Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (283)

Search Parameters:
Keywords = androgen receptor inhibition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
39 pages, 1689 KB  
Review
Emerging Therapeutic Strategies in Prostate Cancer: Targeted Approaches Using PARP Inhibition, PSMA-Directed Therapy, and Androgen Receptor Blockade with Olaparib, Lutetium (177Lu)Vipivotide Tetraxetan, and Abiraterone
by Piotr Kawczak and Tomasz Bączek
J. Clin. Med. 2026, 15(2), 685; https://doi.org/10.3390/jcm15020685 - 14 Jan 2026
Abstract
Prostate cancer is one of the most common malignancies in men, and advanced or metastatic disease remains associated with substantial morbidity and mortality. Therapeutic progress in recent years has been driven by the introduction of targeted treatment strategies, notably poly (ADP-ribose) polymerase (PARP) [...] Read more.
Prostate cancer is one of the most common malignancies in men, and advanced or metastatic disease remains associated with substantial morbidity and mortality. Therapeutic progress in recent years has been driven by the introduction of targeted treatment strategies, notably poly (ADP-ribose) polymerase (PARP) inhibitors, prostate-specific membrane antigen (PSMA)–directed radioligand therapy (RLT), and androgen receptor pathway inhibitors (ARPIs). This review summarizes evidence from phase II and III clinical trials, meta-analyses, and real-world studies evaluating the efficacy, safety, and clinical integration of olaparib, lutetium (177Lu) vipivotide tetraxetan, and abiraterone in advanced prostate cancer. Emphasis is placed on the practical clinical application of these agents, including patient selection, treatment sequencing, and combination strategies. PARP inhibition with olaparib has demonstrated clear benefits in metastatic castration-resistant prostate cancer (mCRPC) with homologous recombination repair (HRR) mutations, particularly BRCA1/2 alterations. PSMA-directed RLT offers a survival advantage in PSMA-positive mCRPC following AR pathway inhibition, with distinct toxicity considerations that influence patient selection. Abiraterone remains a cornerstone therapy across disease stages and plays an important role both as monotherapy and as a combination partner. Emerging data suggest a potential synergy between PARP inhibitors and AR-targeted agents, while also highlighting the limitations of biomarker-unselected approaches. We conclude that the optimal use of PARP inhibitors, PSMA-targeted RLT, and ARPIs requires a personalized strategy guided by molecular profiling, functional imaging, prior treatment exposure, and safety considerations. This clinically focused overview aims to support evidence-based decision-making in an increasingly complex treatment landscape. Full article
(This article belongs to the Special Issue Treatment Strategies for Prostate Cancer: An Update)
30 pages, 711 KB  
Review
A Systematic Review on GLP-1 Receptor Agonists in Reproductive Health: Integrating IVF Data, Ovarian Physiology and Molecular Mechanisms
by Charalampos Voros, Fotios Chatzinikolaou, Ioannis Papapanagiotou, Spyridon Polykalas, Despoina Mavrogianni, Aristotelis-Marios Koulakmanidis, Diamantis Athanasiou, Vasiliki Kanaka, Kyriakos Bananis, Antonia Athanasiou, Aikaterini Athanasiou, Georgios Papadimas, Charalampos Tsimpoukelis, Dimitrios Vaitsis, Athanasios Karpouzos, Maria Anastasia Daskalaki, Nikolaos Kanakas, Marianna Theodora, Nikolaos Thomakos, Panagiotis Antsaklis, Dimitrios Loutradis and Georgios Daskalakisadd Show full author list remove Hide full author list
Int. J. Mol. Sci. 2026, 27(2), 759; https://doi.org/10.3390/ijms27020759 - 12 Jan 2026
Viewed by 135
Abstract
Women of reproductive age, especially those with polycystic ovarian syndrome (PCOS), often use glucagon-like peptide-1 receptor agonists (GLP-1RAs) to improve their metabolic functions. A growing body of evidence suggests that GLP-1R signaling may directly affect ovarian physiology, influencing granulosa cell proliferation, survival pathways, [...] Read more.
Women of reproductive age, especially those with polycystic ovarian syndrome (PCOS), often use glucagon-like peptide-1 receptor agonists (GLP-1RAs) to improve their metabolic functions. A growing body of evidence suggests that GLP-1R signaling may directly affect ovarian physiology, influencing granulosa cell proliferation, survival pathways, and steroidogenic production, in addition to its systemic metabolic effects. Nonetheless, there is a limited comprehension of the molecular mechanisms that regulate these activities and their correlation with menstrual function, reproductive potential, and assisted reproduction. This comprehensive review focuses on ovarian biology, granulosa cell signaling networks, steroidogenesis, and translational fertility outcomes, integrating clinical, in vivo, and in vitro information to elucidate the effects of GLP-1 receptor agonists on reproductive health. We conducted a thorough search of PubMed, Scopus, and Web of Science for randomized trials, prospective studies, animal models, and cellular experiments evaluating the effects of GLP-1RA on reproductive or ovarian outcomes, in accordance with PRISMA criteria. The retrieved data included metabolic changes, androgen levels, monthly regularity, ovarian structure, granulosa cell growth and death, FOXO1 signaling, FSH-cAMP-BMP pathway activity, and fertility or IVF results. Clinical trials shown that GLP-1 receptor agonists improve menstrual regularity, decrease body weight and central adiposity, increase sex hormone-binding globulin levels, and lower free testosterone in overweight and obese women with PCOS. Liraglutide, when combined with metformin, significantly improved IVF pregnancy rates, whereas exenatide increased natural conception rates. Mechanistic studies demonstrate that GLP-1R activation affects FOXO1 phosphorylation, hence promoting granulosa cell proliferation and anti-apoptotic processes. Incretin signaling altered steroidogenesis by reducing the levels of StAR, P450scc, and 3β-HSD, so inhibiting FSH-induced progesterone synthesis, while simultaneously enhancing BMP-Smad signaling. Animal studies demonstrated both beneficial (enhanced follicular growth, anti-apoptotic effects) and detrimental results (oxidative stress, granulosa cell death, uterine inflammation), indicating a context- and dose-dependent response. GLP-1 receptor agonists influence female reproductive biology by altering overall physiological processes and specifically impacting the ovaries via FOXO1 regulation, steroidogenic enzyme expression, and BMP-mediated FSH signaling. Preliminary clinical data indicate improved reproductive function in PCOS, as seen by increased pregnancy rates in both natural and IVF cycles; nevertheless, animal studies reveal a potential risk of ovarian and endometrial damage. These results highlight the need for controlled human research to clarify reproductive safety, molecular pathways, and optimum therapy timing, particularly in non-PCOS patients and IVF settings. Full article
(This article belongs to the Special Issue Molecular Research on Reproductive Physiology and Endocrinology)
Show Figures

