Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,372)

Search Parameters:
Keywords = animal rat models

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4870 KiB  
Article
Histological and Immunohistochemical Evidence in Hypothermia-Related Death: An Experimental Study
by Emina Dervišević, Nina Čamdžić, Edina Lazović, Adis Salihbegović, Francesco Sessa, Hajrudin Spahović and Stefano D’Errico
Int. J. Mol. Sci. 2025, 26(15), 7578; https://doi.org/10.3390/ijms26157578 - 5 Aug 2025
Abstract
Hypothermia-related deaths present significant diagnostic challenges due to non-specific and often inconsistent autopsy findings. This study investigated the histological and immunohistochemical alterations associated with primary and secondary hypothermia in an experimental Rattus norvegicus model, focusing on the effects of benzodiazepine and alcohol ingestion. [...] Read more.
Hypothermia-related deaths present significant diagnostic challenges due to non-specific and often inconsistent autopsy findings. This study investigated the histological and immunohistochemical alterations associated with primary and secondary hypothermia in an experimental Rattus norvegicus model, focusing on the effects of benzodiazepine and alcohol ingestion. Twenty-one male rats were divided into three groups: control (K), benzodiazepine-treated (B), and alcohol-treated (A). After two weeks of substance administration, hypothermia was induced and multiple organ samples were analyzed. Histologically, renal tissue showed hydropic and vacuolar degeneration, congestion, and acute tubular injury across all groups, with no significant differences in E-cadherin expression. Lung samples revealed congestion, emphysema, and hemorrhage, with more pronounced vascular congestion in the alcohol and benzodiazepine groups. Cardiac tissue exhibited vacuolar degeneration and protein denaturation, particularly in substance-exposed animals. The spleen showed preserved architecture but increased erythrocyte infiltration and significantly elevated myeloperoxidase (MPO)-positive granulocytes in the intoxicated groups. Liver samples demonstrated congestion, focal necrosis, and subcapsular hemorrhage, especially in the alcohol group. Immunohistochemical analysis revealed statistically significant differences in MPO expression in both lung and spleen tissues, with the highest levels observed in the benzodiazepine group. Similarly, CK7 and CK20 expression in the gastroesophageal junction was significantly elevated in both alcohol- and benzodiazepine-treated animals compared to the controls. In contrast, E-cadherin expression in the kidney did not differ significantly among the groups. These findings suggest that specific histological and immunohistochemical patterns, particularly involving pulmonary, cardiac, hepatic, and splenic tissues, may help differentiate primary hypothermia from substance-related secondary hypothermia. The study underscores the value of integrating toxicological, histological, and molecular analyses to enhance the forensic assessment of hypothermia-related fatalities. Future research should aim to validate these markers in human autopsy series and explore additional molecular indicators to refine diagnostic accuracy in forensic pathology. Full article
Show Figures

Figure 1

18 pages, 5591 KiB  
Article
Pharmacological Investigation of Tongqiao Jiuxin Oil Against High-Altitude Hypoxia: Integrating Chemical Profiling, Network Pharmacology, and Experimental Validation
by Jiamei Xie, Yang Yang, Yuhang Du, Xiaohua Su, Yige Zhao, Yongcheng An, Xin Mao, Menglu Wang, Ziyi Shan, Zhiyun Huang, Shuchang Liu and Baosheng Zhao
Pharmaceuticals 2025, 18(8), 1153; https://doi.org/10.3390/ph18081153 - 2 Aug 2025
Viewed by 174
Abstract
Background: Acute mountain sickness (AMS) is a prevalent and potentially life-threatening condition caused by rapid exposure to high-altitude hypoxia, affecting pulmonary and neurological functions. Tongqiao Jiuxin Oil (TQ), a traditional Chinese medicine formula composed of aromatic and resinous ingredients such as sandalwood, [...] Read more.
Background: Acute mountain sickness (AMS) is a prevalent and potentially life-threatening condition caused by rapid exposure to high-altitude hypoxia, affecting pulmonary and neurological functions. Tongqiao Jiuxin Oil (TQ), a traditional Chinese medicine formula composed of aromatic and resinous ingredients such as sandalwood, agarwood, frankincense, borneol, and musk, has been widely used in the treatment of cardiovascular and cerebrovascular disorders. Clinical observations suggest its potential efficacy against AMS, yet its pharmacological mechanisms remain poorly understood. Methods: The chemical profile of TQ was characterized using UHPLC-Q-Exactive Orbitrap HRMS. Network pharmacology was applied to predict the potential targets and pathways involved in AMS. A rat model of AMS was established by exposing animals to hypobaric hypoxia (~10% oxygen), simulating an altitude of approximately 5500 m. TQ was administered at varying doses. Physiological indices, oxidative stress markers (MDA, SOD, GSH), histopathological changes, and the expression of hypoxia- and apoptosis-related proteins (HIF-1α, VEGFA, EPO, Bax, Bcl-2, Caspase-3) in lung and brain tissues were assessed. Results: A total of 774 chemical constituents were identified from TQ. Network pharmacology predicted the involvement of multiple targets and pathways. TQ significantly improved arterial oxygenation and reduced histopathological damage in both lung and brain tissues. It enhanced antioxidant activity by elevating SOD and GSH levels and reducing MDA content. Mechanistically, TQ downregulated the expression of HIF-1α, VEGFA, EPO, and pro-apoptotic markers (Bax/Bcl-2 ratio, Caspase-3), while upregulated Bcl-2, the anti-apoptotic protein expression. Conclusions: TQ exerts protective effects against AMS-induced tissue injury by improving oxygen homeostasis, alleviating oxidative stress, and modulating hypoxia-related and apoptotic signaling pathways. This study provides pharmacological evidence supporting the potential of TQ as a promising candidate for AMS intervention, as well as the modern research method for multi-component traditional Chinese medicine. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

