Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (529)

Search Parameters:
Keywords = anti-icing application

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2074 KiB  
Article
Preliminary Analysis of Bilberry NaDES Extracts as Versatile Active Ingredients of Natural Dermocosmetic Products: In Vitro Evaluation of Anti-Tyrosinase, Anti-Hyaluronidase, Anti-Collagenase, and UV Protective Properties
by Milica Martinović, Ivana Nešić, Ana Žugić and Vanja M. Tadić
Plants 2025, 14(15), 2374; https://doi.org/10.3390/plants14152374 (registering DOI) - 1 Aug 2025
Viewed by 45
Abstract
Bilberry (Vaccinium myrtillus L.) fruits represent the recognized wellspring of bioactive compounds with various documented bioactivities. Although bilberry leaves are often treated as industrial by-products, they also represent a valuable source of phytochemicals with potential dermocosmetic applications. In this study, extracts of [...] Read more.
Bilberry (Vaccinium myrtillus L.) fruits represent the recognized wellspring of bioactive compounds with various documented bioactivities. Although bilberry leaves are often treated as industrial by-products, they also represent a valuable source of phytochemicals with potential dermocosmetic applications. In this study, extracts of bilberry fruits and leaves were prepared using both conventional solvents (water and 50% ethanol) and natural deep eutectic solvents (NaDES) as green, biodegradable alternatives. The aim of this study was to examine the UV protective activity and inhibitory potential of those extracts against some enzymes (tyrosinase, hyaluronidase, collagenase) that are important in terms of skin conditioning and skin aging. The results of in vitro tests have shown the superiority of NaDES extracts compared to conventional extracts regarding all tested bioactivities. In addition, bilberry leaves extracts were more potent compared to fruit extracts in all cases. The most potent extract was bilberry leaf extract made with malic acid–glycerol, which exhibited strong anti-tyrosinase (IC50 = 3.52 ± 0.26 mg/mL), anti-hyaluronidase (IC50 = 3.23 ± 0.30 mg/mL), and anti-collagenase (IC50 = 1.84 ± 0.50 mg/mL) activities. The correlation analysis revealed correlation between UV protective and anti-tyrosinase, UV protective and anti-collagenase as well as between anti-hyaluronidase and anti-collagenase activity. UV protection and anti-tyrosinase activity correlated significantly with chlorogenic acid and hyperoside contents in extracts. The extracts with the best activities also demonstrated a good safety profile in a 24 h in vivo study on human volunteers. Full article
Show Figures

Figure 1

18 pages, 4703 KiB  
Article
Nanoparticle-Free 3D-Printed Hydrophobic Surfaces for Ice Mitigation Applications
by Ranim Zgaren, Maryam Hosseini, Reza Jafari and Gelareh Momen
Molecules 2025, 30(15), 3185; https://doi.org/10.3390/molecules30153185 - 30 Jul 2025
Viewed by 156
Abstract
Ice accumulation on exposed surfaces presents substantial economic and safety challenges across various industries. To overcome limitations associated with traditional anti-icing methods, such as the use of nanoparticles, this study introduces a novel and facile approach for fabricating superhydrophobic and anti-icing microstructures using [...] Read more.
Ice accumulation on exposed surfaces presents substantial economic and safety challenges across various industries. To overcome limitations associated with traditional anti-icing methods, such as the use of nanoparticles, this study introduces a novel and facile approach for fabricating superhydrophobic and anti-icing microstructures using cost-effective LCD 3D printing technology. The influence of diverse pillar geometries, including square, cylindrical, hexagonal, and truncated conical forms, was analyzed to assess their effects on the hydrophobic and anti-icing/icephobic performance in terms of wettability, ice adhesion strength, and icing delay time. The role of microstructure topography was further investigated through cylindrical patterns with varying geometric parameters to identify optimal designs for enhancing hydrophobic and icephobic characteristics. Furthermore, the effectiveness of surface functionalization using a low surface energy material was evaluated. Our findings demonstrate that the synergistic combination of tailored microscale geometries and surface functionalization significantly enhances anti-icing performance with reliable repeatability, achieving ice adhesion of 13.9 and 17.9 kPa for square and cylindrical pillars, respectively. Critically, this nanoparticle-free 3D printing and low surface energy treatment method offers a scalable and efficient route for producing high-performance hydrophobic/icephobic surfaces, opening promising avenues for applications in sectors where robust anti-icing capabilities are crucial, such as renewable energy and transportation. Full article
(This article belongs to the Special Issue Micro/Nano-Materials for Anti-Icing and/or De-Icing Applications)
Show Figures

