Emerging Technologies and Integrated Strategies for Microbial Detection and Control in Fresh Produce
Abstract
1. Introduction
2. Epidemiology of Produce-Linked Foodborne Illnesses and Contamination Pathways
2.1. Epidemiological Trends and High-Risk Commodities
2.2. Contamination Pathways: From Preharvest to Retail
2.3. Emerging Risk Factors: Climate Change, Globalization, and Antimicrobial Resistance
3. Detection Methods for Foodborne Pathogens in Fresh Produce
4. Control Strategies for Microbial Contamination in Fresh Produce
4.1. Cold Plasma (CP)
4.2. Ultraviolet-C (UV-C) Light
4.3. Pulsed-Light (PL) Technology
4.4. Essential Oils (EOs)
4.5. Edible Films and Coatings
4.6. Electrolyzed Water
4.7. Ozone Treatment
4.8. Hurdle Technology
4.9. Smart Packaging and Responsive Films
4.10. Application of Natural Antifungal Agents
4.11. Preventative Measures
5. Implementation Challenges and Future Directions for Pathogen Control in Fresh Produce
6. Recommendations and Future Directions for Enhancing Microbial Safety of Fresh Produce
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, X.; Ouyang, Y.; Liu, J.; Zhu, M.; Zhao, G.; Bao, W.; Hu, F.B. Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: Systematic review and dose-response meta-analysis of prospective cohort studies. BMJ 2014, 349, g4490. [Google Scholar] [CrossRef] [PubMed]
- Aune, D.; Giovannucci, E.; Boffetta, P.; Fadnes, L.T.; Keum, N.; Norat, T.; Greenwood, D.C.; Riboli, E.; Vatten, L.J.; Tonstad, S. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality—A systematic review and dose-response meta-analysis of prospective studies. Int. J. Epidemiol. 2017, 46, 1029–1056. [Google Scholar] [CrossRef] [PubMed]
- Onni, A.T.; Balakrishna, R.; Perillo, M.; Amato, M.; Arjmand, E.J.; Thomassen, L.M.; Lorenzini, A.; Fadnes, L.T. Umbrella review of systematic reviews and meta-analyses on consumption of different food groups and risk of all-cause mortality. Adv. Nutr. 2025, 16, 100393. [Google Scholar] [CrossRef]
- Ndanuko, R.N.; Tapsell, L.C.; Charlton, K.E.; Neale, E.P.; Batterham, M.J. Dietary patterns and blood pressure in adults: A systematic review and meta-analysis of randomized controlled trials. Adv. Nutr. 2016, 7, 76–89. [Google Scholar] [CrossRef]
- Bennett, S.; Sodha, S.; Ayers, T.; Lynch, M.; Gould, L.; Tauxe, R. Produce-associated foodborne disease outbreaks, USA, 1998–2013. Epidemiol. Infect. 2018, 146, 1397–1406. [Google Scholar] [CrossRef]
- Olaimat, A.N.; Holley, R.A. Factors influencing the microbial safety of fresh produce: A review. Food Microbiol. 2012, 32, 1–19. [Google Scholar] [CrossRef]
- Abdelshafy, A.M.; Younis, H.A.; Osman, A.I.; Hussein, S.M.; El-Ela, A.S.A.; Mahmoud, E.A.; Elsherbiny, O.; Rashwan, A.K. Recent Advances in Detection and Control Strategies for Foodborne Bacteria in Raw and Ready-to-Eat Fruits and Vegetables. Food Front. 2025, 6, 605–629. [Google Scholar] [CrossRef]
- Polkowska, A.; Räsänen, S.; Nuorti, P.; Maunula, L.; Jalava, K. Assessment of food and waterborne viral outbreaks by using field epidemiologic, modern laboratory and statistical methods—Lessons learnt from seven major norovirus outbreaks in Finland. Pathogens 2021, 10, 1624. [Google Scholar] [CrossRef] [PubMed]
- Almeria, S.; Chacin-Bonilla, L.; Maloney, J.G.; Santin, M. Cyclospora cayetanensis: A perspective (2020–2023) with emphasis on epidemiology and detection methods. Microorganisms 2023, 11, 2171. [Google Scholar] [CrossRef]
- Dawson, D.; Paish, A.; Staffell, L.; Seymour, I.; Appleton, H. Survival of viruses on fresh produce, using MS2 as a surrogate for norovirus. J. Appl. Microbiol. 2005, 98, 203–209. [Google Scholar] [CrossRef]
- Li, J.; Wang, Z.; Karim, M.R.; Zhang, L. Detection of human intestinal protozoan parasites in vegetables and fruits: A review. Parasites Vectors 2020, 13, 380. [Google Scholar] [CrossRef]
- Eslahi, A.V.; Mamedova, S.; Nassiba, R.; Karanis, P. Unveiling risks in healthy food: Vegetables and fruits are linked to the distribution chain of protozoan parasites. Food Microbiol. 2024, 123, 104592. [Google Scholar]
- Nassarawa, S.S.; Luo, Z.; Lu, Y. Conventional and emerging techniques for detection of foodborne pathogens in horticulture crops: A leap to food safety. Food Bioprocess Technol. 2022, 15, 1248–1267. [Google Scholar] [CrossRef]
- Thomas, G.A.; Gil, T.P.; Müller, C.T.; Rogers, H.J.; Berger, C.N. From field to plate: How do bacterial enteric pathogens interact with ready-to-eat fruit and vegetables, causing disease outbreaks? Food Microbiol. 2024, 117, 104389. [Google Scholar] [CrossRef] [PubMed]
- Ölmez, H. Foodborne pathogenic bacteria in fresh-cut vegetables and fruits. In Food Hygiene and Toxicology in Ready-to-Eat Foods; Elsevier: Amsterdam, The Netherlands, 2016; pp. 151–166. [Google Scholar]
- Azimirad, M.; Nadalian, B.; Alavifard, H.; Panirani, S.N.; Bonab, S.M.V.; Azimirad, F.; Gholami, F.; Jabbari, P.; Yadegar, A.; Busani, L. Microbiological survey and occurrence of bacterial foodborne pathogens in raw and ready-to-eat green leafy vegetables marketed in Tehran, Iran. Int. J. Hyg. Environ. Health 2021, 237, 113824. [Google Scholar] [CrossRef]
- Rashwan, A.K.; Bai, H.; Osman, A.I.; Eltohamy, K.M.; Chen, Z.; Younis, H.A.; Al-Fatesh, A.; Rooney, D.W.; Yap, P.-S. Recycling food and agriculture by-products to mitigate climate change: A review. Environ. Chem. Lett. 2023, 21, 3351–3375. [Google Scholar] [CrossRef]
- Havelaar, A.H.; Kirk, M.D.; Torgerson, P.R.; Gibb, H.J.; Hald, T.; Lake, R.J.; Praet, N.; Bellinger, D.C.; De Silva, N.R.; Gargouri, N. World Health Organization global estimates and regional comparisons of the burden of foodborne disease in 2010. PLoS Med. 2015, 12, e1001923. [Google Scholar] [CrossRef]