Figure 1

17 pages, 1186 KB  
Review
Precision Medicine in Prostate Cancer with a Focus on Emerging Therapeutic Strategies
by Ryuta Watanabe, Noriyoshi Miura, Tadahiko Kikugawa and Takashi Saika
Biomedicines 2026, 14(1), 52; https://doi.org/10.3390/biomedicines14010052 - 25 Dec 2025
Viewed by 499
Abstract
Precision medicine has reshaped the clinical management of prostate cancer by integrating comprehensive genomic profiling, biomarker-driven patient stratification, and the development of molecularly targeted therapeutics. Advances in next-generation sequencing have uncovered diverse genomic alterations—including homologous recombination repair defects, MSI-H/MMRd, PTEN loss, BRCA1/BRCA2 mutations, [...] Read more.
Precision medicine has reshaped the clinical management of prostate cancer by integrating comprehensive genomic profiling, biomarker-driven patient stratification, and the development of molecularly targeted therapeutics. Advances in next-generation sequencing have uncovered diverse genomic alterations—including homologous recombination repair defects, MSI-H/MMRd, PTEN loss, BRCA1/BRCA2 mutations, ATM alterations, SPOP mutations, and molecular hallmarks of neuroendocrine differentiation—that now inform individualized treatment decisions. This review synthesizes established clinical evidence with emerging translational insights to provide an updated and forward-looking overview of precision oncology in prostate cancer. Landmark trials of PARP inhibitors and PSMA-targeted radioligand therapy have redefined treatment standards for biomarker-selected patients. Concurrently, efforts to optimize immune checkpoint inhibition, AKT pathway targeting, and rational combinations with androgen receptor pathway inhibitors continue to expand therapeutic possibilities. Rapidly evolving investigational strategies—including bipolar androgen therapy (BAT), immunotherapeutic approaches for CDK12-altered tumors, targeted interventions for SPOP-mutated cancers, and epigenetic modulation such as EZH2 inhibition for neuroendocrine prostate cancer—further illuminate mechanisms of tumor evolution, lineage plasticity, and treatment resistance. Integrating multi-omics technologies, liquid biopsy platforms, and AI-assisted imaging offers new opportunities for dynamic disease monitoring and biology-driven treatment selection. By consolidating current clinical practices with emerging experimental directions, this review provides clinicians and researchers with a comprehensive perspective on the evolving landscape of precision medicine in prostate cancer and highlights future opportunities to improve patient outcomes. Full article
Show Figures