Figure 1

25 pages, 3359 KiB  
Article
In Vitro and In Silico Evaluation of the Anti-Aging Potential of Eugenia uniflora UAE Extracts
by Desy Muliana Wenas, Berna Elya, Sutriyo Sutriyo, Heri Setiawan, Rozana Othman, Syamsu Nur, Nita Triadisti, Fenny Yunita and Erwi Putri Setyaningsih
Molecules 2025, 30(15), 3168; https://doi.org/10.3390/molecules30153168 - 29 Jul 2025
Viewed by 229
Abstract
Skin aging is a natural biological process that can be accelerated by free radical induction, leading to a reduction in skin elasticity and the formation of wrinkles due to the depletion of elastin. Eugenia uniflora (dewandaru) is a promising plant believed to possess [...] Read more.
Skin aging is a natural biological process that can be accelerated by free radical induction, leading to a reduction in skin elasticity and the formation of wrinkles due to the depletion of elastin. Eugenia uniflora (dewandaru) is a promising plant believed to possess anti-aging properties, primarily attributed to its major constituents, myricitrin and quercetin. This study aimed to investigate the anti-elastase and antioxidant properties of Eugenia uniflora stem bark, ripe fruit, and seed extracts. Extracts were obtained using an ultrasound-assisted extraction (UAE) method with 70% ethanol. Quantitative phytochemical analysis involved measuring the total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activity. Bioactive constituents were identified using LC-MS analysis, and their interactions with target enzymes were further evaluated through in silico molecular docking. The results demonstrated that the E. uniflora seed extract exhibited the highest antioxidant activity, with an IC50 of 5.23 µg/mL (DPPH assay) and a FRAP value of 3233.32 µmol FeSO4/g. Furthermore, the ethanolic seed extract showed significant anti-elastase activity with an IC50 of 114.14 µg/mL. Molecular docking predicted strong potential for several compounds as pancreatic elastase inhibitors, including 5-phenylvaleric acid, 2-(3-phenylpropyl)phenol, n-amylbenzene, 2-aminoadipic acid, and traumatin, each showing a prediction activity (PA) value exceeding 0.6. Notably, these compounds also exhibited inhibitory activity against tyrosinase. These findings collectively underscore the significant promise of E. uniflora seed extract as a novel and natural candidate for pharmacocosmeceutical product development, particularly for anti-aging applications. Full article
Show Figures

Graphical abstract

27 pages, 4348 KiB  
Article
Valorization of Riceberry Broken Rice and Soybean Meal for Optimized Production of Multifunctional Exopolysaccharide by Bacillus tequilensis PS21 with Potent Bioactivities Using Response Surface Methodology
by Thipphiya Karirat, Worachot Saengha, Nantaporn Sutthi, Pheeraya Chottanom, Sirirat Deeseenthum, Nyuk Ling Ma and Vijitra Luang-In
Polymers 2025, 17(15), 2029; https://doi.org/10.3390/polym17152029 - 25 Jul 2025
Viewed by 311
Abstract
This study explores the valorization of agro-industrial by-products—riceberry broken rice (RBR) and soybean meal (SBM)—as cost-effective substrates for enhancing exopolysaccharide (EPS) production by Bacillus tequilensis PS21. Eight Bacillus strains were screened, and B. tequilensis PS21 demonstrated the highest EPS yield (2.54 g/100 mL [...] Read more.
This study explores the valorization of agro-industrial by-products—riceberry broken rice (RBR) and soybean meal (SBM)—as cost-effective substrates for enhancing exopolysaccharide (EPS) production by Bacillus tequilensis PS21. Eight Bacillus strains were screened, and B. tequilensis PS21 demonstrated the highest EPS yield (2.54 g/100 mL DW). The EPS displayed a strong antioxidant capacity with 65.5% DPPH and 80.5% hydroxyl radical scavenging, and a FRAP value of 6.51 mg Fe2+/g DW. Antimicrobial testing showed inhibition zones up to 10.07 mm against Streptococcus agalactiae and 7.83 mm against Staphylococcus aureus. Optimization using central composite design (CCD) and the response surface methodology (RSM) revealed the best production at 5% (w/v) RBR, 3% (w/v) SBM, pH 6.66, and 39.51 °C, yielding 39.82 g/L EPS. This EPS is a moderate-molecular-weight (11,282 Da) homopolysaccharide with glucose monomers. X-ray diffraction (XRD) showed an amorphous pattern, favorable for solubility in biological applications. Thermogravimetric analysis (TGA) demonstrated thermal stability up to ~250 °C, supporting its suitability for high-temperature processing. EPS also exhibited anticancer activity with IC50 values of 226.60 µg/mL (MCF-7) and 224.30 µg/mL (HeLa) at 72 h, reduced colony formation, inhibited cell migration, and demonstrated anti-tyrosinase, anti-collagenase, and anti-elastase effects. This study demonstrates the successful valorization of agro-industrial by-products—RBR and SBM—for the high-yield production of multifunctional EPS with potent antioxidant, antimicrobial, and anticancer properties. The findings highlight the sustainable potential of these low-cost substrates in supporting the development of green and value-added bioproducts, with promising utilizations across the food, pharmaceutical, and cosmetic sectors. Full article
(This article belongs to the Topic Microbes and Their Products for Sustainable Human Life)
Show Figures