19 pages, 2574 KiB  
Article
The Neuroregenerative Effects of IncobotulinumtoxinA (Inco/A) in a Nerve Lesion Model of the Rat
by Oscar Sánchez-Carranza, Wojciech Danysz, Klaus Fink, Maarten Ruitenberg, Andreas Gravius and Jens Nagel
Int. J. Mol. Sci. 2025, 26(15), 7482; https://doi.org/10.3390/ijms26157482 - 2 Aug 2025
Viewed by 235
Abstract
The use of Botulinum Neurotoxin A (BoNT/A) to treat peripheral neuropathic pain from nerve injury has garnered interest for its long-lasting effects and safety. This study examined the effects of IncobotulinumtoxinA (Inco/A), a BoNT/A variant without accessory proteins, on nerve regeneration in rats [...] Read more.
The use of Botulinum Neurotoxin A (BoNT/A) to treat peripheral neuropathic pain from nerve injury has garnered interest for its long-lasting effects and safety. This study examined the effects of IncobotulinumtoxinA (Inco/A), a BoNT/A variant without accessory proteins, on nerve regeneration in rats using the chronic constriction injury (CCI) model. Inco/A was administered perineurally at two time points: on days 0 and 21 post CCI. Functional and histological assessments were conducted to evaluate the effect of Inco/A on nerve regeneration. Sciatic Functional Index (SFI) measurements and Compound Muscle Action Potential (CMAP) recordings were conducted at different time points following CCI. Inco/A-treated animals exhibited a 65% improved SFI and 22% reduction in CMAP onset latencies compared to the vehicle-treated group, suggesting accelerated functional nerve recovery. Tissue analysis revealed enhanced remyelination in Inco/A-treated animals and 60% reduction in CGRP and double S100β signal expression compared to controls. Strikingly, 30% reduced immune cell influx into the injury site was observed following Inco/A treatment, suggesting that its anti-inflammatory effect contributes to nerve regeneration. These findings show that two injections of Inco/A promote functional recovery by enhancing neuroregeneration and modulating inflammatory processes, supporting the hypothesis that Inco/A has a neuroprotective and restorative role in nerve injury conditions. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

