knowledge, this is the first study demonstrating the inhibitory effect of Thymbra capitata essential oil against A. marii and F. mediterranea. The results of this study represent a basis for the development of new biochemical biopesticides based on T. capitata essential oil as a useful tool for the contrast of some fungal olive tree diseases. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

18 pages, 1013 KiB  
Article
Phytochemical Composition and Evaluation of Antimicrobial Activities of Five Salvia Species
by Yavuz Bülent Köse, Gökalp İşcan, Fatih Göger and Betül Demirci
Processes 2025, 13(7), 2011; https://doi.org/10.3390/pr13072011 - 25 Jun 2025
Viewed by 462
Abstract
In this study, the phytochemical composition and antimicrobial efficacy of five Türkiye native Salvia species (S. albimaculata, S. blepharochlaena, S. palaestina, S. virgata, and S. absconditiflora (syn. S. cryptantha) were investigated. The essential oils isolated with yields [...] Read more.
In this study, the phytochemical composition and antimicrobial efficacy of five Türkiye native Salvia species (S. albimaculata, S. blepharochlaena, S. palaestina, S. virgata, and S. absconditiflora (syn. S. cryptantha) were investigated. The essential oils isolated with yields ranging from 0.2% to 0.66% were assessed using gas chromatography-mass spectrometry (GC-MS). The major constituents were found to be α-pinene (up to 12.0% in S. albimaculata), camphor (up to 28.5% in S. blepharochlaena), borneol (up to 19.5% in S. virgata), 1,8-cineole (30.2% in S. absconditiflora), and linalool (26.5% in S. palaestina). Methanol extracts were produced with yields ranging from 8.2% to 9.5% and examined via liquid chromatography-mass spectrometry (LC-MS/MS) and isolated phenolic acids (e.g., rosmarinic acid and caffeic acid) and flavonoids (luteolin and apigenin). Rosmarinic acid emerged as the dominant common compound in all the species. Antimicrobial testing against Gram-positive and Gram-negative bacteria and Candida microorganisms showed potent activity: S. blepharochlaena essential oil showed good antifungal activity against C. utilis, with a MIC value of 31.25 µg/mL, while S. palaestina and S. virgata extracts showed antibacterial activity against Bacillus and Staphylococcus strains. This detailed study broadened the chemotaxonomic profile of Turkish Salvia species and listed possible antimicrobial agents. Full article
(This article belongs to the Special Issue 2nd Edition of Natural Products for Drug Discovery and Development)
Show Figures

Figure 1

25 pages, 1085 KiB  
Review
Emerging Technologies and Integrated Strategies for Microbial Detection and Control in Fresh Produce
by Ayman Elbehiry, Eman Marzouk, Feras Alzaben, Abdulaziz Almuaither, Banan Abead, Mohammed Alamri, Abdulaziz M. Almuzaini and Akram Abu-Okail
Microorganisms 2025, 13(7), 1447; https://doi.org/10.3390/microorganisms13071447 - 21 Jun 2025
Viewed by 989
Abstract
The global consumption of fresh and ready-to-eat (RTE) fruits and vegetables has surged due to increasing awareness of their nutritional benefits. However, this trend has been accompanied by a rise in foodborne illness outbreaks linked to microbial contamination. This narrative review synthesizes current [...] Read more.
The global consumption of fresh and ready-to-eat (RTE) fruits and vegetables has surged due to increasing awareness of their nutritional benefits. However, this trend has been accompanied by a rise in foodborne illness outbreaks linked to microbial contamination. This narrative review synthesizes current knowledge on the prevalence and diversity of foodborne pathogens in fresh produce, including bacterial, viral, and fungal agents. It critically evaluates both conventional and emerging detection methods, ranging from culture-based techniques and immunoassays to advanced molecular diagnostics, biosensors, flow cytometry (FC), and hyperspectral imaging (HSI). Additionally, this review discusses cutting-edge control strategies, such as natural antifungal agents, essential oils, biocontrol methods, and non-thermal technologies like cold plasma and UV-C treatment. Emphasis is placed on sampling methodologies, sustainability, One Health perspectives, and regulatory considerations. By highlighting recent technological advances and their limitations, this review aims to support the development of integrated, effective, and safe microbial control approaches for the fresh produce supply chain. Full article
(This article belongs to the Special Issue Microbial Safety and Beneficial Microorganisms in Foods)
Show Figures