- Chen, Z.-D.; Kang, H.-J.; Chai, A.-L.; Shi, Y.-X.; Xie, X.-W.; Li, L.; Li, B.-J. Development of a loop-mediated isothermal amplification (LAMP) assay for rapid detection of Pseudomonas syringae pv. tomato in planta. Eur. J. Plant Pathol. 2020, 156, 739–750. [Google Scholar] [CrossRef]
- Zheng, T.; Li, X.; Xie, Y.-N.; Yang, B.; Wu, P. Dual-gene isothermal amplification coupled with lateral flow strip for on-site accurate detection of E. coli O157: H7 in food samples. Anal. Chem. 2023, 95, 6053–6060. [Google Scholar] [CrossRef]
- Hu, J.; Huang, R.; Wang, Y.; Wei, X.; Wang, Z.; Geng, Y.; Jing, J.; Gao, H.; Sun, X.; Dong, C. Development of duplex PCR-ELISA for simultaneous detection of Salmonella spp. and Escherichia coli O157: H7 in food. J. Microbiol. Methods 2018, 154, 127–133. [Google Scholar] [CrossRef]
- El-Moghazy, A.Y.; Wisuthiphaet, N.; Yang, X.; Sun, G.; Nitin, N. Electrochemical biosensor based on genetically engineered bacteriophage T7 for rapid detection of Escherichia coli on fresh produce. Food Control 2022, 135, 108811. [Google Scholar] [CrossRef]
- Johnson, N.; Kniel, K.; Bais, H.; Ragone, A. Deep ultraviolet fluorescence sensing with multispectral imaging to detect and monitor food-borne pathogens on the leafy green phyllosphere. J. Food Saf. 2023, 43, e13056. [Google Scholar] [CrossRef]
- Zand, E.; Froehling, A.; Schoenher, C.; Zunabovic-Pichler, M.; Schlueter, O.; Jaeger, H. Potential of flow cytometric approaches for rapid microbial detection and characterization in the food industry—A review. Foods 2021, 10, 3112. [Google Scholar] [CrossRef]
- Lee, H.W.; Oh, Y.J.; Min, S.C. Microbial inhibition in mixed vegetables packaged in plastic containers using combined treatment with hydrogen peroxide and cold plasma. Food Control 2024, 161, 110107. [Google Scholar] [CrossRef]
- Kostić, M.; Bajac, B.; Janjušević, L.; Bajac, J.; Antov, M. Edible coatings based on plant components for active packaging of fresh/fresh-cut fruits. S. Afr. J. Bot. 2023, 161, 395–403. [Google Scholar] [CrossRef]
- Rahman, M.; Hasan, M.S.; Islam, R.; Rana, R.; Sayem, A.; Sad, M.A.A.; Matin, A.; Raposo, A.; Zandonadi, R.P.; Han, H. Plasma-activated water for food safety and quality: A review of recent developments. Int. J. Environ. Res. Public Health 2022, 19, 6630. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Francis, K.; Zhang, X. Review on formation of cold plasma activated water (PAW) and the applications in food and agriculture. Food Res. Int. 2022, 157, 111246. [Google Scholar] [CrossRef]
- Ferone, M.; Gowen, A.; Fanning, S.; Scannell, A.G. Microbial detection and identification methods: Bench top assays to omics approaches. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3106–3129. [Google Scholar] [CrossRef] [PubMed]
- Kuddus, M.; Shahid, S.M.; Kausar, M.A.; Alzayed, F.S.; Aldhamadi, H.F.; Aljameel, O.S. Microbial analysis of vegetable salad served in restaurants of Hail City, Saudi Arabia. Biochem. Cell Arch. 2017, 17, 153–158. [Google Scholar]
- Aiyedun, S.O.; Onarinde, B.A.; Swainson, M.; Dixon, R.A. Foodborne outbreaks of microbial infection from fresh produce in Europe and North America: A systematic review of data from this millennium. Int. J. Food Sci. Technol. 2021, 56, 2215–2223. [Google Scholar] [CrossRef]
- Wartha, S.; Huber, S.; Kraemer, I.; Alter, T.; Messelhäußer, U. Presence of Listeria at primary production and processing of food of non-animal origin (FNAO) in Bavaria, Germany. J. Food Prot. 2023, 86, 100015. [Google Scholar] [CrossRef]
- Bai, Y.; Li, J.; Huang, M.; Yan, S.; Li, F.; Xu, J.; Peng, Z.; Wang, X.; Ma, J.; Sun, J. Prevalence and characterization of foodborne pathogens isolated from fresh-cut fruits and vegetables in Beijing, China. Int. J. Food Microbiol. 2024, 421, 110804. [Google Scholar] [CrossRef]
- Oyedele, O.A.; Kuzamani, K.Y.; Adetunji, M.C.; Osopale, B.A.; Makinde, O.M.; Onyebuenyi, O.E.; Ogunmola, O.M.; Mozea, O.C.; Ayeni, K.I.; Ezeokoli, O.T. Bacteriological assessment of tropical retail fresh-cut, ready-to-eat fruits in south-western Nigeria. Sci. Afr. 2020, 9, e00505. [Google Scholar] [CrossRef]
- Zhang, H.; Yamamoto, E.; Murphy, J.; Locas, A. Microbiological safety of ready-to-eat fresh-cut fruits and vegetables sold on the Canadian retail market. Int. J. Food Microbiol. 2020, 335, 108855. [Google Scholar] [CrossRef]
- Elsafi, S.H.; Al Zahrani, E.M.; Al Zaid, R.F.; Alshagifi, S.A.; Farghal, T.A.; Alshamuse, K.B.; Albalawi, A.S.; Alkhalaf, F.; Sumaily, A.A.; Almusabi, S. Antibiotic-resistant bacteria contaminating leafy vegetables in Saudi Arabia’s eastern region. BMC Microbiol. 2024, 24, 303. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.K.; Samota, M.K.; Kumar, A.; Silva, A.S.; Dubey, N.K. Fungal mycotoxins in food commodities: Present status and future concerns. Front. Sustain. Food Syst. 2023, 7, 1162595. [Google Scholar] [CrossRef]
- Iwu, C.D.; Okoh, A.I. Preharvest transmission routes of fresh produce associated bacterial pathogens with outbreak potentials: A review. Int. J. Environ. Res. Public Health 2019, 16, 4407. [Google Scholar] [CrossRef] [PubMed]
- Mahunu, G.; Osei-Kwarteng, M.; Ogwu, M.C.; Afoakwah, N.A. Safe food handling techniques to prevent microbial contamination. In Food Safety and Quality in the Global South; Springer: Berlin/Heidelberg, Germany, 2024; pp. 427–461. [Google Scholar]
- Allende, A.; Monaghan, J. Irrigation water quality for leafy crops: A perspective of risks and potential solutions. Int. J. Environ. Res. Public Health 2015, 12, 7457–7477. [Google Scholar] [CrossRef] [PubMed]