14 pages, 1040 KiB  
Article
Diabetes Worsens Outcomes After Asphyxial Cardiac Arrest in Rats
by Matthew B. Barajas, Takuro Oyama, Masakazu Shiota, Zhu Li, Maximillian Zaum, Ilija Zecevic and Matthias L. Riess
Diabetology 2025, 6(8), 78; https://doi.org/10.3390/diabetology6080078 - 1 Aug 2025
Viewed by 163
Abstract
Background: Diabetes mellitus is associated with worse outcomes after cardiac arrest. Hyperglycemia, diabetes treatments and other long-term sequalae may contribute to this association. We sought to determine the acute effect of diabetes on the return of spontaneous circulation (ROSC) and post-arrest cardiac function [...] Read more.
Background: Diabetes mellitus is associated with worse outcomes after cardiac arrest. Hyperglycemia, diabetes treatments and other long-term sequalae may contribute to this association. We sought to determine the acute effect of diabetes on the return of spontaneous circulation (ROSC) and post-arrest cardiac function in a rat cardiac arrest model. Methods: Eighteen male Wistar rats were utilized, and 12 underwent the induction of type II diabetes for 10 weeks through a high-fat diet and the injection of streptozotocin. The carotid artery flow and femoral arterial pressure were measured. Seven minutes of asphyxial cardiac arrest was induced. An external cardiac compression was performed via an automated piston. Post-ROSC, epinephrine was titrated to a mean arterial pressure (MAP) of 70 mmHg. Data was analyzed using the Mann–Whitney test. The significance was set at p ≤ 0.05. Results: The rate of the ROSC was significantly lower in animals with diabetes, 50% compared to 100% in non-diabetics. Additionally, it took significantly longer to achieve the ROSC in diabetics, p = 0.034. In animals who survived, the cardiac function was reduced, as indicated by an increased epinephrine requirement, p = 0.041, and a decreased cardiac output at the end of the experiment, p = 0.017. The lactate, venous and arterial pressures, heart rate and carotid flow did not differ between groups at 2 h. Conclusions: Diabetes negatively affects the survival from cardiac arrest. Here, the critical difference was the rate of the conversion to a life-sustaining rhythm and the achievement of the ROSC. The post-ROSC cardiac function was depressed in diabetic animals. Interventions targeted at improving defibrillation success may be important in diabetics. Full article
Show Figures

Graphical abstract

15 pages, 5596 KiB  
Article
Effects of Hypertension Induced by 0.3% Saline Loading on Diabetic Retinopathy in Spontaneously Diabetic Torii Fatty Rats
by Rina Takagi, Yoshiaki Tanaka, Tetsuya Hasegawa, Masami Shinohara, Yasushi Kageyama, Tomohiko Sasase, Takeshi Ohta, Shin-ichi Muramatsu, Nobuhiko Ohno, Akihiro Kakehashi and Toshikatsu Kaburaki
Diabetology 2025, 6(8), 73; https://doi.org/10.3390/diabetology6080073 - 1 Aug 2025
Viewed by 189
Abstract
Objective: This study aimed to determine the possibility of creating a new animal model in which diabetic retinopathy (DR) progresses due to hypertension caused by salt loading. Methods: Male Spontaneously Diabetic Torii (SDT) fatty rats were divided into two groups: one group received [...] Read more.
Objective: This study aimed to determine the possibility of creating a new animal model in which diabetic retinopathy (DR) progresses due to hypertension caused by salt loading. Methods: Male Spontaneously Diabetic Torii (SDT) fatty rats were divided into two groups: one group received 0.3% saline water starting at 8 weeks of age for a duration of 16 weeks (salt SDT fatty group), while the control group was provided with tap water (SDT fatty group). In addition, Sprague-Dawley (SD) rats receiving tap water served as normal controls. Retinal function was assessed by electroretinography (ERG) at 8 and 24 weeks of age. At 24 weeks, following perfusion with fluorescein dextran, the eyes were enucleated, and retinal flat mounts were prepared for vascular evaluation. Retinal thickness and the number of retinal folds were assessed histologically, and ultrastructural changes in the retina were examined using transmission electron microscopy. Results: Saline administration did not lead to significant changes in food consumption or body weight among the groups. In the salt SDT fatty group, blood pressure was significantly elevated, while blood glucose levels showed a slight reduction. ERG analysis showed that the amplitude of oscillatory potential (OP)1 waves was suppressed, and the latencies of OP3, OP4, and OP5 waves were prolonged. Although no significant changes were noted in retinal thickness or the number of retinal folds, thickening of the retinal capillary basement membrane was evident in the salt SDT fatty group. Conclusions: Hypertension induced by 0.3% saline promotes DR progression in SDT fatty rats. This model may help clarify the role of hypertension in DR. Full article
Show Figures