Figure 1

20 pages, 2015 KiB  
Article
Origanum majorana Extracts: A Preliminary Comparative Study on Phytochemical Profiles and Bioactive Properties of Valuable Fraction and By-Product
by Simone Bianchi, Rosaria Acquaviva, Claudia Di Giacomo, Laura Siracusa, Leeyah Issop-Merlen, Roberto Motterlini, Roberta Foresti, Donata Condorelli and Giuseppe Antonio Malfa
Plants 2025, 14(15), 2264; https://doi.org/10.3390/plants14152264 - 23 Jul 2025
Viewed by 287
Abstract
Origanum majorana L. (O. majorana) (Lamiaceae) is an aromatic Mediterranean plant widely used in food, cosmetics, and traditional medicine due to its aroma and rich content of bioactive compounds. While its leaves and flowers are commonly utilized, lignified stems are often [...] Read more.
Origanum majorana L. (O. majorana) (Lamiaceae) is an aromatic Mediterranean plant widely used in food, cosmetics, and traditional medicine due to its aroma and rich content of bioactive compounds. While its leaves and flowers are commonly utilized, lignified stems are often discarded. This study compared hydroalcoholic extracts from the leaves and flowers (valuable fraction, VF) and stems (by-product, BP). Phytochemical analysis revealed qualitatively similar profiles, identifying 20 phenolic compounds, with Rosmarinic acid and Salvianolic acid B as the most and second most abundant, respectively. Antioxidant activity was evaluated in vitro using DPPH (IC50 [µg/mL]: VF 30.11 ± 3.46; BP 31.72 ± 1.46), H2O2 (IC50 [µg/mL]: VF 103.09 ± 4.97; BP 119.55 ± 10.58), and O2•− (IC50 [µg/mL]: VF 0.71 ± 0.062; BP 0.79 ± 0.070). Both extracts (20 µg/mL) fully restored oxidative balance in hemin-stressed AC16 cardiomyocytes, without altering the expression of catalase, heme-oxygenase 1, superoxide dismutase 2, or ferritin. Anti-inflammatory activity in LPS-stimulated RAW 264.7 macrophages showed that VF (IC50 400 µg/mL) reduced NO release to control levels, while BP achieved a ~60% reduction. Cytotoxicity was assessed on cancer cell lines: CaCo-2 (IC50 [µg/mL]: VF 154.1 ± 6.22; BP 305.2 ± 15.94), MCF-7 (IC50 [µg/mL]: VF 624.6 ± 10.27; BP 917.9 ± 9.87), and A549 (IC50 [µg/mL]: VF 720.8 ± 13.66; BP 920.2 ± 16.79), with no cytotoxicity on normal fibroblasts HFF-1 (IC50 > 1000 µg/mL for both extracts). Finally, both extracts slightly inhibited only CYP1A2 (IC50 [µg/mL]: VF 497.45 ± 9.64; BP 719.72 ± 11.37) and CYP2D6 (IC50 [µg/mL]: VF 637.15 ± 14.78, BP 588.70 ± 11.01). These results support the potential reuse of O. majorana stems as a sustainable source of bioactive compounds for nutraceutical and health-related applications. Full article
Show Figures