Figure 1

19 pages, 918 KB  
Review
Exploiting Oxidative Stress as Achilles’ Heel: From Redox Homeostasis to Ferroptosis in Prostate Cancer
by Sanghyeon Yu, Jihyun Baek, Taesoo Choi and Man S. Kim
Antioxidants 2025, 14(12), 1517; https://doi.org/10.3390/antiox14121517 - 18 Dec 2025
Viewed by 516
Abstract
Prostate cancer remains a leading cause of cancer-related mortality and castration-resistant prostate cancer (CRPC) is a critical therapeutic challenge. This review establishes a conceptual framework analyzing ferroptosis vulnerability through two principles: “robustness through redundancy” in defense systems and the “evolutionary arms race” between [...] Read more.
Prostate cancer remains a leading cause of cancer-related mortality and castration-resistant prostate cancer (CRPC) is a critical therapeutic challenge. This review establishes a conceptual framework analyzing ferroptosis vulnerability through two principles: “robustness through redundancy” in defense systems and the “evolutionary arms race” between androgen receptor (AR) signaling and oxidative resistance. We traced the evolutionary trajectory of hormone-sensitive diseases, where the AR coordinates ferroptosis defenses via SLC7A11, MBOAT2, and PEX10 regulation through progressive adaptations: AR-V7 splice variants that maintain defense independently of androgens, AR amplification conferring hypersensitivity, and AR-independent JMJD6-ATF4 bypass in SPOP-mutated tumors. This transforms ferroptosis from a static vulnerability to a stage-specific strategy. Novel approaches include menadione-based VPS34 targeting, which induces triaptosis through an oxidative endosomal catastrophe. We categorized the rational combinations mechanistically as vertical inhibition (multi-step targeting of single pathways), horizontal inhibition (synthetic lethality across parallel defenses), and vulnerability induction (creating exploitable dependencies). Ferroptosis-induced immunogenic cell death enables synergy with checkpoint inhibitors, potentially transforming immunologically “cold” prostate tumors. This review establishes ferroptosis targeting as a precision medicine paradigm exploiting the tension between the oxidative requirements of cancer cells and their evolved, yet architecturally vulnerable, defense systems, providing a framework for stage-specific, biomarker-guided interventions. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

26 pages, 2757 KB  
Article
Novel Synthetic Steroid Derivatives: Target Prediction and Biological Evaluation of Antiandrogenic Activity
by David Calderón Guzmán, Norma Osnaya Brizuela, Hugo Juárez Olguín, Maribel Ortiz Herrera, Armando Valenzuela Peraza, Ernestina Hernández Garcia, Alejandra Chávez Riveros, Sarai Calderón Morales, Alberto Rojas Ochoa, Aylin Silva Ortiz, Rebeca Santes Palacios, Víctor Manuel Dorado Gonzalez and Diego García Ortega
Curr. Issues Mol. Biol. 2025, 47(12), 1059; https://doi.org/10.3390/cimb47121059 - 17 Dec 2025
Viewed by 444
Abstract
Background: Two natural steroids derived from cholesterol pathways are testosterone and progesterone, androgen and antiandrogen receptor binding. Steroid androgen antagonists can be prescribed to treat an array of diseases and disorders such as gender dysphoria. In men, androgen antagonists are frequently used to [...] Read more.
Background: Two natural steroids derived from cholesterol pathways are testosterone and progesterone, androgen and antiandrogen receptor binding. Steroid androgen antagonists can be prescribed to treat an array of diseases and disorders such as gender dysphoria. In men, androgen antagonists are frequently used to treat prostate cancer and hyperplasia. Sex hormones regulate the expression of the viral receptors in COVID-19 progression, and these hormones may act as a metabolic signal-mediating response to changes in glucose and Reactive Oxygen Species (ROS). The objective of the present study is to use artificial intelligence (AI) applications in healthcare to predict the targets and to assess biological assays of novel steroid derivatives prepared in house from the commercially available 16-dehydropregnenolone acetate (DPA®) aimed at achieving the metabolic stability of glucose and steroid brain homeostasis. This suggests the introduction of aromatic or aliphatic structures in the steroid B-ring and D-ring. This is important since the roles of 5α-reductase and ROS in brain control of glucose and novel steroids homeostasis remain unclear. Methods: A tool prediction was used as a tuned algorithm, with the novel steroid derivatives data in web interface to carry out their pharmacological evaluation. The new steroidal derivatives were determined with neuroprotection effect using the select biomarkers of oxidative stress on induced hypoglycemic male rat brain and liver. The enzyme kinetics was established by the inhibition of the 5α-reductase enzyme on the brain myelin. Results: We used novel chemical structures to order the information of a Swiss data bank that allow target predictions. Biological assays suggest that steroid derivatives with an electrophilic center can interact more efficiently with the 5α-reductase enzyme, and by this way, induce neuroprotection in hypoglycemia model. All compounds were synthesized with a yield of 30–80% and evaluated with tool target prediction to understand the molecular mechanisms underlying a given phenotype or bioactivity and to rationalize possible favorable or unfavorable side effects, as well as to predict off-targets of known molecules and to clear the way for drug repurposing. Apart, they turned out to be good inhibitors for the 5α-reductase enzyme. Conclusions: The probed efficacy of these novel steroids with respect to spironolactone control appears to be a promising compound for future hormonal therapy with neuroprotection activity in glucose disorder status. However, further research with clinically meaningful endpoints is needed to optimize the use of androgen antagonists in these hormonal therapies in COVID-19 progression. Full article
Show Figures