Figure 1

20 pages, 1824 KiB  
Article
The Impact of Essential Oils Derived from Citrus Species to Control Botrytis cinerea and Their Potential Physiological Actions
by Sebastián Campos, Javier Espinoza, Juan Mauricio Fuentes, Ignacio Jofré-Fernández, Gonzalo Tortella, Diego Navarro, Andrés Quiroz, María Cristina Diez, Olga Rubilar and Paola Fincheira
Plants 2025, 14(12), 1859; https://doi.org/10.3390/plants14121859 - 17 Jun 2025
Viewed by 811
Abstract
Botrytis cinerea is one of the phytopathogenic fungi of the greatest economic importance worldwide. Essential oils (EOs) have been proposed as a sustainable alternative to reduce the growth of phytopathogenic fungi. Nevertheless, few studies exist about its mechanisms of action. This study evaluated [...] Read more.
Botrytis cinerea is one of the phytopathogenic fungi of the greatest economic importance worldwide. Essential oils (EOs) have been proposed as a sustainable alternative to reduce the growth of phytopathogenic fungi. Nevertheless, few studies exist about its mechanisms of action. This study evaluated the antifungal activity of EOs from Citrus reticulata, Citrus limon, Citrus sinensis, and Citrus paradisi peels and their encapsulation inside solid lipid nanoparticles (SLNs). Accordingly, Citrus EOs were mainly constituted by monoterpene hydrocarbons, where limonene was the most abundant in all EOs. C. reticulata and C. limon EOs reduced the mycelial growth at above 54% after 96 h. The other EOs did not significantly impact the phytopathogen. C. reticulata EO increased the hyphae damage by 40%, but the spore germination was reduced by only 8.34%. It also significantly increased the pH, the electrical conductivity, and the release of intracellular absorbing material and soluble proteins in B. cinerea cultures. Contrary, the esterase, mitochondrial, and succinate dehydrogenase activities decreased at above 50%. C. reticulata EO into SLN reduced the mycelial growth of B. cinerea by 90–97%. These results show that the EO of C. reticulata alters the physiological and metabolic activities of B. cinerea to reduce its growth. Full article
(This article belongs to the Special Issue Nanomaterials in Plant Growth and Stress Adaptation—2nd Edition)
Show Figures

Figure 1

17 pages, 1635 KiB  
Article
Chemical Analysis and Antimicrobial Potential Assessment of Wild Laurel from the National Park Skadar Lake, Montenegro
by Dragica Bojović, Miomir Šoškić, Ana Žugić, Marina T. Milenković, Iva Ljumović and Vanja M. Tadić
Appl. Sci. 2025, 15(12), 6741; https://doi.org/10.3390/app15126741 - 16 Jun 2025
Viewed by 415
Abstract
In light of the increasing demand for laurel, driven by renewed interest in natural products and traditional medicinal usage of this plant, our study aimed to investigate the in vitro antimicrobial activity of essential oils from leaves and fruits of laurel (EOL and [...] Read more.
In light of the increasing demand for laurel, driven by renewed interest in natural products and traditional medicinal usage of this plant, our study aimed to investigate the in vitro antimicrobial activity of essential oils from leaves and fruits of laurel (EOL and EOF, respectively) collected in the National Park Skadar Lake, Montenegro, as it related to their chemical composition, assessing the possibility of their usage in cosmetics and pharmaceuticals. Also, fatty oil from the remaining laurel fruit after EOF isolation was investigated as a possible source of bioactive compounds. The most abundant components in EOL and EOF were 1,8-cineol (35.1% and 33.3%, respectively) and α-terpinyl acetate (10.4% and 7.0%, respectively). Linalool (7.6%) was found in EOL, while α- pinene (5.8%) and β-elemene (5.7%) were present in significant amounts in EOF. Antibacterial and antifungal properties of EOL and EOF showed strong antibacterial activity against Staphylococcus aureus, Enterococcus faecalis, and Bacillus subtilis, and potent antifungal effects against Candida albicans, opening the door for their application as antimicrobial agents. Chemical analysis of fatty oil unexpectedly revealed prominent content of sesquiterpene lactone dehydrocostunolide and phenylpropanoid derivative (E)-2-hexyl-cinnamaldehyde (21% and 5%, respectively), suggesting further investigations of this waste material as the source of valuable compounds with proven health benefits. Full article
Show Figures

Figure 1

Back to TopTop