Graphical abstract

11 pages, 1692 KiB  
Communication
Nanogel Loaded with Perilla frutescens Leaf-Derived Exosome-like Nanovesicles and Indomethacin for the Treatment of Inflammatory Arthritis
by Xianqiang Li, Fei Wang, Rui Wang, Yanjie Cheng, Jinhuan Liu and Wanhe Luo
Biology 2025, 14(8), 970; https://doi.org/10.3390/biology14080970 (registering DOI) - 1 Aug 2025
Viewed by 324
Abstract
Inflammatory arthritis (IA) is a chronic condition marked by joint dysfunction and pain, posing significant challenges for effective drug delivery. This study separated Perilla frutescens leaf-derived exosome-like nanovesicles (PFE) to effectively penetrate the stratum corneum barrier. These nanovesicles and indomethacin (IND) were subsequently [...] Read more.
Inflammatory arthritis (IA) is a chronic condition marked by joint dysfunction and pain, posing significant challenges for effective drug delivery. This study separated Perilla frutescens leaf-derived exosome-like nanovesicles (PFE) to effectively penetrate the stratum corneum barrier. These nanovesicles and indomethacin (IND) were subsequently developed into a nanogel designed for topical drug delivery systems (PFE-IND-GEL). PFE exhibited a typical vesicular structure with a mean diameter of 98.4 ± 1.3 nm. The hydrodynamic size and zeta potential of PFE-IND-GEL were 129.6 ± 5.9 nm and −17.4 ± 1.9 mV, respectively. Mechanistic investigations in HaCaT keratinocytes showed that PFE significantly downregulated tight junction proteins (ZO-1 and Occludin, p < 0.01) via modulation of the IL-17 signaling pathway, as evidenced by transcriptomic analysis. In a sodium urea crystal-induced rat IA model, the topical application of PFE-IND-GEL significantly reduced joint swelling (p < 0.05) and serum levels of inflammatory cytokines (IL-6, IL-1α, TNF-α) compared to control groups. Histopathological analysis confirmed the marked attenuation of synovial inflammation and cartilage preservation in treated animals. These findings underscore the dual role of PFE as both a topical permeation enhancer and an anti-inflammatory agent, presenting a promising strategy for managing IA. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Show Figures

Figure 1

26 pages, 3200 KiB  
Article
The Effects of Anthyllis vulneraria Hydroalcoholic Leaf Extract as an Adjuvant in Wound Healing
by Olga-Maria Iova, Gheorghe-Eduard Marin, Ana-Maria Vlase, Marcela Achim, Dana Muntean, Ioan Tomuţă, Remus Moldovan, Nicoleta Decea, Bogdan Alexandru Gheban, Sebastian Romeo Pintilie, Oana-Alina Hoteiuc, Roxana Denisa Capras and Adriana Gabriela Filip
Appl. Sci. 2025, 15(15), 8388; https://doi.org/10.3390/app15158388 - 29 Jul 2025
Viewed by 271
Abstract
Anthyllis vulneraria is a traditional medicinal plant with confirmed anti-inflammatory properties, attributed to its high polyphenolic content. This study aimed to evaluate the wound-healing potential of A. vulneraria leaf extract in a rat burn model. Four groups of eight Wistar rats each received [...] Read more.
Anthyllis vulneraria is a traditional medicinal plant with confirmed anti-inflammatory properties, attributed to its high polyphenolic content. This study aimed to evaluate the wound-healing potential of A. vulneraria leaf extract in a rat burn model. Four groups of eight Wistar rats each received the following daily topical applications for 14 days: vehicle cream (negative control); silver sulfadiazine (positive control); or plant-based creams containing either 1 mg/cm2 or 2 mg/cm2 of polyphenols (experimental groups 1 and 2, respectively). On days 7 and 14, four animals per group were euthanized for histological and oxidative stress evaluations. LC-MS/MS analysis of the leaf extract identified hyperoside, ferulic acid, and p-coumaric acid as major constituents. Experimental group 1 showed significantly enhanced wound closure on days 5 and 7, while group 2 exhibited a significant effect on day 5. All oxidative stress markers, except catalase activity, differed significantly among the groups, with the most favorable results observed in group 2. IL-8 levels decreased after the extract treatment, while no significant microscopic changes were observed. These results indicate that A. vulneraria leaf extract may serve as a valuable adjuvant in burn wound healing. Full article
Show Figures