Figure 1

16 pages, 1635 KB  
Review
Androgen Effects on Amyloid Precursor Protein Processing Pathways in Cancer: A Systematic Review
by Mai Alhadrami, Gideon Stone, Rachel M. Barker, Jennifer C. Palmer, Patrick G. Kehoe and Claire M. Perks
Curr. Issues Mol. Biol. 2025, 47(12), 1041; https://doi.org/10.3390/cimb47121041 - 12 Dec 2025
Viewed by 379
Abstract
Androgens have been shown to be linked to cancer progression, particularly in hormone-dependent cancers such as prostate and breast cancer, but also other cancers. Amyloid precursor protein (APP), which has primarily been studied in Alzheimer’s disease, is gaining recognition for its role in [...] Read more.
Androgens have been shown to be linked to cancer progression, particularly in hormone-dependent cancers such as prostate and breast cancer, but also other cancers. Amyloid precursor protein (APP), which has primarily been studied in Alzheimer’s disease, is gaining recognition for its role in tumor growth and survival. While APP overexpression and androgen receptor (AR) signaling are each associated with cancer progression, the connection between androgens and APP processing in cancer has not been thoroughly investigated. This systematic review was conducted through a comprehensive search of PubMed, Scopus, Web of Science, and EMBASE between 2000 to 2024 for studies examining the effects of androgens on APP and its cleavage enzymes in cancer. Five experimental studies met the inclusion criteria, covering prostate and breast cancer models. Data were extracted and synthesized narratively due to heterogeneity in methods and outcomes. Three studies reported that dihydrotestosterone (DHT) or AR agonists increased the expression and nuclear translocation of ADAM10, a key α-secretase enzyme in the non-amyloidogenic APP processing pathway. Two studies identified APP as an androgen-responsive gene, showing that androgens upregulated APP expression in prostate and breast cancer cells and promoted the proliferation of cancer cells. Inhibition or knockdown of APP and ADAM10 reduced proliferation, supporting their roles in tumor progression. Androgen signaling modulates APP processing in cancer, particularly through the non-amyloidogenic pathway; however, significant knowledge gaps remain. Further studies are needed to explore the interaction between androgens and APP processing in other cancer types, as well as to elucidate downstream signaling pathways regulated at the gene expression level. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

14 pages, 2538 KB  
Article
Integrated Role of Arginine Vasotocin in the Control of Spermatogenesis in Zebrafish
by Maya Zanardini and Hamid R. Habibi
Int. J. Mol. Sci. 2025, 26(24), 11938; https://doi.org/10.3390/ijms262411938 - 11 Dec 2025
Viewed by 249
Abstract
Arginine vasotocin (AVT) has recently emerged as a local regulator of testicular function in fish. Using ex vivo culture system, it was demonstrated that AVT directly stimulates androgen-dependent basal spermatogenesis in zebrafish. In the presence of gonadotropins, AVT enhanced FSH-induced development of early [...] Read more.
Arginine vasotocin (AVT) has recently emerged as a local regulator of testicular function in fish. Using ex vivo culture system, it was demonstrated that AVT directly stimulates androgen-dependent basal spermatogenesis in zebrafish. In the presence of gonadotropins, AVT enhanced FSH-induced development of early phases of spermatogonial proliferation while blocking FSH-mediated spermiogenesis. However, AVT promoted proliferation of LH-induced pre-meiotic and meiotic germ cell populations without affecting the final stages of spermiogenesis. These findings led to the hypothesis that AVT plays a role by promoting early germ cell proliferation and differentiation while simultaneously inhibiting premature progression through spermiogenesis. To test this hypothesis, we investigated the chronic effects of AVT on adult zebrafish testes, in vivo. Prolonged AVT treatment for 21 days led to dose-dependent accumulation of undifferentiated type A spermatogonia and reduced post-meiotic germ cells and spermatozoa. We also observed decreased plasma 11-ketotestosterone (11-KT) levels and downregulation of fshr. This was accompanied by a basal suppression of avt and its receptors, avpr1aa, avpr1ab, avpr2aa, avpr2ab, avpr2l, in both brain and testis during the pre-spawning phase. The present findings, along with those of previously published studies, collectively demonstrate that AVT presence during the early stages of testicular development promotes spermatogonia proliferation while diminishing FSH-induced premature progress toward spermatogenesis. This occurs until later stages, when AVT expression is diminished, allowing for optimal LH-induced spermiogenesis in zebrafish. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Reproduction and Reproductive Diseases)
Show Figures