- Alimi, B.A.; Lawal, R.; Odetunde, O.N. Food safety and microbiological hazards associated with retail meat at butchery outlets in north-central Nigeria. Food Control 2022, 139, 109061. [Google Scholar] [CrossRef]
- Foods, N.A.C.o.M.C.f. Microbiological safety evaluations and recommendations on fresh produce. Food Control 1999, 10, 117–143. [Google Scholar]
- Redmond, E.C.; Griffith, C.J. The importance of hygiene in the domestic kitchen: Implications for preparation and storage of food and infant formula. Perspect. Public Health 2009, 129, 69–76. [Google Scholar] [CrossRef]
- Rose, J.B.; Epstein, P.R.; Lipp, E.K.; Sherman, B.H.; Bernard, S.M.; Patz, J.A. Climate variability and change in the United States: Potential impacts on water-and foodborne diseases caused by microbiologic agents. Environ. Health Perspect. 2001, 109, 211–221. [Google Scholar]
- Hellberg, R.S.; Chu, E. Effects of climate change on the persistence and dispersal of foodborne bacterial pathogens in the outdoor environment: A review. Crit. Rev. Microbiol. 2016, 42, 548–572. [Google Scholar] [CrossRef] [PubMed]
- Tryland, I.; Robertson, L.; Blankenberg, A.G.B.; Lindholm, M.; Rohrlack, T.; Liltved, H. Impact of rainfall on microbial contamination of surface water. Int. J. Clim. Change Strateg. Manag. 2011, 3, 361–373. [Google Scholar] [CrossRef]
- Kostyla, C.; Bain, R.; Cronk, R.; Bartram, J. Seasonal variation of fecal contamination in drinking water sources in developing countries: A systematic review. Sci. Total Environ. 2015, 514, 333–343. [Google Scholar] [CrossRef] [PubMed]
- Lake, I.; Barker, G. Climate change, foodborne pathogens and illness in higher-income countries. Curr. Environ. Health Rep. 2018, 5, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Bhutta, M.N.M.; Ahmad, M. Secure identification, traceability and real-time tracking of agricultural food supply during transportation using internet of things. IEEE Access 2021, 9, 65660–65675. [Google Scholar] [CrossRef]
- Irvin, K.; Viazis, S.; Fields, A.; Seelman, S.; Blickenstaff, K.; Gee, E.; Wise, M.E.; Marshall, K.E.; Gieraltowski, L.; Harris, S. An overview of traceback investigations and three case studies of recent outbreaks of Escherichia coli O157: H7 infections linked to romaine lettuce. J. Food Prot. 2021, 84, 1340–1356. [Google Scholar] [CrossRef]
- Bintsis, T. Foodborne pathogens. AIMS Microbiol. 2017, 3, 529. [Google Scholar] [CrossRef]
- Grudlewska-Buda, K.; Bauza-Kaszewska, J.; Wiktorczyk-Kapischke, N.; Budzyńska, A.; Gospodarek-Komkowska, E.; Skowron, K. Antibiotic Resistance in selected emerging bacterial foodborne Pathogens—An issue of concern? Antibiotics 2023, 12, 880. [Google Scholar] [CrossRef]
- Rajaei, M.; Moosavy, M.-H.; Gharajalar, S.N.; Khatibi, S.A. Antibiotic resistance in the pathogenic foodborne bacteria isolated from raw kebab and hamburger: Phenotypic and genotypic study. BMC Microbiol. 2021, 21, 272. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Ahn, J. Emergence and spread of antibiotic-resistant foodborne pathogens from farm to table. Food Sci. Biotechnol. 2022, 31, 1481–1499. [Google Scholar] [CrossRef]
- Hashempour-Baltork, F.; Hosseini, H.; Shojaee-Aliabadi, S.; Torbati, M.; Alizadeh, A.M.; Alizadeh, M. Drug resistance and the prevention strategies in food borne bacteria: An update review. Adv. Pharm. Bull. 2019, 9, 335. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.; Luo, M.; Long, D.; Liu, Z.; Tan, Q.; Huang, P.; Shen, J.; Pu, S. Full-length 16S rRNA gene sequencing and machine learning reveal the bacterial composition of inhalable particles from two different breeding stages in a piggery. Ecotoxicol. Environ. Saf. 2023, 253, 114712. [Google Scholar] [CrossRef] [PubMed]
- Uyttendaele, M.; Jaykus, L.A.; Amoah, P.; Chiodini, A.; Cunliffe, D.; Jacxsens, L.; Holvoet, K.; Korsten, L.; Lau, M.; McClure, P. Microbial hazards in irrigation water: Standards, norms, and testing to manage use of water in fresh produce primary production. Compr. Rev. Food Sci. Food Saf. 2015, 14, 336–356. [Google Scholar] [CrossRef]
- Gravning, G.E.N.; Røtterud, O.-J.; Bjørkøy, S.; Forseth, M.; Skjerve, E.; Llarena, A.-K.; Lian, A.; Johannessen, G.S.; Hauge, S.J. Comparison of four sampling methods for microbiological quantification on broiler carcasses. Food Control 2021, 121, 107589. [Google Scholar] [CrossRef]
- Miao, Y.; Xiong, G.; Bai, M.; Ge, Y.; Wu, Z. Detection of live Salmonella enterica in fresh-cut vegetables by a TaqMan-based one-step reverse transcription real-time PCR. Lett. Appl. Microbiol. 2018, 66, 447–454. [Google Scholar] [CrossRef]
- Buzatu, D.A.; Moskal, T.J.; Williams, A.J.; Cooper, W.M.; Mattes, W.B.; Wilkes, J.G. An integrated flow cytometry-based system for real-time, high sensitivity bacterial detection and identification. PLoS ONE 2014, 9, e94254. [Google Scholar] [CrossRef]
- Lorente, D.; Aleixos, N.; Gómez-Sanchis, J.; Cubero, S.; García-Navarrete, O.L.; Blasco, J. Recent advances and applications of hyperspectral imaging for fruit and vegetable quality assessment. Food Bioprocess Technol. 2012, 5, 1121–1142. [Google Scholar] [CrossRef]
- ElMasry, G.; Sun, D.-W. Principles of hyperspectral imaging technology. In Hyperspectral Imaging for Food Quality Analysis and Control; Elsevier: Amsterdam, The Netherlands, 2010; pp. 3–43. [Google Scholar]
- Canadian Food Inspection Agency. Sampling Procedures for Fresh Produce and Ready-to-Eat Products. 2023. Available online: https://inspection.canada.ca (accessed on 16 June 2025).