Figure 1

26 pages, 10645 KiB  
Article
Classical Paal-Knorr Cyclization for Synthesis of Pyrrole-Based Aryl Hydrazones and In Vitro/In Vivo Evaluation on Pharmacological Models of Parkinson’s Disease
by Maya Georgieva, Martin Sharkov, Emilio Mateev, Diana Tzankova, Georgi Popov, Vasil Manov, Alexander Zlatkov, Rumyana Simeonova and Magdalena Kondeva-Burdina
Molecules 2025, 30(15), 3154; https://doi.org/10.3390/molecules30153154 - 28 Jul 2025
Viewed by 215
Abstract
Some studies performed in our laboratory on pyrrole and its derivatives pointed towards the enrichment of the evaluations of these promising chemical structures for the potential treatment of neurodegenerative conditions in general and Parkinson’s disease in particular. A classical Paal-Knorr cyclization approach is [...] Read more.
Some studies performed in our laboratory on pyrrole and its derivatives pointed towards the enrichment of the evaluations of these promising chemical structures for the potential treatment of neurodegenerative conditions in general and Parkinson’s disease in particular. A classical Paal-Knorr cyclization approach is applied to synthesize the basic hydrazine used for the formation of the designed series of hydrazones (15a15g). The potential neurotoxic and neuroprotective effects of the newly synthesized derivatives were investigated in vitro using different models of induced oxidative stress at three subcellular levels (rat brain synaptosomes, mitochondria, and microsomes). The results identified as the least neurotoxic molecules, 15a, 15d, and 15f applied at a concentration of 100 µM to the isolated fractions. In addition, the highest statistically significant neuroprotection was observed for 15a and 15d at a concentration of 100 µM using three different injury models on subcellular fractions, including 6-hydroxydopamine in rat brain synaptosomes, tert-butyl hydroperoxide in brain mitochondria, and non-enzyme-induced lipid peroxidation in brain microsomes. The hMAOA/MAOB inhibitory activity of the new compounds was studied at a concentration of 1 µM. The lack of a statistically significant hMAOA inhibitory effect was observed for all tested compounds, except for 15f, which showed 40% inhibitory activity. The most prominent statistically significant hMAOB inhibitory effect was determined for 15a, 15d, and 15f, comparable to that of selegiline. The corresponding selectivity index defined 15f as a non-selective MAO inhibitor and all other new hydrazones as selective hMAOB inhibitors, with 15d indicating the highest selectivity index of >471. The most active and least toxic representative (15d) was evaluated in vivo on Rotenone based model of Parkinson’s disease. The results revealed no microscopically visible alterations in the ganglion and glial cells in the animals treated with rotenone in combination with 15d. Full article
(This article belongs to the Special Issue Small-Molecule Targeted Drugs)
Show Figures

Figure 1

36 pages, 3579 KiB  
Article
RNA Sequencing Reveals Inflammatory and Metabolic Changes in the Lung and Brain After Carbon Black and Naphthalene Whole Body Inhalation Exposure in a Rodent Model of Military Burn Pit Exposures
by Allison M. Haaning, Brian J. Sandri, Henry L. Wyneken, William T. Goldsmith, Joshua P. Nixon, Timothy R. Nurkiewicz, Chris H. Wendt, Paul Barach, Janeen H. Trembley and Tammy A. Butterick
Int. J. Mol. Sci. 2025, 26(15), 7238; https://doi.org/10.3390/ijms26157238 - 26 Jul 2025
Viewed by 544
Abstract
Military personnel deployed to Iraq and Afghanistan were exposed to emissions from open-air burn pits, where plastics, metals, and medical waste were incinerated. These exposures have been linked to deployment-related respiratory diseases (DRRD) and may also impact neurological health via the lung–brain axis. [...] Read more.
Military personnel deployed to Iraq and Afghanistan were exposed to emissions from open-air burn pits, where plastics, metals, and medical waste were incinerated. These exposures have been linked to deployment-related respiratory diseases (DRRD) and may also impact neurological health via the lung–brain axis. To investigate molecular mechanisms, adult male rats were exposed to filtered air, naphthalene (a representative volatile organic compound), or a combination of naphthalene and carbon black (surrogate for particulate matter; CBN) via whole-body inhalation (six hours/day, three consecutive days). Lung, brain, and plasma samples were collected 24 h after the final exposure. Pro-inflammatory biomarkers were assessed using multiplex electrochemiluminescence and western blot. Differentially expressed genes (DEGs) were identified by RNA sequencing, and elastic net modeling was used to define exposure-predictive gene signatures. CBN exposure altered inflammatory biomarkers across tissues, with activation of nuclear factor kappa B (NF-κB) signaling. In the lung, gene set enrichment revealed activated pathways related to proliferation and inflammation, while epithelial–mesenchymal transition (EMT) and oxidative phosphorylation were suppressed. In the brain, EMT, inflammation, and senescence pathways were activated, while ribosomal function and oxidative metabolism were downregulated. Elastic net modeling identified a lung gene signature predictive of CBN exposure, including Kcnq3, Tgfbr1, and Tm4sf19. These findings demonstrate that inhalation of a surrogate burn pit mixture induces inflammatory and metabolic gene expression changes in both lung and brain tissues, supporting the utility of this animal model for understanding systemic effects of airborne military toxicants and for identifying potential biomarkers relevant to DRRD and Veteran health. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