Figure 1

13 pages, 3727 KB  
Article
Pulsatilla Saponin D Suppresses Proliferation and Induces Apoptosis in Human Prostatic Cells
by Yuzhong Chen, Ping Zhou, Yangtao Jin, Dongyan Huang, Xin Su, Congcong Shao, Juan Jiang, Rongfu Yang and Jianhui Wu
Cells 2025, 14(21), 1706; https://doi.org/10.3390/cells14211706 - 30 Oct 2025
Viewed by 660
Abstract
The growing global aging population is contributing to an increasing burden of benign prostatic hyperplasia (BPH), highlighting the need for novel, highly effective and low-toxicity therapies. In light of its well-documented anti-inflammatory and anti-tumor properties, we investigated the potential of the natural product [...] Read more.
The growing global aging population is contributing to an increasing burden of benign prostatic hyperplasia (BPH), highlighting the need for novel, highly effective and low-toxicity therapies. In light of its well-documented anti-inflammatory and anti-tumor properties, we investigated the potential of the natural product Pulsatilla saponin D (PSD) in treating BPH. For the first time, we demonstrate that PSD significantly inhibits the proliferation of and induces apoptosis in the immortalized human normal prostatic stromal cell line, human prostate fibroblasts, and the human benign prostatic hyperplasia epithelial cell line. Mechanistic studies involving transcriptome analysis and RT-qPCR validation revealed that PSD likely exerts its effects by downregulating the expression of the androgen receptor and by modulating multiple signaling pathways synergistically, including the Phosphatidylinositol 3-kinase/Protein Kinase B, Tumor Necrosis Factor, Hypoxia-Inducible Factor-1 and Interleukin-17 pathways. Full article
Show Figures

Figure 1

20 pages, 760 KB  
Review
Genetic Insights into Acne, Androgenetic Alopecia, and Alopecia Areata: Implications for Mechanisms and Precision Dermatology
by Gustavo Torres de Souza
Cosmetics 2025, 12(5), 228; https://doi.org/10.3390/cosmetics12050228 - 15 Oct 2025
Viewed by 2812
Abstract
Chronic dermatological conditions such as acne vulgaris, androgenetic alopecia (AGA), and alopecia areata (AA) affect hundreds of millions worldwide and contribute substantially to quality-of-life impairment. Despite the availability of systemic retinoids, anti-androgens, and JAK inhibitors, therapeutic responses remain heterogeneous and relapse is common, [...] Read more.
Chronic dermatological conditions such as acne vulgaris, androgenetic alopecia (AGA), and alopecia areata (AA) affect hundreds of millions worldwide and contribute substantially to quality-of-life impairment. Despite the availability of systemic retinoids, anti-androgens, and JAK inhibitors, therapeutic responses remain heterogeneous and relapse is common, underscoring the need for biologically grounded stratification. Over the past decade, large genome-wide association studies and functional analyses have clarified disease-specific and cross-cutting mechanisms. In AA, multiple independent HLA class II signals and immune-regulatory loci such as BCL2L11 and LRRC32 establish antigen presentation and interferon-γ/JAK–STAT signalling as central drivers, consistent with clinical responses to JAK inhibition. AGA is driven by variation at the androgen receptor and 5-α-reductase genes alongside WNT/TGF-β regulators (WNT10A, LGR4, RSPO2, DKK2), explaining follicular miniaturisation and enabling polygenic risk prediction. Acne genetics highlight an immune–morphogenesis–lipid triad, with loci in TGFB2, WNT10A, LGR6, FASN, and FADS2 linking follicle repair, innate sensing, and sebocyte lipid metabolism. Barrier modulators such as FLG and OVOL1, first described in atopic dermatitis, further shape inflammatory thresholds across acne and related phenotypes. Together, these findings position genetics not as an abstract catalogue of risk alleles but as a map of tractable biological pathways. They provide the substrate for patient-stratified interventions ranging from JAK inhibitors in AA, to endocrine versus morphogenesis-targeted strategies in AGA, to lipid- and barrier-directed therapies in acne, while also informing cosmetic practices focused on barrier repair, sebaceous balance, and follicle health. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Figure 1