- Postollec, F.; Falentin, H.; Pavan, S.; Combrisson, J.; Sohier, D. Recent advances in quantitative PCR (qPCR) applications in food microbiology. Food Microbiol. 2011, 28, 848–861. [Google Scholar] [CrossRef]
- Foddai, A.C.; Grant, I.R. Methods for detection of viable foodborne pathogens: Current state-of-art and future prospects. Appl. Microbiol. Biotechnol. 2020, 104, 4281–4288. [Google Scholar] [CrossRef]
- Kim, J.-H.; Oh, S.-W. Rapid and sensitive detection of E. coli O157: H7 and S. Typhimurium in iceberg lettuce and cabbage using filtration, DNA concentration, and qPCR without enrichment. Food Chem. 2020, 327, 127036. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Zhou, X.; Wang, X.; Shi, X. Development of a 3-plex droplet digital PCR for identification and absolute quantification of Salmonella and its two important serovars in various food samples. Food Control 2023, 145, 109465. [Google Scholar] [CrossRef]
- Xu, X.; Liu, G.; Huang, X.; Li, L.; Lin, H.; Xu, D. MALDI-TOF MS-based identification of bacteria and a survey of fresh vegetables with pathogenic bacteria in Beijing, China. Food Biosci. 2021, 41, 100746. [Google Scholar] [CrossRef]
- Zeng, X.; Wang, Y.; Shen, X.; Wang, H.; Xu, Z.-L. Application of Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry for Identification of Foodborne Pathogens: Current Developments and Future Trends. J. Agric. Food Chem. 2024, 72, 22001–22014. [Google Scholar] [CrossRef]
- Chai, Z.; Soko, W.C.; Xie, J.; Bi, H. Microchip coupled with MALDI-TOF MS for the investigation of bacterial contamination of fish muscle products. Food Chem. 2022, 396, 133658. [Google Scholar] [CrossRef] [PubMed]
- Elbehiry, A.; Marzouk, E.; Hamada, M.; Al-Dubaib, M.; Alyamani, E.; Moussa, I.M.; AlRowaidhan, A.; Hemeg, H.A. Application of MALDI-TOF MS fingerprinting as a quick tool for identification and clustering of foodborne pathogens isolated from food products. New Microbiol. 2017, 40, 269–278. [Google Scholar] [PubMed]
- Gootenberg, J.S.; Abudayyeh, O.O.; Kellner, M.J.; Joung, J.; Collins, J.J.; Zhang, F. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science 2018, 360, 439–444. [Google Scholar] [CrossRef]
- Zhang, X. Development of CRISPR-mediated nucleic acid detection technologies and their applications in the livestock industry. Genes 2022, 13, 2007. [Google Scholar] [CrossRef]
- Tang, T.; Zhang, M.; Mujumdar, A.S. Intelligent detection for fresh-cut fruit and vegetable processing: Imaging technology. Compr. Rev. Food Sci. Food Saf. 2022, 21, 5171–5198. [Google Scholar] [CrossRef]
- Vignati, S.; Tugnolo, A.; Giovenzana, V.; Pampuri, A.; Casson, A.; Guidetti, R.; Beghi, R. Hyperspectral imaging for fresh-cut fruit and vegetable quality assessment: Basic concepts and applications. Appl. Sci. 2023, 13, 9740. [Google Scholar] [CrossRef]
- Soni, A.; Dixit, Y.; Reis, M.M.; Brightwell, G. Hyperspectral imaging and machine learning in food microbiology: Developments and challenges in detection of bacterial, fungal, and viral contaminants. Compr. Rev. Food Sci. Food Saf. 2022, 21, 3717–3745. [Google Scholar] [CrossRef] [PubMed]
- Manthou, E.; Karnavas, A.; Fengou, L.-C.; Bakali, A.; Lianou, A.; Tsakanikas, P.; Nychas, G.-J.E. Spectroscopy and imaging technologies coupled with machine learning for the assessment of the microbiological spoilage associated to ready-to-eat leafy vegetables. Int. J. Food Microbiol. 2022, 361, 109458. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, Y.; Zhang, Y.; Wang, X.; Zhang, C.; Cheng, N. Intelligent biosensors promise smarter solutions in food safety 4.0. Foods 2024, 13, 235. [Google Scholar] [CrossRef] [PubMed]
- Gil, M.I.; Selma, M.V.; López-Gálvez, F.; Allende, A. Fresh-cut product sanitation and wash water disinfection: Problems and solutions. Int. J. Food Microbiol. 2009, 134, 37–45. [Google Scholar] [CrossRef]
- López-Gálvez, F.; Tudela, J.A.; Allende, A.; Gil, M.I. Microbial and chemical characterization of commercial washing lines of fresh produce highlights the need for process water control. Innov. Food Sci. Emerg. Technol. 2019, 51, 211–219. [Google Scholar] [CrossRef]
- Rodgers, S.L.; Cash, J.N.; Siddiq, M.; Ryser, E.T. A comparison of different chemical sanitizers for inactivating Escherichia coli O157: H7 and Listeria monocytogenes in solution and on apples, lettuce, strawberries, and cantaloupe. J. Food Prot. 2004, 67, 721–731. [Google Scholar] [CrossRef]
- Qi, H.; Wang, L.; Huang, Q.; Hung, Y.-C. Effect of organic load on the efficacy of activated persulfate in inactivating Escherichia coli O157: H7 and the production of halogenated by-products. Food Control 2020, 114, 107218. [Google Scholar] [CrossRef]
- Van Haute, S.; Sampers, I.; Holvoet, K.; Uyttendaele, M. Physicochemical quality and chemical safety of chlorine as a reconditioning agent and wash water disinfectant for fresh-cut lettuce washing. Appl. Environ. Microbiol. 2013, 79, 2850–2861. [Google Scholar] [CrossRef]