23 pages, 36719 KiB  
Article
The Impact of Hybrid Bionanomaterials Based on Gold Nanoparticles on Liver Injury in an Experimental Model of Thioacetamide-Induced Hepatopathy
by Mara Filip, Simona Valeria Clichici, Mara Muntean, Luminița David, Bianca Moldovan, Vlad Alexandru Toma, Cezar Login and Şoimița Mihaela Suciu
Biomolecules 2025, 15(8), 1068; https://doi.org/10.3390/biom15081068 - 24 Jul 2025
Viewed by 259
Abstract
The present study aimed to evaluate the therapeutic benefits of a hybrid material based on gold nanoparticles and natural extracts on an experimental model of thioacetamide-induced (TAA) liver injury in rats. The nanomaterials were synthesized using a green method, with Cornus sanguinea L. [...] Read more.
The present study aimed to evaluate the therapeutic benefits of a hybrid material based on gold nanoparticles and natural extracts on an experimental model of thioacetamide-induced (TAA) liver injury in rats. The nanomaterials were synthesized using a green method, with Cornus sanguinea L. extract as a reducing and capping agent (NPCS), and were then mixed with Vaccinium myrtillus L. (VL) extract in order to achieve a final mixture with enhanced properties (NPCS-VL). NPCSs were characterized using UV–vis spectrophotometry and transmission electron microscopy (TEM), which demonstrated the formation of spherical, stable gold nanoparticles with an average diameter of 20 nm. NPCS-VL’s hepatoprotective effects were evaluated through an analysis of oxidative stress, inflammation, hepatic cytolysis, histology assays, and TEM in comparison to silymarin on an animal model of thioacetamide (TAA)-induced toxic hepatitis. TAA administration determined hepatotoxicity, as it triggered redox imbalance, increased proinflammatory cytokine levels and alanine aminotransferase (ALAT) activity, and induced morphological and ultrastructural changes characteristic of liver fibrosis. In rats treated with NPCS-VL, all these pathological processes were attenuated, suggesting a potential antifibrotic effect of this hybrid bionanomaterial. Full article
Show Figures

Figure 1

13 pages, 1301 KiB  
Article
Translational Pitfalls in SCI Bladder Research: The Hidden Role of Urinary Drainage Techniques in the Rat Model
by Sophina Bauer, Michael Kleindorfer, Karin Roider, Evelyn Beyerer, Martha Georgina Brandtner, Peter Törzsök, Lukas Lusuardi, Ludwig Aigner and Elena Esra Keller
Biology 2025, 14(8), 928; https://doi.org/10.3390/biology14080928 - 23 Jul 2025
Viewed by 279
Abstract
Spinal cord injury (SCI) frequently leads to neurogenic lower urinary tract dysfunction, for which appropriate bladder management is essential. While clinical care relies on continuous low-pressure drainage in the acute phase, rat models commonly use twice-daily manual bladder expression—a method known to generate [...] Read more.
Spinal cord injury (SCI) frequently leads to neurogenic lower urinary tract dysfunction, for which appropriate bladder management is essential. While clinical care relies on continuous low-pressure drainage in the acute phase, rat models commonly use twice-daily manual bladder expression—a method known to generate high intravesical pressures and retention. This study evaluated the impact of this standard practice on bladder tissue remodeling by comparing it to continuous drainage via high vesicostomy in a rat SCI model. 32 female Lewis rats underwent thoracic contusion SCI and were assigned to either manual expression or vesicostomy-based bladder management. Over eight weeks, locomotor recovery, wound healing, and bladder histology were assessed. Vesicostomy proved technically simple but required tailored wound care and calibration. Results showed significantly greater bladder wall thickness, detrusor muscle hypertrophy, urothelial thickening, collagen deposition, and mast cell infiltration in the manual expression group compared to both vesicostomy and controls. In contrast, vesicostomy animals exhibited near-control levels across most parameters. These findings highlight that commonly used bladder emptying protocols in rat SCI models may overestimate structural bladder changes and inflammatory responses. Refined drainage strategies such as vesicostomy can minimize secondary damage and improve the translational relevance of preclinical SCI research. Full article
(This article belongs to the Special Issue Advances in the Fields of Neurotrauma and Neuroregeneration)
Show Figures