Figure 1

23 pages, 8387 KiB  
Article
Solvent Fractionation of Polygonum cuspidatum Sieb. et Zucc. for Antioxidant, Biological Activity, and Chromatographic Characterization
by Yuchen Cheng, Yuri Kang and Woonjung Kim
Int. J. Mol. Sci. 2025, 26(14), 7011; https://doi.org/10.3390/ijms26147011 - 21 Jul 2025
Viewed by 293
Abstract
This study investigated the natural bioactive compounds in Polygonum cuspidatum Sieb. et Zucc. (P. cuspidatum) by fractionating a 70% ethanol extract using n-hexane, chloroform, ethyl acetate, n-butanol, and water. The total polyphenol and flavonoid contents of each fraction were [...] Read more.
This study investigated the natural bioactive compounds in Polygonum cuspidatum Sieb. et Zucc. (P. cuspidatum) by fractionating a 70% ethanol extract using n-hexane, chloroform, ethyl acetate, n-butanol, and water. The total polyphenol and flavonoid contents of each fraction were determined, and their antioxidant activities were evaluated using DPPH, ABTS, and FRAP assays. Additionally, the anti-diabetic potential was assessed via α-glucosidase inhibitory activity, while anti-obesity activity was evaluated using lipase inhibitory activity. The fractions were also tested for tyrosinase and elastase inhibitory activities to assess their skin-whitening and anti-wrinkle potential, and their antibacterial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa was determined using the agar diffusion method. Finally, bioactive compounds were identified and quantified using HPLC and GC–MSD. The results showed that the ethyl acetate fraction possessed the highest total polyphenol content (0.53 ± 0.01 g GAE/g) and total flavonoid content (0.19 ± 0.02 g QE/g). It also exhibited strong antioxidant activity, with the lowest DPPH radical scavenging IC50 (0.01 ± 0.00 mg/mL), ABTS radical scavenging IC50 (0.06 ± 0.00 mg/mL), and the highest FRAP value (6.02 ± 0.30 mM Fe2+/mg). Moreover, it demonstrated potent enzyme inhibitory activities, including tyrosinase inhibitory activity (67.78 ± 2.50%), elastase inhibitory activity (83.84 ± 1.64%), α-glucosidase inhibitory activity (65.14 ± 10.29%), and lipase inhibitory activity (85.79 ± 1.04%). In the antibacterial activity, the ethyl acetate fraction produced a clear inhibitory zone of 19.50 mm against Staphylococcus aureus, indicating notable antibacterial activity. HPLC-PDA and GC–MSD analyses identified tannic acid and emodin as the major bioactive constituents. These findings suggest that the ethyl acetate fraction of P. cuspidatum extract, rich in polyphenol and flavonoid compounds, is a promising natural source of bioactive ingredients for applications in the food, pharmaceutical, and cosmetic industries. Further research is needed to explore its mechanisms and therapeutic applications. Full article
Show Figures

Figure 1

22 pages, 4534 KiB  
Article
Upcycled Cocoa Pod Husk: A Sustainable Source of Phenol and Polyphenol Ingredients for Skin Hydration, Whitening, and Anti-Aging
by Aknarin Anatachodwanit, Setinee Chanpirom, Thapakorn Tree-Udom, Sunsiri Kitthaweesinpoon, Sudarat Jiamphun, Ongon Aryuwat, Cholpisut Tantapakul, Maria Pilar Vinardell and Tawanun Sripisut
Life 2025, 15(7), 1126; https://doi.org/10.3390/life15071126 - 17 Jul 2025
Viewed by 651
Abstract
Theobroma cacao L. (cocoa) pod husk, a byproduct of the chocolate industry, has potential for commercial applications due to its bioactive compounds. This study aimed to determine the phytochemical composition, biological activity, and clinical efficacy of a standardized extract. This study compared 80% [...] Read more.
Theobroma cacao L. (cocoa) pod husk, a byproduct of the chocolate industry, has potential for commercial applications due to its bioactive compounds. This study aimed to determine the phytochemical composition, biological activity, and clinical efficacy of a standardized extract. This study compared 80% ethanol (CE) and 80% ethanol acidified (CEA) as extraction solvents. The result indicated that CEA yielded higher total phenolic content (170.98 ± 7.41 mg GAE/g extract) and total flavonoid content (3.91 ± 0.27 mg QE/g extract) than CE. Liquid chromatography–tandem mass spectrometry (LC/MS/MS) identified various phenolic and flavonoid compounds. CEA demonstrated stronger anti-oxidant (IC50 = 5.83 ± 0.11 μg/mL in the DPPH assay and 234.17 ± 4.01 mg AAE/g extract in the FRAP assay) compared to CE. Additionally, CEA exhibited anti-tyrosinase (IC50 = 9.51 ± 0.01 mg/mL), anti-glycation (IC50 = 62.32 ± 0.18 µg/mL), and anti-collagenase (IC50 = 0.43 ± 0.01 mg/mL), nitric oxide (NO) production inhibitory (IC50 = 62.68 μg/mL) activities, without causing toxicity to cells. A formulated lotion containing CEA (0.01–1.0% w/w) demonstrated stability over six heating–cooling cycles. A clinical study with 30 volunteers showed no skin irritation. The 1.0% w/w formulation (F4) improved skin hydration (+52.48%), reduced transepidermal water loss (−7.73%), and decreased melanin index (−9.10%) after 4 weeks of application. These findings suggest cocoa pod husk extract as a promising active ingredient for skin hydrating and lightening formulation. Nevertheless, further long-term studies are necessary to evaluate its efficacy in anti-aging treatments. Full article
(This article belongs to the Special Issue Bioactive Compounds for Medicine and Health)
Show Figures