- Banach, J.L.; Sampers, I.; Van Haute, S.; Van der Fels-Klerx, H. Effect of disinfectants on preventing the cross-contamination of pathogens in fresh produce washing water. Int. J. Environ. Res. Public Health 2015, 12, 8658–8677. [Google Scholar] [CrossRef]
- Gómez-López, V.M.; Rajkovic, A.; Ragaert, P.; Smigic, N.; Devlieghere, F. Chlorine dioxide for minimally processed produce preservation: A review. Trends Food Sci. Technol. 2009, 20, 17–26. [Google Scholar] [CrossRef]
- Misra, N.; Tiwari, B.; Raghavarao, K.; Cullen, P. Nonthermal plasma inactivation of food-borne pathogens. Food Eng. Rev. 2011, 3, 159–170. [Google Scholar] [CrossRef]
- Ricciardi, F.E.; Plazzotta, S.; Conte, A.; Manzocco, L. Effect of pulsed light on microbial inactivation, sensory properties and protein structure of fresh ricotta cheese. LWT 2021, 139, 110556. [Google Scholar] [CrossRef]
- Nazzaro, F.; Fratianni, F.; De Martino, L.; Coppola, R.; De Feo, V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals 2013, 6, 1451–1474. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Graü, M.A.; Soliva-Fortuny, R.; Martín-Belloso, O. Edible coatings to incorporate active ingredients to fresh-cut fruits: A review. Trends Food Sci. Technol. 2009, 20, 438–447. [Google Scholar] [CrossRef]
- Li, S.; Ren, Y.; Hou, Y.; Zhan, Q.; Jin, P.; Zheng, Y.; Wu, Z. Polysaccharide-Based Composite Films: Promising Biodegradable Food Packaging Materials. Foods 2024, 13, 3674. [Google Scholar] [CrossRef]
- de Araújo Bezerra, J.; Lamarão, C.V.; Sanches, E.A.; Rodrigues, S.; Fernandes, F.A.; Ramos, G.L.P.; Esmerino, E.A.; Cruz, A.G.; Campelo, P.H. Cold plasma as a pre-treatment for processing improvement in food: A review. Food Res. Int. 2023, 167, 112663. [Google Scholar] [CrossRef]
- Mahnot, N.K.; Chakraborty, S.; Gupta, K.; Saikia, S. Cold Plasma Processing Methods: Impact of Decontamination on Food Quality. In Advances in Food Process Engineering; Apple Academic Press: Palm Bay, FL, USA, 2023; pp. 255–275. [Google Scholar]
- Misra, N.; Patil, S.; Moiseev, T.; Bourke, P.; Mosnier, J.; Keener, K.; Cullen, P. In-package atmospheric pressure cold plasma treatment of strawberries. J. Food Eng. 2014, 125, 131–138. [Google Scholar] [CrossRef]
- Li, L.; Li, C.; Sun, J.; Xin, M.; Yi, P.; He, X.; Sheng, J.; Zhou, Z.; Ling, D.; Zheng, F. Synergistic effects of ultraviolet light irradiation and high-oxygen modified atmosphere packaging on physiological quality, microbial growth and lignification metabolism of fresh-cut carrots. Postharvest Biol. Technol. 2021, 173, 111365. [Google Scholar] [CrossRef]
- Elias, M.; Madureira, J.; Santos, P.; Carolino, M.; Margaça, F.; Verde, S.C. Preservation treatment of fresh raspberries by e-beam irradiation. Innov. Food Sci. Emerg. Technol. 2020, 66, 102487. [Google Scholar] [CrossRef]
- Choi, D.S.; Park, S.H.; Choi, S.R.; Kim, J.S.; Chun, H.H. The combined effects of ultraviolet-C irradiation and modified atmosphere packaging for inactivating Salmonella enterica serovar Typhimurium and extending the shelf life of cherry tomatoes during cold storage. Food Packag. Shelf Life 2015, 3, 19–30. [Google Scholar] [CrossRef]
- Wang, C.-P.; Liao, J.-Y. Effect of UV-C LED arrangement on the sterilization of Escherichia coli in planar water disinfection reactors. J. Water Process Eng. 2023, 56, 104399. [Google Scholar] [CrossRef]
- Bialka, K.; Demirci, A. Efficacy of pulsed UV-light for the decontamination of Escherichia coli O157: H7 and Salmonella spp. on raspberries and strawberries. J. Food Sci. 2008, 73, M201–M207. [Google Scholar] [CrossRef]
- Gómez-López, V.M.; Bhat, R.; Pellicer, J.A. Pulsed light. In Electromagnetic Technologies in Food Science; Wiley: Hoboken, NJ, USA, 2021; pp. 200–219. [Google Scholar]
- Ramos-Villarroel, A.; Martín-Belloso, O.; Soliva-Fortuny, R. Pulsos de luz intensa: Inactivación microbiana en frutas y hortalizas. CyTA-J. Food 2013, 11, 234–242. [Google Scholar] [CrossRef]
- Moreira, M.R.; Cassani, L.; Martín-Belloso, O.; Soliva-Fortuny, R. Effects of polysaccharide-based edible coatings enriched with dietary fiber on quality attributes of fresh-cut apples. J. Food Sci. Technol. 2015, 52, 7795–7805. [Google Scholar] [CrossRef] [PubMed]
- Krishnamurthy, K.; Demirci, A.; Irudayaraj, J. Inactivation of Staphylococcus aureus by pulsed UV-light sterilization. J. Food Prot. 2004, 67, 1027–1030. [Google Scholar] [CrossRef]
- Woldemariam, H.W.; Harmeling, H.; Emire, S.A.; Teshome, P.G.; Toepfl, S.; Aganovic, K. Pulsed light treatment reduces microorganisms and mycotoxins naturally present in red pepper (Capsicum annuum L.) powder. J. Food Process Eng. 2022, 45, e13948. [Google Scholar] [CrossRef]
- Xylia, P.; Chrysargyris, A.; Shahwar, D.; Ahmed, Z.F.; Tzortzakis, N. Application of rosemary and eucalyptus essential oils on the preservation of cucumber fruit. Horticulturae 2022, 8, 774. [Google Scholar] [CrossRef]