Figure 1

20 pages, 8740 KiB  
Article
Agomelatine Ameliorates Cognitive and Behavioral Deficits in Aβ-Induced Alzheimer’s Disease-like Rat Model
by Raviye Ozen Koca, Z. Isik Solak Gormus, Hatice Solak, Burcu Gultekin, Ayse Ozdemir, Canan Eroglu Gunes, Ercan Kurar and Selim Kutlu
Medicina 2025, 61(8), 1315; https://doi.org/10.3390/medicina61081315 - 22 Jul 2025
Viewed by 297
Abstract
Background and Objectives: Alzheimer’s disease (AD) has become a serious health problem. Agomelatine (Ago) is a neuroprotective antidepressant. This study aimed to assess how Ago influences behavioral outcomes in AD-like rat model. Materials and Methods: Forty-eight Wistar albino rats were allocated into four [...] Read more.
Background and Objectives: Alzheimer’s disease (AD) has become a serious health problem. Agomelatine (Ago) is a neuroprotective antidepressant. This study aimed to assess how Ago influences behavioral outcomes in AD-like rat model. Materials and Methods: Forty-eight Wistar albino rats were allocated into four groups: Control (C), Alzheimer’s disease-like model (AD), Alzheimer’s disease-like model treated with Ago (ADAgo), and Ago alone (Ago). Physiological saline was injected intrahippocampally in C and Ago animals, whereas Aβ peptide was delivered similarly in AD and ADAgo rats. On day 15, 0.9% NaCl was administered to the C and AD groups, and Agomelatine (1 mg/kg/day) was infused into ADAgo and Ago rats via osmotic pumps for 30 days. Behavioral functions were evaluated using Open Field (OF), Forced Swim (FST), and Morris Water Maze (MWM) tests. Brain tissues were examined histopathologically. Neuritin, Nestin, DCX, NeuN, BDNF, MASH1, MT1, and MT2 transcripts were quantified by real-time PCR. Statistical analyses were performed in R 4.3.1, with p < 0.05 deemed significant. Results: In the FST, swimming, climbing, immobility time, and mobility percentage differed significantly among groups (p < 0.05). In the MWM, AD rats exhibited impaired learning and memory that was ameliorated by Ago treatment (p < 0.05). DCX expression decreased in AD rats but was elevated by Ago (p < 0.05). Nestin levels differed significantly between control and AD animals; MT1 expression varied between control and AD cohorts; and MT2 transcript levels were significantly lower in AD, ADAgo, and Ago groups compared to C (all p < 0.05). Conclusions: Ago exhibits antidepressant-like activity in this experimental AD model and may enhance cognitive function via mechanisms beyond synaptic plasticity and neurogenesis. Full article
(This article belongs to the Section Neurology)
Show Figures

Figure 1

14 pages, 2141 KiB  
Article
The Pharmacokinetic and Pharmacodynamic Relationship of Clinically Used Antiseizure Medications in the Maximal Electroshock Seizure Model in Rodents
by Luis Bettio, Girish Bankar, Celine M. Dubé, Karen Nelkenbrecher, Maja Filipovic, Sarbjot Singh, Gina DeBoer, Stephanie Lee, Andrea Lindgren, Luis Sojo, Richard Dean, James P. Johnson and Nina Weishaupt
Int. J. Mol. Sci. 2025, 26(15), 7029; https://doi.org/10.3390/ijms26157029 - 22 Jul 2025
Viewed by 311
Abstract
The assessment of the efficacy of antiseizure medications (ASMs) in animal models of acute seizures has played a critical role in these drugs’ success in clinical trials for human epilepsy. One of the most widely used animal models for this purpose is the [...] Read more.
The assessment of the efficacy of antiseizure medications (ASMs) in animal models of acute seizures has played a critical role in these drugs’ success in clinical trials for human epilepsy. One of the most widely used animal models for this purpose is the maximal electroshock seizure (MES) model. While there are numerous published reports on the efficacy of conventional ASMs in MES models, there is a need to expand the understanding on the brain concentrations that are needed to achieve optimal levels of efficacy in this model. We assessed the pharmacokinetic/pharmacodynamic (PK/PD) profiles of six ASMs, namely carbamazepine (CBZ), phenytoin (PHT), valproic acid (VPA), lacosamide (LSM), cenobamate (CNB), and retigabine (RTG), using MES models in mice and rats. EC50 values for plasma and the brain were generally higher in mice than rats, with fold differences ranging from 1.3- to 8.6-fold for plasma and from 1.2- to 11.5-fold for brain. Phenytoin showed the largest interspecies divergence. These results suggest that rats may exhibit greater sensitivity to seizure protection in the MES model, likely reflecting species differences in metabolism and brain penetration. These findings highlight the value of considering concentration–response variations and species-specific differences when assessing the efficacy of both conventional ASMs and novel compounds exhibiting anticonvulsant activity. Full article
(This article belongs to the Special Issue Epilepsy Research and Antiepileptic Drugs, 2nd Edition)
Show Figures

