Nanoparticle-Free 3D-Printed Hydrophobic Surfaces for Ice Mitigation Applications
Abstract
1. Introduction
2. Results and Discussion
2.1. Morphological Evaluation of Microstructures
2.2. Topographical Study of Microstructures
2.3. Influence of Geometric Parameters and Surface Functionalization on Wettability
2.4. Study of the Anti-Icing Properties
2.4.1. Ice Nucleation Delay Time
2.4.2. Ice Adhesion
3. Experimental
3.1. Materials and Sample Preparations
3.2. Fabrication of Microstructures
3.3. Study of the Composition and Morphology of the Printed Microstructures
3.4. Study the Topography of the Printed Microstructure
3.5. Study the Wettability of the Microstructures
3.6. Anti-Icing Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roshan, S.; Jafari, R.; Momen, G. Multifunctional polyurethane-based coating with corrosion resistance and anti-icing performance for AA2024-T3 alloy protection. Colloids Surf. A Physicochem. Eng. Asp. 2024, 698, 134581. [Google Scholar] [CrossRef]
- Shamshiri, M.; Jafari, R.; Momen, G. Potential use of smart coatings for icephobic applications: A review. Surf. Coat. Technol. 2021, 424, 127656. [Google Scholar] [CrossRef]
- Neinhuis, C.; Barthlott, W. Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann. Bot. 1997, 79, 667–677. [Google Scholar] [CrossRef]
- Ellinas, K.; Dimitrakellis, P.; Sarkiris, P.; Gogolides, E. A review of fabrication methods, properties and applications of superhydrophobic metals. Processes 2021, 9, 666. [Google Scholar] [CrossRef]
- Ensikat, H.J.; Ditsche-Kuru, P.; Neinhuis, C.; Barthlott, W. Superhydrophobicity in perfection: The outstanding properties of the lotus leaf. Beilstein J. Nanotechnol. 2011, 2, 152–161. [Google Scholar] [CrossRef]
- Pozzato, A.; Dal Zilio, S.; Fois, G.; Vendramin, D.; Mistura, G.; Belotti, M.; Chen, Y.; Natali, M. Superhydrophobic surfaces fabricated by nanoimprint lithography. Microelectron. Eng. 2006, 83, 884–888. [Google Scholar] [CrossRef]
- Saffari, H.; Sohrabi, B.; Noori, M.R.; Bahrami, H.R.T. Optimal condition for fabricating superhydrophobic Aluminum surfaces with controlled anodizing processes. Appl. Surf. Sci. 2018, 435, 1322–1328. [Google Scholar] [CrossRef]
- Jafari, R.; Asadollahi, S.; Farzaneh, M. Applications of plasma technology in development of superhydrophobic surfaces. Plasma Chem. Plasma Process. 2013, 33, 177–200. [Google Scholar] [CrossRef]
- Liu, T.L.; Kim, C.-J.C. Turning a surface superrepellent even to completely wetting liquids. Science 2014, 346, 1096–1100. [Google Scholar] [CrossRef]
- Quan, H.; Zhang, T.; Xu, H.; Luo, S.; Nie, J.; Zhu, X. Photo-curing 3D printing technique and its challenges. Bioact. Mater. 2020, 5, 110–115. [Google Scholar] [CrossRef]
- Park, Y.G.; Yun, I.; Chung, W.G.; Park, W.; Lee, D.H.; Park, J.U. High-resolution 3D printing for electronics. Adv. Sci. 2022, 9, 2104623. [Google Scholar] [CrossRef]
- Jafari, R.; Cloutier, C.; Allahdini, A.; Momen, G. Recent progress and challenges with 3D printing of patterned hydrophobic and superhydrophobic surfaces. Int. J. Adv. Manuf. Technol. 2019, 103, 1225–1238. [Google Scholar] [CrossRef]
- Serhan, M.; Jackemeyer, D.; Long, M.; Sprowls, M.; Perez, I.D.; Maret, W.; Chen, F.; Tao, N.; Forzani, E. Total iron measurement in human serum with a novel smartphone-based assay. IEEE J. Transl. Eng. Health Med. 2020, 8, 2800309. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Vuckovac, M.; Cui, W.; Zhou, Q.; Ras, R.H.; Levkin, P.A. 3D printing of superhydrophobic objects with bulk nanostructure. Adv. Mater. 2021, 33, 2106068. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Ji, F.; Li, Z.; Tao, S. Preparation of hydrophobic surface on PLA and ABS by fused deposition modeling. Polymers 2020, 12, 1539. [Google Scholar] [CrossRef]