13 pages, 2684 KB  
Article
MicroRNA-379 Modulates Prostate-Specific Antigen Expression Through Targeting the Androgen Receptor in Prostate Cancer
by James R. Cassidy, Margareta Persson, Gjendine Voss, Kira Rosenkilde Underbjerg, Tina Catela Ivkovic, Anders Bjartell, Anders Edsjö, Hans Lilja and Yvonne Ceder
Cancers 2025, 17(19), 3245; https://doi.org/10.3390/cancers17193245 - 7 Oct 2025
Viewed by 714
Abstract
Background: MicroRNA-379 (miR-379) has been reported to play a tumour-suppressing role in several cancer types. Our previous work demonstrated that miR-379 overexpression attenuates the metastatic spread of prostate cancer (PCa) both in vitro and in vivo. However, the underlying mechanisms remain poorly understood. [...] Read more.
Background: MicroRNA-379 (miR-379) has been reported to play a tumour-suppressing role in several cancer types. Our previous work demonstrated that miR-379 overexpression attenuates the metastatic spread of prostate cancer (PCa) both in vitro and in vivo. However, the underlying mechanisms remain poorly understood. Methods: To elucidate the mechanisms by which miR-379 affects metastases, we performed a cytokine array to identify secreted proteins modulated by miR-379 dysregulation in a bone microenvironment model. We then assessed the levels of the key candidate, and performed functional studies, including reporter assays, of the transcriptional regulation. Results: Prostate-specific antigen (PSA)—the clinically widely used blood biomarker for PCa—emerged as the most significantly affected secreted protein. We observed that PSA secretion increased following miR-379 inhibition and decreased with miR-379 overexpression, with parallel changes in intracellular PSA levels. However, our data suggests that miR-379 does not directly regulate PSA expression. Instead, miR-379 appears to downregulate androgen receptor (AR) expression by targeting its 3′-untranslated region (3′-UTR), thereby indirectly reducing PSA transcription through diminished AR-mediated promoter activation. Supporting this indirect mechanism, analysis of clinical samples from prostate cancer patients revealed an inverse correlation between expression of miR-379 in prostatic tissue and serum PSA levels. Furthermore, reduced miR-379 expression was associated with increased levels of AR immunostaining in malignant tissues. Conclusions: Taken together, these findings suggest that miR-379 negatively regulates PSA secretion indirectly via suppression of AR, and that the interplay between miR-379, AR, and PSA may contribute to the metastatic progression of PCa to bone. Full article
Show Figures

Figure 1

19 pages, 7006 KB  
Article
Dynamic Reprogramming of Immune-Related Signaling During Progression to Enzalutamide Resistance in Prostate Cancer
by Pengfei Xu, Huan Qu, Joy C. Yang, Fan Wei, Junwei Zhao, Menghuan Tang, Leyi Wang, Christopher Nip, Henson Li, Allen C. Gao, Kit Lam, Marc Dall'Era, Yuanpei Li and Chengfei Liu
Cancers 2025, 17(19), 3187; https://doi.org/10.3390/cancers17193187 - 30 Sep 2025
Viewed by 1036
Abstract
Background: Treatment with androgen receptor (AR) signaling inhibitors, such as enzalutamide, can induce neural lineage plasticity in prostate cancer, potentially progressing to t-NEPC. However, the molecular mechanisms underlying this enzalutamide-driven plasticity, particularly the contribution of immune signaling pathways, remain poorly understood. Methods: We [...] Read more.
Background: Treatment with androgen receptor (AR) signaling inhibitors, such as enzalutamide, can induce neural lineage plasticity in prostate cancer, potentially progressing to t-NEPC. However, the molecular mechanisms underlying this enzalutamide-driven plasticity, particularly the contribution of immune signaling pathways, remain poorly understood. Methods: We analyzed transcriptomic profiles of patient samples and prostate cancer cell lines to investigate changes in immune signaling pathways. Interferon gamma (IFNγ), interferon alpha (IFNα), and interleukin 6 (IL6)-Janus kinase (JAK)-signal transducer and activator of transcription 3 (STAT3) signaling were assessed in enzalutamide-sensitive and -resistant prostate cancer cells. Functional assays were conducted to examine cell responsiveness to cytokine stimulation and susceptibility to STAT1 inhibition using fludarabine. Results: Immune-related pathways, including IFNγ, IFNα, IL6-JAK-STAT3, and inflammatory responses, were significantly suppressed in NEPC patient samples compared to those with castration-resistant prostate cancer (CRPC). Enzalutamide-resistant and NEPC cells exhibited markedly impaired IFNγ and IL6 signaling. In contrast, early-stage enzalutamide treatment paradoxically enhanced IFNγ and IL6 responsiveness. Transcriptomic profiling revealed coordinated upregulation of E2F target genes and activation of IFNα/IFNγ and JAK/STAT signaling pathways during early treatment. Importantly, these early-stage cells remained highly sensitive to IFNγ and IL6 stimulation and showed increased susceptibility to STAT1 inhibition by fludarabine, a sensitivity that was lost in resistant cells. Conclusions: Early enzalutamide treatment enhances immune responsiveness, while the development of resistance is associated with suppressed immune signaling and increased lineage plasticity. These results suggest a therapeutic window where combining enzalutamide with STAT inhibitors may delay or prevent lineage plasticity and resistance. Full article
Show Figures