Figure 1

21 pages, 3187 KiB  
Article
Green Extract from Pre-Harvest Tobacco Waste as a Non-Conventional Source of Anti-Aging Ingredients for Cosmetic Applications
by Mariana Leal, María A. Moreno, María E. Orqueda, Mario Simirgiotis, María I. Isla and Iris C. Zampini
Plants 2025, 14(14), 2189; https://doi.org/10.3390/plants14142189 - 15 Jul 2025
Viewed by 469
Abstract
The cigarette production from Nicotiana tabacum generates significant amounts of waste, with an estimated 68.31 million tons of pre- and post-harvest waste discarded annually. The pre-harvest waste includes the upper parts of the plant, inflorescences, and bracts, which are removed to help the [...] Read more.
The cigarette production from Nicotiana tabacum generates significant amounts of waste, with an estimated 68.31 million tons of pre- and post-harvest waste discarded annually. The pre-harvest waste includes the upper parts of the plant, inflorescences, and bracts, which are removed to help the growth of the lower leaves. This study explores the potential of apical leaves from Nicotiana tabacum var. Virginia, discarded during the budding stage (pre-harvest waste). The leaves were extracted using environmentally friendly solvents (green solvents), including distilled water (DW) and two natural deep eutectic solvents (NaDESs), one consisting of simple sugars, fructose, glucose, and sucrose (FGS) and the other consisting of choline chloride and urea (CU). The anti-inflammatory and anti-aging potential of these green extracts was assessed by the inhibition of key enzymes related to skin aging. The xanthine oxidase and lipoxygenase activities were mostly inhibited by CU extracts with IC50 values of 63.50 and 8.0 μg GAE/mL, respectively. The FGS extract exhibited the greatest hyaluronidase inhibition (49.20%), followed by the CU extract (33.20%) and the DW extract (20.80%). Regarding elastase and collagenase inhibition, the CU extract exhibited the highest elastase inhibition, while all extracts inhibited collagenase activity, with values exceeding 65%. Each extract had a distinct chemical profile determined by LC-ESI-QTOF-MS/MS and spectrophotometric methods, with several shared compounds present in different proportions. CU extract is characterized by high concentrations of rutin, nicotiflorin, and azelaic acid, while FGS and DW extracts share major compounds such as quinic acid, fructosyl pyroglutamate, malic acid, and gluconic acid. Ames test and Caenorhabditis elegans assay demonstrated that at the concentrations at which the green tobacco extracts exhibit biological activities, they did not show toxicity. The results support the potential of N. tabacum extracts obtained with NaDESs as antiaging and suggest their promising applications in the cosmetic and cosmeceutical industries. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

14 pages, 712 KiB  
Article
Unveiling the Chemical Composition, Enantiomeric Profile, Antibacterial, Anticholinesterase and Antioxidant Activity of the Essential Oil of Aloysia triphylla Royle
by Cinthia Mejia-Ramos, Julio Reynaldo Ruiz-Quiroz, Maria Elena Salazar-Salvatierra, James Calva, Eddie Loyola-Gonzales, Haydee Chávez, Javier Hernán Chavez-Espinoza, Josefa Bertha Pari-Olarte, José Santiago Almeida-Galindo and Oscar Herrera-Calderon
Molecules 2025, 30(13), 2849; https://doi.org/10.3390/molecules30132849 - 3 Jul 2025
Viewed by 445
Abstract
Aloysia triphylla is widely used in traditional medicine from Peru for its sedative, digestive and anti-inflammatory properties. However, comprehensive studies on the biological activities of its essential oil (EO), particularly from Peruvian sources, remain limited. This study aimed to analyze the chemical composition [...] Read more.
Aloysia triphylla is widely used in traditional medicine from Peru for its sedative, digestive and anti-inflammatory properties. However, comprehensive studies on the biological activities of its essential oil (EO), particularly from Peruvian sources, remain limited. This study aimed to analyze the chemical composition and enantiomeric profile of A. triphylla EO and evaluate its antibacterial, antioxidant, anticholinesterase, and cytotoxic activities. The EO was obtained by steam distillation and analyzed using gas chromatography–mass spectrometry (GC-MS). A total of 62 compounds were identified, with (E)-caryophyllene (16.80%), β-pinene (9.96%), and germacrene D (10.00%) being the major components. Enantiomeric analysis revealed specific chiral signatures, including (−)-α-pinene, (+)-limonene, and (R)-(−)-linalool. The EO exhibited significant antibacterial activity, particularly against Bacillus subtilis (MIC = 5 µg/mL), and weak antioxidant activity (IC50 = 7720 and 4648 µg/mL for DPPH and ABTS, respectively). Additionally, the EO demonstrated moderate acetylcholinesterase inhibition (IC50 = 87.8 µg/mL) and cytotoxicity in the Artemia salina assay (LC50 = 964 µg/mL). These findings suggest that A. triphylla EO possesses promising bioactivities with potential applications in pharmaceutical and cosmetic fields. Full article
(This article belongs to the Special Issue Essential Oils—Third Edition)
Show Figures