- Lin, Y.; Zhou, R.; Xu, J. Superhydrophobic surfaces based on fractal and hierarchical microstructures using two-photon polymerization: Toward flexible superhydrophobic films. Adv. Mater. Interfaces 2018, 5, 1801126. [Google Scholar] [CrossRef]
- Ahn, S.-J.; Lee, H.; Cho, K.-J. 3D printing with a 3D printed digital material filament for programming functional gradients. Nat. Commun. 2024, 15, 3605. [Google Scholar] [CrossRef]
- Badanova, N.; Perveen, A.; Talamona, D. Study of SLA printing parameters affecting the dimensional accuracy of the pattern and casting in rapid investment casting. J. Manuf. Mater. Process. 2022, 6, 109. [Google Scholar] [CrossRef]
- Leung, Y.-S.; Kwok, T.-H.; Li, X.; Yang, Y.; Wang, C.C.; Chen, Y. Challenges and status on design and computation for emerging additive manufacturing technologies. J. Comput. Inf. Sci. Eng. 2019, 19, 021013. [Google Scholar] [CrossRef]
- He, Q.; Tang, T.; Zeng, Y.; Iradukunda, N.; Bethers, B.; Li, X.; Yang, Y. Review on 3D printing of bioinspired structures for surface/interface applications. Adv. Funct. Mater. 2024, 34, 2309323. [Google Scholar] [CrossRef]
- Shi, C.; Li, Y.; Wu, Z.; Chen, A.; Wang, Q.; Li, X.; Jin, H.; Yan, C.; Shi, Y.; Shi, Y. A Green and Energy-Supply-Free Artificial Plant for Efficient and Non-Selective Enrichment of Heavy Metal Ions Out of Soil. Adv. Funct. Mater. 2024, 34, 2409445. [Google Scholar] [CrossRef]
- Shi, C.; Zhang, P.; Wang, Y.; Zhang, K.; Chen, J.; Li, X.; Jin, H.; Wang, Y.; Yan, C.; Shi, Y. Highly Efficient, Salt-Resistant, and Chemically Durable Solar Evaporator for the Purification of Industrial High-Salinity Wastewater. Adv. Funct. Mater. 2025, 2501165. [Google Scholar] [CrossRef]
- Asmatulu, E.; Vishma Rajakaruna, R.A.; Subeshan, B.; Nizam Uddin, M. 3D Printed Superhydrophobic Structures for Sustainable Manufacturing Benefits: An Overview. J. Manag. Eng. Integr. 2022, 15, 45–56. [Google Scholar] [CrossRef]
- Rahman, M.; Joyee, E.B. 3D Printed Bioinspired Hierarchical Surface Structure With Tunable Wettability. J. Micro Nano Manuf. 2022, 10, 041004. [Google Scholar] [CrossRef]
- Hu, S.; Huang, W.; Li, J.; Reddyhoff, T.; Cao, X.; Shi, X.; Peng, Z.; Demello, A.; Dini, D. Rigid—Flexible hybrid surfaces for water-repelling and abrasion-resisting. Friction 2023, 11, 635–646. [Google Scholar] [CrossRef]
- Wang, D.; Sun, Q.; Hokkanen, M.J.; Zhang, C.; Lin, F.-Y.; Liu, Q.; Zhu, S.-P.; Zhou, T.; Chang, Q.; He, B. Design of robust superhydrophobic surfaces. Nature 2020, 582, 55–59. [Google Scholar] [CrossRef]
- Cho, Y.; Park, C.H. Objective quantification of surface roughness parameters affecting superhydrophobicity. RSC Adv. 2020, 10, 31251–31260. [Google Scholar] [CrossRef]
- Jiang, J.; Shen, Y.; Xu, Y.; Wang, Z.; Tao, J.; Liu, S.; Liu, W.; Chen, H. An energy-free strategy to elevate anti-icing performance of superhydrophobic materials through interfacial airflow manipulation. Nat. Commun. 2024, 15, 777. [Google Scholar] [CrossRef]
- Wang, T.; Feng, H.; Cao, L.; Zhao, Z.; Li, W.; Chen, S. Mechanism and design strategy of ice-phobic surface: A comprehensive review. Adv. Colloid Interface Sci. 2025, 341, 103478. [Google Scholar] [CrossRef]