Figure 1

22 pages, 1549 KB  
Review
Natural Products Targeting the Androgen Receptor Signaling Pathway: Therapeutic Potential and Mechanisms
by Sitong Wu, Esveidy Isabel Oceguera Nava, Dennis Ashong, Guanglin Chen and Qiao-Hong Chen
Curr. Issues Mol. Biol. 2025, 47(9), 780; https://doi.org/10.3390/cimb47090780 - 19 Sep 2025
Viewed by 4905
Abstract
The androgen receptor (AR) signaling pathway is the primary driver of prostate cancer initiation and progression, including the development of castration-resistant prostate cancer (CRPC). Because current AR-targeted therapies inevitably encounter drug resistance, novel strategies to suppress AR signaling are urgently needed. Natural products [...] Read more.
The androgen receptor (AR) signaling pathway is the primary driver of prostate cancer initiation and progression, including the development of castration-resistant prostate cancer (CRPC). Because current AR-targeted therapies inevitably encounter drug resistance, novel strategies to suppress AR signaling are urgently needed. Natural products represent a rich and structurally diverse source of bioactive compounds capable of targeting AR at multiple regulatory levels. This review overviews the interactions between natural products and the AR signaling axis through distinct mechanisms, including inhibition of testosterone production and 5α-reductase activity, direct antagonism of AR, and induction of AR degradation. In addition, several compounds disrupt AR nuclear translocation, downregulate AR splice variants, or suppress AR signaling indirectly through epigenetic regulation, microRNA modulation, or interference with co-regulator networks. Preclinical studies provide compelling evidence that these agents can effectively interrupt AR signaling, thereby suppressing prostate cancer growth. However, challenges remain, particularly the limited pharmacokinetic characterization, lack of in vivo validation, and scarcity of clinical studies. Future research should focus on improving bioavailability, exploring synergistic combinations with existing therapies, and advancing well-designed in vivo and clinical investigations. Collectively, these efforts may establish natural products as lead compounds to modulate AR signaling for prostate cancer prevention and treatment. Full article
Show Figures

Figure 1

22 pages, 1950 KB  
Review
Reprogrammed Lipid Metabolism-Associated Therapeutic Vulnerabilities in Prostate Cancer
by Prashanth Parupathi, Lakshmi Sirisha Devarakonda, Ekniel Francois, Mehak Amjed and Avinash Kumar
Int. J. Mol. Sci. 2025, 26(18), 9132; https://doi.org/10.3390/ijms26189132 - 18 Sep 2025
Cited by 1 | Viewed by 2870
Abstract
Prostate cancer (PCa), the second leading cause of cancer-related mortality among men in the United States, is marked by profound metabolic reprogramming, particularly in lipid metabolism. This review highlights the pivotal role of altered lipid metabolic pathways, including de novo fatty acid synthesis, [...] Read more.
Prostate cancer (PCa), the second leading cause of cancer-related mortality among men in the United States, is marked by profound metabolic reprogramming, particularly in lipid metabolism. This review highlights the pivotal role of altered lipid metabolic pathways, including de novo fatty acid synthesis, fatty acid uptake and transport, β-oxidation, and cholesterol metabolism, in the development, progression, and therapeutic resistance of PCa. Key enzymes and transcription factors, such as FASN, ACLY, SREBPs, and FABPs, which are mainly regulated by androgen receptor signaling, orchestrate a lipogenic phenotype that supports prostate tumor growth and survival. Crosstalk between lipid metabolism and the tumor microenvironment further promotes immune evasion and metastasis. The review also explores therapeutic opportunities in targeting lipid metabolic pathways, highlighting the preclinical and clinical advances in inhibiting FASN, SREBP1, SREBP2, HMGCR, and FABPs, as well as combinatorial strategies with conventional therapies. Understanding the impact of lipid metabolism on PCa pathogenesis provides a promising avenue for developing novel targeted and combinatorial interventions to improve clinical outcomes in PCa. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