- Perumal, A.B.; Huang, L.; Nambiar, R.B.; He, Y.; Li, X.; Sellamuthu, P.S. Application of essential oils in packaging films for the preservation of fruits and vegetables: A review. Food Chem. 2022, 375, 131810. [Google Scholar] [CrossRef]
- Vidaković Knežević, S.; Knežević, S.; Vranešević, J.; Kravić, S.Ž.; Lakićević, B.; Kocić-Tanackov, S.; Karabasil, N. Effects of selected essential oils on Listeria monocytogenes in biofilms and in a model food system. Foods 2023, 12, 1930. [Google Scholar] [CrossRef]
- Nedic, D.; Grkovic, N.; Kalaba, V.; Golic, B.; Ilic, T.; Kasagic, D.; Suvajdzic, B.; Vejnovic, B.; Djuric, S.; Vasilev, D. Antimicrobial activity of thyme (Thymus vulgaris) and oregano (Origanum vulgare) essential oils against Listeria monocytogenes in fermented sausages. IOP Conf. Ser. Earth Environ. Sci. 2021, 854, 012064. [Google Scholar] [CrossRef]
- Chang, L.; Xu, L.; Yang, Z.; Liu, L.; Qiu, D. Antibacterial and antioxidative biogenic films for room-temperature strawberry preservation. Food Chem. 2023, 405, 134893. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Lu, J.-H.; Xu, M.-T.; Shi, X.-C.; Song, Z.-W.; Chen, T.-M.; Herrera-Balandrano, D.D.; Zhang, Y.-J.; Laborda, P.; Shahriar, M. Evaluation of chitosan coatings enriched with turmeric and green tea extracts on postharvest preservation of strawberries. LWT 2022, 163, 113551. [Google Scholar] [CrossRef]
- Rojas-Graü, M.; Tapia, M.; Rodríguez, F.; Carmona, A.; Martin-Belloso, O. Alginate and gellan-based edible coatings as carriers of antibrowning agents applied on fresh-cut Fuji apples. Food Hydrocoll. 2007, 21, 118–127. [Google Scholar] [CrossRef]
- Chang, H.-Y.; Gui, C.-Y.; Huang, T.-C.; Hung, Y.-C.; Chen, T.-Y. Quantitative proteomic analysis on the slightly acidic electrolyzed water triggered viable but non-culturable Listeria monocytogenes. Int. J. Mol. Sci. 2023, 24, 10616. [Google Scholar] [CrossRef]
- Guentzel, J.L.; Lam, K.L.; Callan, M.A.; Emmons, S.A.; Dunham, V.L. Reduction of bacteria on spinach, lettuce, and surfaces in food service areas using neutral electrolyzed oxidizing water. Food Microbiol. 2008, 25, 36–41. [Google Scholar] [CrossRef]
- Afari, G.K.; Hung, Y.C.; King, C.H. Efficacy of neutral pH electrolyzed water in reducing Escherichia coli O157: H7 and Salmonella Typhimurium DT 104 on fresh produce items using an automated washer at simulated food service conditions. J. Food Sci. 2015, 80, M1815–M1822. [Google Scholar] [CrossRef]
- Hamidi, R.M.; Shekarforoush, S.S.; Hosseinzadeh, S.; Basiri, S. Near Neutral Electrolyzed Water and Peroxyacetic Acid and Their Effect on the Survival of Escherichia coli, Salmonella Typhimurium, and Listeria monocytogenes Inoculated on Poultry Meat. Food Prot. Trends 2021, 41, 380–388. [Google Scholar] [CrossRef]
- Hong, H.; Rizzi, M.F.; Wang, D.; McLandsborough, L.; Lu, J. A Meta-Analysis on the Antimicrobial Effectiveness of Ozonated Water Treatments for Fresh Produce Washing—Effect of Ozonation Methods. Foods 2024, 13, 3906. [Google Scholar] [CrossRef]
- Gibson, K.E.; Almeida, G.; Jones, S.L.; Wright, K.; Lee, J.A. Inactivation of bacteria on fresh produce by batch wash ozone sanitation. Food Control 2019, 106, 106747. [Google Scholar] [CrossRef]
- Macías-Gallardo, F.; Barajas-Díaz, C.G.-M.; Mireles-Arriaga, A.I.; Ozuna, C. Strawberry variety influences the effectiveness of postharvest treatment with gaseous ozone: Impact on the physicochemical, microbiological, and bioactive properties of the fruit. Processes 2023, 11, 346. [Google Scholar] [CrossRef]
- Luo, A.; Bai, J.; Li, R.; Fang, Y.; Li, L.; Wang, D.; Zhang, L.; Liang, J.; Huang, T.; Kou, L. Effects of ozone treatment on the quality of kiwifruit during postharvest storage affected by Botrytis cinerea and Penicillium expansum. J. Phytopathol. 2019, 167, 470–478. [Google Scholar] [CrossRef]
- Öztekin, S.; Zorlugenç, B.; Zorlugenç, F.K.l. Effects of ozone treatment on microflora of dried figs. J. Food Eng. 2006, 75, 396–399. [Google Scholar] [CrossRef]
- Abdelshafy, A.M.; Luo, Z.; Belwal, T.; Ban, Z.; Li, L. A comprehensive review on preservation of shiitake mushroom (Lentinus edodes): Techniques, research advances and influence on quality traits. Food Rev. Int. 2023, 39, 2742–2775. [Google Scholar] [CrossRef]
- Zhou, X.; Salazar, J.K.; Fay, M.L.; Zhang, W. Efficacy of power ultrasound-based hurdle technology on the reduction of bacterial pathogens on fresh produce. Foods 2023, 12, 2653. [Google Scholar] [CrossRef]
- Liu, F.; Xu, Y.; Zeng, M.; Zhang, Y.; Pan, L.; Wang, J.; Huang, S. A novel physical hurdle technology by combining low voltage electrostatic field and modified atmosphere packaging for long-term stored button mushrooms (Agaricus bisporus). Innov. Food Sci. Emerg. Technol. 2023, 90, 103514. [Google Scholar] [CrossRef]