Figure 1

17 pages, 3334 KiB  
Article
Alterations in P-glycoprotein Expression in the Placenta of Obese Rats and Humans
by Péter Szatmári, Kata Kira Kemény, Andrea Surányi, Yakov Rachamim and Eszter Ducza
Int. J. Mol. Sci. 2025, 26(14), 6976; https://doi.org/10.3390/ijms26146976 - 20 Jul 2025
Viewed by 267
Abstract
Obesity affects approximately 30% of pregnancies worldwide and is one of the leading metabolic disorders among pregnant women. Maternal obesity is often associated with placental dysfunction and structural alterations, which increase the risk of developing complications. Efflux transporters, including P-glycoprotein (P-gp), may impact [...] Read more.
Obesity affects approximately 30% of pregnancies worldwide and is one of the leading metabolic disorders among pregnant women. Maternal obesity is often associated with placental dysfunction and structural alterations, which increase the risk of developing complications. Efflux transporters, including P-glycoprotein (P-gp), may impact placental function and fetal development. Consequently, our research examined the effects of obesity on P-glycoprotein expression in both a rat model and human placental tissue. P-gp expression was measured by RT-PCR and Western blot techniques in human and rat placental tissues. Moreover, we further characterized the high-fat and high-sugar diet (HFHSD)-induced gestational obesity rat model by measuring tissue weights. Significant decreases were observed in fetal, placental, and uterus weights in the obese animals near the end of pregnancy. In obese rats, mRNA and protein expression of placental P-gp showed a reduction on gestation days 15, 20, and 22. A similar P-gp reduction was observed in the term placenta in obese women in mRNA and protein levels. We hypothesize that the reduced expression of P-gp may heighten the susceptibility of both the fetus and placenta to P-gp substrates. This alteration could potentially result in an increased risk of pregnancy complications and obesity-related drug contraindications linked to P-gp transport during pregnancy. Full article
Show Figures

Figure 1

21 pages, 3692 KiB  
Article
Anti-Obesity Effects of Rosa rugosa Thunb. Flower Bud Extracts on Lipid Metabolism Regulation in 3T3-L1 Adipocytes and Sprague Dawley Rats
by Jung Min Kim, Kyoung Kon Kim, Hye Rim Lee, Jae Cheon Im and Tae Woo Kim
Int. J. Mol. Sci. 2025, 26(14), 6963; https://doi.org/10.3390/ijms26146963 - 20 Jul 2025
Viewed by 271
Abstract
In modern society, obesity and its associated complications have emerged as serious public health concerns, primarily stemming from sedentary lifestyles and carbohydrate-rich diets. Due to the severe side effects often associated with pharmacological anti-obesity agents, emerging global efforts focus on preventive strategies, e.g., [...] Read more.
In modern society, obesity and its associated complications have emerged as serious public health concerns, primarily stemming from sedentary lifestyles and carbohydrate-rich diets. Due to the severe side effects often associated with pharmacological anti-obesity agents, emerging global efforts focus on preventive strategies, e.g., dietary modifications and weight gain-suppressing functional foods. In this context, plant-derived metabolites are extensively investigated for their beneficial anti-obesity effects. In this study, we evaluated how Rosa rugosa Thunb. flower bud extract affects fat metabolism in 3T3-L1 preadipocyte cells. The extract significantly inhibited adipocyte differentiation and intracellular triglyceride accumulation in 3T3-L1 cells, enhanced lipolysis, suppressed lipogenesis, and promoted energy metabolism in differentiated adipocytes. In vivo, it reduced body and organ weights and fat mass in high-fat diet-induced obese rats, along with marked adipocyte size and hepatic lipid accumulation reductions. In the epididymal adipose tissue, the extract similarly enhanced lipolytic activity, suppressed lipogenic enzyme expression, and stimulated energy expenditure. Taken together, our results demonstrate the potential of R. rugosa Thunb. flower bud extract in reducing fat accumulation through lipid metabolism modulation both in cellular and animal models. Further studies are warranted to identify the active constituents and evaluate the safety and efficacy of the extract in clinical applications. Full article
(This article belongs to the Special Issue High Fat Diet Metabolism and Diseases)
Show Figures

Figure 1

Back to TopTop