20 pages, 2748 KB  
Article
CYR61 Expression Is Induced by IGF1 and Promotes the Proliferation of Prostate Cancer Cells Through the PI3/AKT Signaling Pathway
by Greisha L. Ortiz-Hernández, Carmina Patrick, Stefan Hinz, Mark A. LaBarge, Yun R. Li and Susan L. Neuhausen
Int. J. Mol. Sci. 2025, 26(18), 8991; https://doi.org/10.3390/ijms26188991 - 15 Sep 2025
Viewed by 1022
Abstract
Cysteine-rich angiogenic inducer 61 (CYR61) promotes prostate cancer (PCa) cell growth, but its role in disease progression remains unclear. Given its insulin-like growth factor (IGF)-binding domain and the known involvement of insulin-like growth factor-1 (IGF1) in PCa, we investigated the molecular interplay between [...] Read more.
Cysteine-rich angiogenic inducer 61 (CYR61) promotes prostate cancer (PCa) cell growth, but its role in disease progression remains unclear. Given its insulin-like growth factor (IGF)-binding domain and the known involvement of insulin-like growth factor-1 (IGF1) in PCa, we investigated the molecular interplay between CYR61 and IGF1. CYR61 was silenced using small interfering RNA (siRNA) in prostate carcinoma 3 (PC3), lymph node carcinoma of the prostate (LNCaP), and androgen receptor (AR)-positive 22Rv1 cells, followed by assessments of their proliferation, viability, colony formation, migration, and signaling pathway activation. CYR61 knockdown significantly reduced cell growth, viability, prostasphere formation, and migration across all three cell lines. Mechanistically, CYR61 silencing inhibited PI3K/AKT signaling but had no effect on MAPK activation. In addition, treatment with recombinant IGF1 induced CYR61 expression in a time-dependent manner, and the inhibition of PI3K/AKT signaling suppressed both CYR61 expression and cell proliferation. These findings suggest that IGF1 promotes PCa progression through CYR61 and that CYR61 may serve as a potential therapeutic target for limiting tumor growth and metastasis. Full article
(This article belongs to the Special Issue Molecular Research on Prostate Cancer)
Show Figures

Figure 1

18 pages, 4146 KB  
Article
Paeonol Ameliorates Benign Prostatic Hyperplasia via Suppressing Proliferation and NF-κB—In Silico and Experimental Studies
by Han-Young Lee, Min-Seong Lee and Byung-Cheol Lee
Pharmaceuticals 2025, 18(9), 1322; https://doi.org/10.3390/ph18091322 - 3 Sep 2025
Viewed by 1418
Abstract
Background/Objectives: Benign prostatic hyperplasia (BPH) is a prevalent urological disorder in aging men, characterized by the enlargement of prostate epithelial and stromal cells, which leads to lower urinary tract symptoms. Paeonol, a bioactive compound derived from Moutan Cortex (Paeonia suffruticosa), exhibits [...] Read more.
Background/Objectives: Benign prostatic hyperplasia (BPH) is a prevalent urological disorder in aging men, characterized by the enlargement of prostate epithelial and stromal cells, which leads to lower urinary tract symptoms. Paeonol, a bioactive compound derived from Moutan Cortex (Paeonia suffruticosa), exhibits multiple pharmacological properties; however, its therapeutic potential in BPH remains unclear. This study aimed to elucidate the mechanisms of paeonol in BPH treatment using network pharmacology and in vivo experiments. Methods: Network pharmacology and molecular docking were conducted to identify potential targets of paeonol against BPH. For the in vivo study, testosterone-induced BPH rat models were employed, and efficacy was evaluated through prostate weight assessment, histological examination, and the quantitative real-time polymerase chain reaction (qRT-PCR) analysis of prostate tissues. Results: In silico analysis revealed key signaling pathways involved in apoptosis, proliferation, phosphatidylinositol 3-kinase (PI3K)–protein kinase B (Akt), and inflammation. Paeonol administration significantly reduced prostate weight, volume, and histological hyperplasia in BPH rats. qRT-PCR analysis demonstrated that paeonol may suppress dihydrotestosterone production by inhibiting 5α-reductase 2 (5AR2) and the androgen receptor (AR), while also downregulating local growth factors, alpha serine/threonine-protein kinase (Akt1), nuclear factor-κB (NF-κB), and glutathione reductase (GR) expression. Conclusions: These findings provide novel insights into the multitargeted therapeutic potential of paeonol in BPH by inhibiting 5AR and AR and suppressing proliferation via NF-κB and Akt pathway modulation. Full article
(This article belongs to the Special Issue Pharmacotherapy of Diseases Affecting Urinary Tract)
Show Figures

Graphical abstract

Back to TopTop