- Melhem, L.C.d.M.; Do Rosario, D.K.A.; Monteiro, M.L.G.; Conte-Junior, C.A. High-Pressure Processing and Natural Antimicrobials Combined Treatments on Bacterial Inactivation in Cured Meat. Sustainability 2022, 14, 10503. [Google Scholar] [CrossRef]
- Mahović Poljaček, S.; Tomašegović, T.; Strižić Jakovljević, M.; Jamnicki Hanzer, S.; Murković Steinberg, I.; Žuvić, I.; Leskovac, M.; Lavrič, G.; Kavčič, U.; Karlovits, I. Starch-Based Functional Films Enhanced with Bacterial Nanocellulose for Smart Packaging: Physicochemical Properties, pH Sensitivity and Colorimetric Response. Polymers 2024, 16, 2259. [Google Scholar] [CrossRef]
- Wu, W.; Zheng, L.; Yu, J.; Liu, L.; Goksen, G.; Shao, P. High-sensitivity intelligent packaging films harnessing rose anthocyanins and hydrophilic silica aerogel for visual food freshness monitoring. Food Qual. Saf. 2024, 8, fyad051. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, S.; Xie, C.; Wang, C.; Zhong, Y.; Fan, K. Recent advances in pH-sensitive indicator films based on natural colorants for smart monitoring of food freshness: A review. Crit. Rev. Food Sci. Nutr. 2024, 64, 12800–12819. [Google Scholar] [CrossRef]
- Palanisamy, Y.; Kadirvel, V.; Ganesan, N.D. Recent technological advances in food packaging: Sensors, automation, and application. Sustain. Food Technol. 2025, 3, 161–180. [Google Scholar] [CrossRef]
- Douaki, A.; Ahmed, M.; Longo, E.; Windisch, G.; Riaz, R.; Inam, S.; Tran, T.N.; Papadopoulou, E.L.; Athanassiou, A.; Boselli, E. Battery-Free, Stretchable, and Autonomous Smart Packaging. Adv. Sci. 2024, 12, e2417539. [Google Scholar] [CrossRef]
- Nawaz, M.; Pan, J.; Liu, H.; Umer, M.J.; Liu, J.; Yang, W.; Lv, Z.; Zhang, Q.; Jiao, Z. Integrated evaluation of antifungal activity of pomegranate peel polyphenols against a diverse range of postharvest fruit pathogens. Bioresour. Bioprocess. 2025, 12, 34. [Google Scholar] [CrossRef] [PubMed]
- Boubrik, F.; Boubellouta, T.; Benyoucef, N.; Bellik, Y.; Gali, L.; Akdoğan, A.; Kucher, D.E.; Utkina, A.O.; Kucher, O.D.; Rebouh, N.Y. Investigating the chemical composition and antifungal effect of Cinnamomum cassia essential oil against Saccharomyces cerevisiae and Acremonium sp. Sci. Rep. 2025, 15, 10195. [Google Scholar]
- Aljuhani, S.; Rizwana, H.; Aloufi, A.S.; Alkahtani, S.; Albasher, G.; Almasoud, H.; Elsayim, R. Antifungal activity of Carica papaya fruit extract against Microsporum canis: In vitro and in vivo study. Front. Microbiol. 2024, 15, 1399671. [Google Scholar] [CrossRef]
- Vasundaradevi, R.; Sarvajith, M.; Divyashree, S.; Deepa, N.; Achar, P.N.; Sreenivasa, M. Tropical fruit-derived Lactiplantibacillus as potential probiotic and antifungal agents against Fusarium oxysporum. Sci. Rep. 2025, 15, 2144. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils–A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Raut, J.S.; Karuppayil, S.M. A status review on the medicinal properties of essential oils. Ind. Crops Prod. 2014, 62, 250–264. [Google Scholar] [CrossRef]
- Alegbeleye, O.O.; Singleton, I.; Sant’Ana, A.S. Sources and contamination routes of microbial pathogens to fresh produce during field cultivation: A review. Food Microbiol. 2018, 73, 177–208. [Google Scholar] [CrossRef]
- Weller, D.; Wiedmann, M.; Strawn, L.K. Irrigation is significantly associated with an increased prevalence of Listeria monocytogenes in produce production environments in New York State. J. Food Prot. 2015, 78, 1132–1141. [Google Scholar] [CrossRef]
- Weller, D.; Wiedmann, M.; Strawn, L.K. Spatial and temporal factors associated with an increased prevalence of Listeria monocytogenes in spinach fields in New York State. Appl. Environ. Microbiol. 2015, 81, 6059–6069. [Google Scholar] [CrossRef]
- University of Nevada, Reno Extension. Good Agricultural Practices (GAPs) and Good Handling Practices (GHPs). 2013. Available online: https://extension.unr.edu/publication.aspx?PubID=2168 (accessed on 22 May 2025).
- Agriopoulou, S.; Stamatelopoulou, E.; Sachadyn-Król, M.; Varzakas, T. Lactic acid bacteria as antibacterial agents to extend the shelf life of fresh and minimally processed fruits and vegetables: Quality and safety aspects. Microorganisms 2020, 8, 952. [Google Scholar] [CrossRef]
- Sathe, S.; Nawani, N.; Dhakephalkar, P.; Kapadnis, B. Antifungal lactic acid bacteria with potential to prolong shelf-life of fresh vegetables. J. Appl. Microbiol. 2007, 103, 2622–2628. [Google Scholar] [CrossRef]
- Nunes, C.A. Biological control of postharvest diseases of fruit. Eur. J. Plant Pathol. 2012, 133, 181–196. [Google Scholar] [CrossRef]
- Jagannathan, B.V.; Vijayakumar, P.P. The need for prevention-based food safety programs for fresh produce. Food Prot. Trends 2019, 39, 572–579. [Google Scholar]
- WHO. One Health. 2023. Available online: https://www.who.int/health-topics/one-health#tab=tab_1 (accessed on 21 May 2025).