Figure 1

11 pages, 1841 KiB  
Article
Construction of Silane-Modified Diatomite-Magnetic Nanocomposite Superhydrophobic Coatings Using Multi-Scale Composite Principle
by Dan Li, Mei Wu, Rongjun Xia, Jiwen Hu and Fangzhi Huang
Coatings 2025, 15(7), 786; https://doi.org/10.3390/coatings15070786 - 3 Jul 2025
Viewed by 404
Abstract
To address the challenges of cotton cellulose materials being susceptible to environmental humidity and pollutant erosion, a strategy for constructing superhydrophobic functional coatings with biomimetic micro–nano composite structures was proposed. Through surface silanization modification, diatomite (DEM) and Fe3O4 nanoparticles were [...] Read more.
To address the challenges of cotton cellulose materials being susceptible to environmental humidity and pollutant erosion, a strategy for constructing superhydrophobic functional coatings with biomimetic micro–nano composite structures was proposed. Through surface silanization modification, diatomite (DEM) and Fe3O4 nanoparticles were functionalized with octyltriethoxysilane (OTS) to prepare superhydrophobic diatomite flakes (ODEM) and OFe3O4 nanoparticles. Following the multi-scale composite principle, ODEM and OFe3O4 nanoparticles were blended and crosslinked via the hydroxyl-initiated ring-opening polymerization of epoxy resin (EP), resulting in an EP/ODEM@OFe3O4 composite coating with hierarchical roughness. Microstructural characterization revealed that the micrometer-scale porous structure of ODEM and the nanoscale protrusions of OFe3O4 form a hierarchical micro–nano topography. The special topography combined with the low surface energy property leads to a contact angle of 158°. Additionally, the narrow bandgap semiconductor characteristic of OFe3O4 induces the localized surface plasmon resonance effect. This enables the coating to attain 80% light absorption across the 350–2500 nm spectrum, and rapidly heat to 45.8 °C within 60 s under 0.5 sun, thereby demonstrating excellent deicing performance. This work provides a theoretical foundation for developing environmentally tolerant superhydrophobic photothermal coatings, which exhibit significant application potential in the field of anti-icing and anti-fouling. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Graphical abstract

17 pages, 1106 KiB  
Article
Antibacterial Activity, Antioxidant Capacity and Immune Gene Modulation of Six Medicinal Plants in CHSE-214 Cells
by Soo-Ji Woo, So-Sun Kim, Eun-Ji Jeon, Dong-Sung Lee and Na-Young Kim
Fishes 2025, 10(7), 313; https://doi.org/10.3390/fishes10070313 - 1 Jul 2025
Viewed by 331
Abstract
This study evaluated the therapeutic potential of 70% ethanol extracts from six medicinal plants (Chenopodium album, Cassia tora, Cudrania tricuspidata, Dioscorea polystachya, Lonicera japonica, Solidago virgaurea subsp. gigantea) through their antibacterial, antioxidant, cytotoxic, and immunomodulatory activities, [...] Read more.
This study evaluated the therapeutic potential of 70% ethanol extracts from six medicinal plants (Chenopodium album, Cassia tora, Cudrania tricuspidata, Dioscorea polystachya, Lonicera japonica, Solidago virgaurea subsp. gigantea) through their antibacterial, antioxidant, cytotoxic, and immunomodulatory activities, targeting applications in aquaculture. All extracts exhibited potent antibacterial activity (MIC ≤ 10 μg/mL) against Aeromonas spp. and Photobacterium damselae subsp. damselae, but limited efficacy against Streptococcus parauberis. C. tricuspidata (CTR) and C. tora (CTO) demonstrated superior antioxidant activity (IC50 = 1292 μg/mL and IC50 = 227 μg/mL, respectively), correlating with high polyphenol content (1498 and 1409 mg GAE/g). CTR displayed significant concentration-dependent cytotoxicity (IC50 = 904.2 μg/mL), while C. album (CA) promoted cell proliferation (132.3% viability). In LPS-stimulated CHSE-214 cells, D. polystachya (DP) induced the highest IL-8 expression (207-fold), followed by Chenopodium album (CA) (194-fold IL-8, 49-fold TNF-α) and CTR (245-fold RIPK2), activating NF-κB, MAPK, and NOD-like receptor pathways critical for teleost immunity. Lonicera japonica (LJ) suppressed TNF-α (0.4-fold) and IRF1 (0.3-fold), indicating anti-inflammatory potential, while S. virgaurea subsp. gigantea (SV) showed biphasic TNF-α modulation (79-fold at 10 μg/mL, 5-fold at 100 μg/mL). These diverse bioactivities, particularly the robust immunomodulatory effects, highlight the promise of these extracts as natural therapeutic agents for fish health management in aquaculture. Full article
(This article belongs to the Special Issue Healthy Aquaculture and Disease Control)
Show Figures