- Ngo, T.D.; Kashani, A.; Imbalzano, G.; Nguyen, K.T.; Hui, D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. Part B Eng. 2018, 143, 172–196. [Google Scholar] [CrossRef]
- Amjad, M.; Nguir, M.; Ma, X.; Wen, D. Superhydrophobic 3D-printed microstructures: Applications, challenges, and prospects. Prog. Addit. Manuf. 2025, 1–28. [Google Scholar] [CrossRef]
- Hou, W.; Shen, Y.; Tao, J.; Xu, Y.; Jiang, J.; Chen, H.; Jia, Z. Anti-icing performance of the superhydrophobic surface with micro-cubic array structures fabricated by plasma etching. Colloids Surf. A Physicochem. Eng. Asp. 2020, 586, 124180. [Google Scholar] [CrossRef]
- Amin, M.; Singh, M.; Ravi, K. Fabrication of superhydrophobic PLA surfaces by tailoring FDM 3D printing and chemical etching process. Appl. Surf. Sci. 2023, 626, 157217. [Google Scholar] [CrossRef]
- Kumar, M.; Bhardwaj, R.; Sahu, K.C. Wetting dynamics of a water droplet on micropillar surfaces with radially varying pitches. Langmuir 2020, 36, 5312–5323. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhang, R.-r.; Jiang, C.-g.; Wu, C.-w. Effect of pillar height on the wettability of micro-textured surface: Volume-of-fluid simulations. Int. J. Adhes. Adhes. 2017, 74, 64–69. [Google Scholar] [CrossRef]
- Arias-Ferreiro, G.; Ares-Pernas, A.; Lasagabáster-Latorre, A.; Aranburu, N.; Guerrica-Echevarria, G.; Dopico-García, M.S.; Abad, M.-J. Printability study of a conductive polyaniline/acrylic formulation for 3d printing. Polymers 2021, 13, 2068. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Wang, S.; Bi, J.; He, Q.; Song, H.; El Azab, I.H.; El-Bahy, S.M.; Elnaggar, A.Y.; Huang, M.; Mahmoud, M. Strengthening waterborne acrylic resin modified with trimethylolpropane triacrylate and compositing with carbon nanotubes for enhanced anticorrosion. Adv. Compos. Hybrid Mater. 2022, 5, 2116–2130. [Google Scholar] [CrossRef]
- Brassard, J.-D.; Sarkar, D.K.; Perron, J. Fluorine based superhydrophobic coatings. Appl. Sci. 2012, 2, 453–464. [Google Scholar] [CrossRef]
- Catterton, M.A.; Montalbine, A.N.; Pompano, R.R. Selective fluorination of the surface of polymeric materials after stereolithography 3D printing. Langmuir 2021, 37, 7341–7348. [Google Scholar] [CrossRef]
- Wang, L.; Schubert, U.S.; Hoeppener, S. Surface chemical reactions on self-assembled silane based monolayers. Chem. Soc. Rev. 2021, 50, 6507–6540. [Google Scholar] [CrossRef]
- Erbil, H.Y.; Cansoy, C.E. Range of applicability of the Wenzel and Cassie-Baxter equations for superhydrophobic surfaces. Langmuir 2009, 25, 14135–14145. [Google Scholar] [CrossRef]
- Li, Q.; Li, L.; Shi, K.; Yang, B.; Wang, X.; Shi, Z.; Tan, D.; Meng, F.; Liu, Q.; Hu, S. Reversible structure engineering of bioinspired anisotropic surface for droplet recognition and transportation. Adv. Sci. 2020, 7, 2001650. [Google Scholar] [CrossRef] [PubMed]
- Keshavarzi, S.; Momen, G.; Eberle, P.; Yancheshme, A.A.; Alvarez, N.J.; Jafari, R. Exploiting intermediate wetting on superhydrophobic surfaces for efficient icing prevention. J. Colloid Interface Sci. 2024, 670, 550–562. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Wang, C.; Yang, Z.; Xu, Z.; Yang, M.; Zhao, P.; Zhou, Y.; Li, P.; Wang, Q.; Li, Y. Controllable and scalable fabrication of superhydrophobic hierarchical structures for water energy harvesting. Electronics 2022, 11, 1651. [Google Scholar] [CrossRef]