- Suliman Maashi, M. CRISPR/CAS-based aptasensor as an innovative sensing approaches for food safety analysis: Recent progresses and new horizons. Crit. Rev. Anal. Chem. 2024, 54, 2599–2617. [Google Scholar] [CrossRef]
- Olaniran, A.F.; Taiwo, A.E.; Iranloye, Y.M.; Okonkwo, C.E. The role of good agricultural practices (GAPs) and good manufacturing practices (GMPs) in food safety. In Food Safety and Toxicology: Present and Future Perspectives; De Gruyter: Berlin, Germany, 2023; pp. 417–432. [Google Scholar]
- Okpala, C.O.R.; Korzeniowska, M. Understanding the relevance of quality management in agro-food product industry: From ethical considerations to assuring food hygiene quality safety standards and its associated processes. Food Rev. Int. 2023, 39, 1879–1952. [Google Scholar] [CrossRef]
- Harris, D.; Lott, M.; Lakins, V.; Bowden, B.; Kimmons, J. Farm to institution: Creating access to healthy local and regional foods. Adv. Nutr. 2012, 3, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.; Yadav, K. Portable solutions for plant pathogen diagnostics: Development, usage, and future potential. Front. Microbiol. 2025, 16, 1516723. [Google Scholar] [CrossRef]
- Verma, N.V.; Shukla, M.; Kulkarni, R.; Srivastava, K.; Claudic, B.; Savara, J.; Joseph Mathew, M.; Maurya, R.; Bhattacharjee, G.; Singh, V. Emerging extraction and diagnostic tools for detection of plant pathogens: Recent trends, challenges, and future scope. ACS Agric. Sci. Technol. 2022, 2, 858–881. [Google Scholar] [CrossRef]
- Lewin, E.R. Applications of Next Generation Sequencing for the Assessment of Microbiological Safety of Fresh Produce. Ph.D. Thesis, Newcastle University, Newcastle, UK, 2020. [Google Scholar]
- Kearns, E.A.; Gustafson, R.E.; Castillo, S.M.; Alnughaymishi, H.; Lim, D.V.; Ryser, E.T. Rapid large-volume concentration for increased detection of Escherichia coli O157: H7 and Listeria monocytogenes in lettuce wash water generated at commercial facilities. Food Control 2019, 98, 481–488. [Google Scholar] [CrossRef]
- Hadi, J.; Rapp, D.; Dhawan, S.; Gupta, S.K.; Gupta, T.B.; Brightwell, G. Molecular detection and characterization of foodborne bacteria: Recent progresses and remaining challenges. Compr. Rev. Food Sci. Food Saf. 2023, 22, 2433–2464. [Google Scholar] [CrossRef] [PubMed]
Challenge Category | Specific Barriers | Strategic Solutions/Future Directions |
---|---|---|
Economic Constraints | High cost of advanced detection technologies (e.g., PCR, MALDI-TOF MS) | Investment in low-cost portable diagnostics (e.g., lateral flow assays, portable PCR) |
Technical Limitations | Need for skilled personnel; complex data interpretation | Capacity-building through training programs; simplified, user-friendly diagnostic platforms |
Regulatory Gaps | Fragmented or outdated food safety regulations, especially in LMICs | Policy harmonization guided by One Health approach; enhanced enforcement and international cooperation |
Infrastructure Deficiencies | Lack of clean water, refrigeration, hygienic packaging, and cold chains | Development of basic infrastructure in rural/agricultural zones; support for smallholder supply chains |
Laboratory–Field Disconnect | Technologies remain confined to labs; limited real-world application | Promote public–private partnerships; validation of tools in field settings; scale-up of innovations |
Environmental Conditions | Climate variability, poor electricity access, and tropical humidity exacerbate risks | Deploy solar-powered cooling, weather-resilient logistics, and robust packaging systems |
Workforce Shortage | Limited availability of microbiologists, bioinformaticians, and food safety experts | Establish food safety certification programs; invest in STEM education and international knowledge transfer |
Strategic Focus Area | Action Item | Expected Outcome |
---|---|---|
Preventive Frameworks | Enforce GAPs, GHPs, and sanitation standards with third-party audits | Improved baseline hygiene and reduced contamination risk |
Technology Innovation | Develop and deploy cost-effective tools (e.g., PAW, UV-C, qPCR, biosensors) | Real-time pathogen detection and non-thermal decontamination |
Regulatory Harmonization | Adopt Codex-based global standards supported by WHO/FAO/OIE | Consistent safety benchmarks and enhanced AMR surveillance |
Capacity Building | Train personnel in sanitation, diagnostics, and AMR control | Workforce readiness and effective tool deployment |
Translational Research | Fund prototype development and field validation | Accelerated adoption of innovations |
Public-Private Partnerships | Support scale-up of coatings, HSI, and smart packaging | Commercialization of pilot technologies |
Smart Surveillance | Integrate AI, IoT, blockchain, and CRISPR-based tools | Real-time traceability and rapid outbreak response |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elbehiry, A.; Marzouk, E.; Alzaben, F.; Almuaither, A.; Abead, B.; Alamri, M.; Almuzaini, A.M.; Abu-Okail, A. Emerging Technologies and Integrated Strategies for Microbial Detection and Control in Fresh Produce. Microorganisms 2025, 13, 1447. https://doi.org/10.3390/microorganisms13071447
Elbehiry A, Marzouk E, Alzaben F, Almuaither A, Abead B, Alamri M, Almuzaini AM, Abu-Okail A. Emerging Technologies and Integrated Strategies for Microbial Detection and Control in Fresh Produce. Microorganisms. 2025; 13(7):1447. https://doi.org/10.3390/microorganisms13071447
Chicago/Turabian StyleElbehiry, Ayman, Eman Marzouk, Feras Alzaben, Abdulaziz Almuaither, Banan Abead, Mohammed Alamri, Abdulaziz M. Almuzaini, and Akram Abu-Okail. 2025. "Emerging Technologies and Integrated Strategies for Microbial Detection and Control in Fresh Produce" Microorganisms 13, no. 7: 1447. https://doi.org/10.3390/microorganisms13071447
APA StyleElbehiry, A., Marzouk, E., Alzaben, F., Almuaither, A., Abead, B., Alamri, M., Almuzaini, A. M., & Abu-Okail, A. (2025). Emerging Technologies and Integrated Strategies for Microbial Detection and Control in Fresh Produce. Microorganisms, 13(7), 1447. https://doi.org/10.3390/microorganisms13071447