Graphical abstract

24 pages, 3509 KiB  
Article
Spray-Dried Celtis iguanaea (Jacq.) Planch (Cannabaceae) Extract: Building Evidence for Its Therapeutic Potential in Pain and Inflammation Management
by Kátia Regina Ribeiro, Rúbia Bellard e Silva, João Paulo Costa Rodrigues, Mairon César Coimbra, Laura Jéssica Pereira, Emmilly de Oliveira Alves, Flávio Martins de Oliveira, Marx Osório Araújo Pereira, Eric de Souza Gil, Carlos Alexandre Carollo, Nadla Soares Cassemiro, Camile Aparecida da Silva, Pablinny Moreira Galdino de Carvalho, Flávia Carmo Horta Pinto, Renan Diniz Ferreira, Zakariyya Muhammad Bello, Edilene Santos Alves de Melo, Marina Andrade Rocha, Ana Gabriela Silva, Rosy Iara Maciel Azambuja Ribeiro, Adriana Cristina Soares and Renê Oliveira do Coutoadd Show full author list remove Hide full author list
Plants 2025, 14(13), 2008; https://doi.org/10.3390/plants14132008 - 30 Jun 2025
Viewed by 383
Abstract
Celtis iguanaea, widely used in Brazilian folk medicine, is known for its analgesic and anti-inflammatory properties. This study evaluated the in vitro antioxidant capacity and the in vivo antinociceptive and anti-inflammatory mechanisms of the standardized spray-dried Celtis iguanaea hydroethanolic leaf extract (SDCi). Phytochemical [...] Read more.
Celtis iguanaea, widely used in Brazilian folk medicine, is known for its analgesic and anti-inflammatory properties. This study evaluated the in vitro antioxidant capacity and the in vivo antinociceptive and anti-inflammatory mechanisms of the standardized spray-dried Celtis iguanaea hydroethanolic leaf extract (SDCi). Phytochemical analysis showed that SDCi contains 21.78 ± 0.82 mg/g polyphenols, 49.69 ± 0.57 mg/g flavonoids, and 518.81 ± 18.02 mg/g phytosterols. UFLC-DAD-MS identified iridoid glycosides, p-coumaric acid glycosides, flavones, and unsaturated fatty acids. Antioxidant assays revealed an IC50 of 301.6 ± 38.8 µg/mL for DPPH scavenging and an electrochemical index of 6.1 μA/V. In vivo, SDCi (100–1000 mg/kg, p.o) did not impair locomotor function (rotarod test) but significantly reduced acetic acid-induced abdominal writhing and both phases of the formalin test at higher doses (300 and 1000 mg/kg). The antinociceptive effects were independent of α-2 adrenergic receptors. SDCi also increased latency in the hot-plate test and reduced paw edema in the carrageenan model, accompanied by decreased IL-1β and increased IL-10 levels. Histological analysis showed a 50% reduction in inflammatory cell infiltration. These findings support SDCi as an effective anti-inflammatory and antinociceptive phytopharmaceutical intermediate, with potential applications in managing pain and inflammation. Full article
Show Figures

Figure 1

15 pages, 3703 KiB  
Article
A Study on the Hydrophobicity and Icephobicity of Modified Cement-Based Composite Coatings for Anti-/De-Icing of Guardrail Concrete
by Jianping Gao, Pan Zhou, Xianlong Shi, Kang Gu, Hongji Chen, Qian Yang and Zhengwu Jiang
Buildings 2025, 15(13), 2263; https://doi.org/10.3390/buildings15132263 - 27 Jun 2025
Viewed by 290
Abstract
Guardrail concrete in cold regions frequently suffers from corrosion due to icing and solutions, significantly shortening the service life of the guardrail. This paper proposed a cement-based composite coating for concrete protection. The hydrophobic agent was synthesized using nano-silica, tetraethyl orthosilicate and perfluorodecyltrimethoxysilane [...] Read more.
Guardrail concrete in cold regions frequently suffers from corrosion due to icing and solutions, significantly shortening the service life of the guardrail. This paper proposed a cement-based composite coating for concrete protection. The hydrophobic agent was synthesized using nano-silica, tetraethyl orthosilicate and perfluorodecyltrimethoxysilane and used for coating modification as an additive or by impregnation. Also, a commercial hydrophobic agent was used for comparison. The modified coating was characterized by wettability, mechanical properties, chemical stability and icephobicity tests. The results showed that the coating prepared with the synthetic hydrophobic agent presented a higher contact angle than that prepared with the commercial one during the above tests. Moreover, it featured excellent icephobicity by effectively delaying the time of icing on concrete and reducing the icing mass and ice adhesion strength. In addition, the hydrophobic agent used by impregnation was a better choice for concrete surface protection. Chemical composition and morphology analysis of the coating showed that hydrophobicity and icephobicity were mainly attributed to F-containing functional groups and rough structure with low surface energy. This study provided an application potential of modified cement-based composite coating for anti-/de-icing of guardrail concrete. Full article
Show Figures