- Hamid, I.S.L.A.; Khi Khim, B.; Mohamed Omar, M.F.; Mohamad Zain, K.A.; Abd Rhaffor, N.; Sal Hamid, S.; Abd Manaf, A. Three-Dimensional Soft Material Micropatterning via Grayscale Photolithography for Improved Hydrophobicity of Polydimethylsiloxane (PDMS). Micromachines 2022, 13, 78. [Google Scholar] [CrossRef]
- Huang, W.; Huang, J.; Guo, Z.; Liu, W. Icephobic/anti-icing properties of superhydrophobic surfaces. Adv. Colloid Interface Sci. 2022, 304, 102658. [Google Scholar] [CrossRef]
- Jo, H.; Ahn, H.S.; Kang, S.; Kim, M.H. A study of nucleate boiling heat transfer on hydrophilic, hydrophobic and heterogeneous wetting surfaces. Int. J. Heat Mass Transf. 2011, 54, 5643–5652. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Z.; Wu, C.; Su, K.; Kan, X. Biomimetic superhydrophobic materials through 3D printing: Progress and challenges. Micromachines 2023, 14, 1216. [Google Scholar] [CrossRef]
- Zhang, H.; Du, H.; Zhu, D.; Zhao, H.; Zhang, X.; He, F.; Wang, L.; Lv, C.; Hao, P. Ice adhesion properties on micropillared superhydrophobic surfaces. ACS Appl. Mater. Interfaces 2024, 16, 11084–11093. [Google Scholar] [CrossRef]
- Zdziennicka, A.; Jańczuk, B. The relationship between the adhesion work, the wettability and composition of the surface layer in the systems polymer/aqueous solution of anionic surfactants and alcohol mixtures. Appl. Surf. Sci. 2010, 257, 1034–1042. [Google Scholar] [CrossRef]
- Maitra, T.; Jung, S.; Giger, M.E.; Kandrical, V.; Ruesch, T.; Poulikakos, D. Superhydrophobicity vs. ice adhesion: The quandary of robust icephobic surface design. Adv. Mater. Interfaces 2015, 2, 1500330. [Google Scholar] [CrossRef]
- Sojoudi, H.; Wang, M.; Boscher, N.; McKinley, G.H.; Gleason, K.K. Durable and scalable icephobic surfaces: Similarities and distinctions from superhydrophobic surfaces. Soft Matter 2016, 12, 1938–1963. [Google Scholar] [CrossRef]
- Bakhtiari, M.; Bakhshandeh, E.; Jafari, R.; Momen, G. Enhancing anti-icing efficacy in hybrid polyurethane coatings: Evaluating the significance of molecular weight, chemical structure, and content of PEG/PDMS. Appl. Surf. Sci. 2025, 684, 161951. [Google Scholar] [CrossRef]
Surface Morphology | Semple | |||
---|---|---|---|---|
Without pillars | Control | - | - | - |
Square | S120 | 120 | 120 | 120 |
Hexagonal | HE120 | 120 | 120 | 120 |
Truncated cone | TC120 | 120 | 120 | 120 |
Surface Morphology | Semple | |||
---|---|---|---|---|
Cylindrical | M80 | 80 | 80 | 80 |
M100 | 100 | 100 | 100 | |
M120 | 120 | 120 | 120 | |
H100 | 120 | 120 | 100 | |
H360 | 120 | 120 | 360 | |
H480 | 120 | 120 | 480 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zgaren, R.; Hosseini, M.; Jafari, R.; Momen, G. Nanoparticle-Free 3D-Printed Hydrophobic Surfaces for Ice Mitigation Applications. Molecules 2025, 30, 3185. https://doi.org/10.3390/molecules30153185
Zgaren R, Hosseini M, Jafari R, Momen G. Nanoparticle-Free 3D-Printed Hydrophobic Surfaces for Ice Mitigation Applications. Molecules. 2025; 30(15):3185. https://doi.org/10.3390/molecules30153185
Chicago/Turabian StyleZgaren, Ranim, Maryam Hosseini, Reza Jafari, and Gelareh Momen. 2025. "Nanoparticle-Free 3D-Printed Hydrophobic Surfaces for Ice Mitigation Applications" Molecules 30, no. 15: 3185. https://doi.org/10.3390/molecules30153185
APA StyleZgaren, R., Hosseini, M., Jafari, R., & Momen, G. (2025). Nanoparticle-Free 3D-Printed Hydrophobic Surfaces for Ice Mitigation Applications. Molecules, 30(15), 3185. https://doi.org/10.3390/molecules30153185