Figure 1

12 pages, 2254 KiB  
Article
Hydrophobic Boron Nitride Nanoflower Coatings on Mild Steel Surfaces
by Aamir Nadeem, Muhammad Faheem Maqsood, Mohsin Ali Raza, Syed Muhammad Zain Mehdi and Shahbaz Ahmad
Surfaces 2025, 8(3), 42; https://doi.org/10.3390/surfaces8030042 - 25 Jun 2025
Viewed by 541
Abstract
Growing demand for chemically resistant, thermally stable, and anti-icing coatings has intensified interest in boron nitride (BN)-based materials and surface coatings. In this study, BN coatings were developed on mild steel (MS) via chemical vapour deposition (CVD) at 1200 °C for 15, 30, [...] Read more.
Growing demand for chemically resistant, thermally stable, and anti-icing coatings has intensified interest in boron nitride (BN)-based materials and surface coatings. In this study, BN coatings were developed on mild steel (MS) via chemical vapour deposition (CVD) at 1200 °C for 15, 30, and 60 min, and their structural, surface, and water-repellent characteristics were evaluated. X-ray diffraction (XRD) and Fourier-transform infrared (FTIR) spectroscopy confirmed the successful formation of BN, while water contact angle measurements indicated high hydrophobicity, demonstrating excellent barrier properties. Scanning electron microscopy (SEM) revealed morphological evolution from flower- and needle-like BN structures in the sample placed in the CVD furnace for 15 min to dense, coral-like, and tubular networks in the samples placed for 30 and 60 min. These findings highlight that BN coatings, particularly the one obtained after 30 min of deposition, have a high hydrophobic character following the Cassie–Baxter model and can be used for corrosion resistance and anti-icing on MS, making them ideal for industrial applications requiring long-lasting protection. Full article
(This article belongs to the Special Issue Surface Engineering of Thin Films)
Show Figures

Graphical abstract

15 pages, 2497 KiB  
Review
Utilization of SiO2 Nanoparticles in Developing Superhydrophobic Coatings for Road Construction: A Short Review
by Nazerke Kydyrbay, Mergen Zhazitov, Muhammad Abdullah, Zhexenbek Toktarbay, Yerbolat Tezekbay, Tolagay Duisebayev and Olzat Toktarbaiuly
Molecules 2025, 30(13), 2705; https://doi.org/10.3390/molecules30132705 - 23 Jun 2025
Viewed by 480
Abstract
The application of superhydrophobic (SH) coatings in road construction has attracted growing attention due to their potential to improve surface durability, reduce cracking, and enhance skid resistance. Among various materials, SiO2 nanoparticles have emerged as key components in SH coatings by contributing [...] Read more.
The application of superhydrophobic (SH) coatings in road construction has attracted growing attention due to their potential to improve surface durability, reduce cracking, and enhance skid resistance. Among various materials, SiO2 nanoparticles have emerged as key components in SH coatings by contributing essential surface roughness and hydrophobicity. This review paper analyzes the role of SiO2 nanoparticles in enhancing the water-repellent properties of coatings applied to road surfaces, particularly concrete and asphalt. Emphasis is placed on their influence on road longevity, reduced maintenance, and overall performance under adverse weather conditions. Furthermore, this review compares functionalization techniques for SiO2 using different hydrophobic modifiers, evaluating their efficiency, cost effectiveness, and scalability for large-scale infrastructure. In addition to highlighting recent advancements, this study discusses persistent challenges—including environmental compatibility, mechanical wear, and long-term durability—that must be addressed for practical implementation. By offering a critical assessment of current approaches and future prospects, this short review aims to guide the development of robust, high-performance SH coatings for sustainable road construction. Full article
(This article belongs to the Section Applied Chemistry)
Show Figures

Figure 1

Back to TopTop