cimb-logo

Journal Browser

Journal Browser

Novel Pharmacological Strategies and Molecular Mechanisms in Nonclinical Research

A special issue of Current Issues in Molecular Biology (ISSN 1467-3045). This special issue belongs to the section "Molecular Pharmacology".

Deadline for manuscript submissions: closed (30 November 2025) | Viewed by 1110

Special Issue Editor


E-Mail Website
Guest Editor
1. Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
2. H&TRC—Health and Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal
Interests: pharmacology; pharmacotherapy; non-clinical studies in vivo; animal models of disease; inflammation; inflammatory bowel disease

Special Issue Information

Dear Colleagues,

The Special Issue "Novel Pharmacological Strategies and Molecular Mechanisms in Nonclinical Research" aims to explore innovative advances in pharmacology, focusing on the molecular underpinnings that drive drug efficacy and safety in nonclinical models. As the complexity of disease biology becomes increasingly evident, the development of targeted pharmacological interventions requires an in-depth understanding of their molecular and cellular pathways. This Special Issue seeks to gather original research and systematic reviews on novel drug targets, signalling cascades, receptor–drug interactions, gene expression modulation, and molecular biomarkers predictive of therapeutic response.

Particular emphasis will be placed on studies employing in vivo models to uncover mechanistic insights into drug action. Contributions may also include innovative drug delivery approaches, pharmacological structure–activity relationships, and pharmacogenomic strategies. By bridging molecular mechanisms with pharmacological innovation, this Special Issue aims to provide a comprehensive overview of how molecular-level research can be integrated with preclinical development to guide the rational design of next-generation therapeutics, enhancing their translational potential.

Researchers from pharmacology, molecular biology, and related disciplines are invited to contribute to this Special Issue,  which aims to promote interdisciplinary dialogue and accelerate the bench-to-bedside transition of novel pharmacological strategies.

Dr. Vanessa Mateus
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Current Issues in Molecular Biology is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • molecular pharmacology
  • drug targets
  • signal transduction pathways
  • nonclinical models
  • receptor-ligand interactions
  • pharmacogenomics
  • preclinical drug development
  • gene expression modulation
  • mechanism of action
  • translational pharmacology

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

26 pages, 2757 KB  
Article
Novel Synthetic Steroid Derivatives: Target Prediction and Biological Evaluation of Antiandrogenic Activity
by David Calderón Guzmán, Norma Osnaya Brizuela, Hugo Juárez Olguín, Maribel Ortiz Herrera, Armando Valenzuela Peraza, Ernestina Hernández Garcia, Alejandra Chávez Riveros, Sarai Calderón Morales, Alberto Rojas Ochoa, Aylin Silva Ortiz, Rebeca Santes Palacios, Víctor Manuel Dorado Gonzalez and Diego García Ortega
Curr. Issues Mol. Biol. 2025, 47(12), 1059; https://doi.org/10.3390/cimb47121059 - 17 Dec 2025
Abstract
Background: Two natural steroids derived from cholesterol pathways are testosterone and progesterone, androgen and antiandrogen receptor binding. Steroid androgen antagonists can be prescribed to treat an array of diseases and disorders such as gender dysphoria. In men, androgen antagonists are frequently used to [...] Read more.
Background: Two natural steroids derived from cholesterol pathways are testosterone and progesterone, androgen and antiandrogen receptor binding. Steroid androgen antagonists can be prescribed to treat an array of diseases and disorders such as gender dysphoria. In men, androgen antagonists are frequently used to treat prostate cancer and hyperplasia. Sex hormones regulate the expression of the viral receptors in COVID-19 progression, and these hormones may act as a metabolic signal-mediating response to changes in glucose and Reactive Oxygen Species (ROS). The objective of the present study is to use artificial intelligence (AI) applications in healthcare to predict the targets and to assess biological assays of novel steroid derivatives prepared in house from the commercially available 16-dehydropregnenolone acetate (DPA®) aimed at achieving the metabolic stability of glucose and steroid brain homeostasis. This suggests the introduction of aromatic or aliphatic structures in the steroid B-ring and D-ring. This is important since the roles of 5α-reductase and ROS in brain control of glucose and novel steroids homeostasis remain unclear. Methods: A tool prediction was used as a tuned algorithm, with the novel steroid derivatives data in web interface to carry out their pharmacological evaluation. The new steroidal derivatives were determined with neuroprotection effect using the select biomarkers of oxidative stress on induced hypoglycemic male rat brain and liver. The enzyme kinetics was established by the inhibition of the 5α-reductase enzyme on the brain myelin. Results: We used novel chemical structures to order the information of a Swiss data bank that allow target predictions. Biological assays suggest that steroid derivatives with an electrophilic center can interact more efficiently with the 5α-reductase enzyme, and by this way, induce neuroprotection in hypoglycemia model. All compounds were synthesized with a yield of 30–80% and evaluated with tool target prediction to understand the molecular mechanisms underlying a given phenotype or bioactivity and to rationalize possible favorable or unfavorable side effects, as well as to predict off-targets of known molecules and to clear the way for drug repurposing. Apart, they turned out to be good inhibitors for the 5α-reductase enzyme. Conclusions: The probed efficacy of these novel steroids with respect to spironolactone control appears to be a promising compound for future hormonal therapy with neuroprotection activity in glucose disorder status. However, further research with clinically meaningful endpoints is needed to optimize the use of androgen antagonists in these hormonal therapies in COVID-19 progression. Full article
Show Figures

Figure 1

16 pages, 2282 KB  
Article
Activation of Angiogenic TGF-β1 by Salbutamol Enhances Wound Contraction and Improves Healing in a Streptozotocin-Induced Diabetic Rat Model
by Promise M. Emeka, Abdulaziz K. Al Mouslem, Hussien Almutawa, Malek Albandri, Hussain Alhmoud, Mohammed Alhelal, Zakaria Alhassan and Abdullah Alhamar
Curr. Issues Mol. Biol. 2025, 47(10), 820; https://doi.org/10.3390/cimb47100820 - 3 Oct 2025
Viewed by 877
Abstract
Wound healing is impaired under diabetic conditions due to reduced angiogenesis, thereby increasing the risk of wound-healing complications. Studies have shown that inhibition of α- and β-adrenoceptors delays wound healing. This study investigates the effects of topical salbutamol (TS) on STZ-induced diabetic wound [...] Read more.
Wound healing is impaired under diabetic conditions due to reduced angiogenesis, thereby increasing the risk of wound-healing complications. Studies have shown that inhibition of α- and β-adrenoceptors delays wound healing. This study investigates the effects of topical salbutamol (TS) on STZ-induced diabetic wound healing in rats. The rats were divided into two initial groups: non-diabetic and diabetic. Diabetes mellitus was induced in the second group with STZ (65 mg/kg). Excision wounds were inflicted on the dorsal thoracic region, 1–1.5 cm away from the vertebral column on either side, following anesthesia on all groups. Group 2 was subdivided into untreated diabetic wounds, low-dose-TS-treated diabetic wounds (6.25 mg/mL), medium-dose-TS-treated diabetic wounds (12.5 mg/mL), and high-dose-TS-treated diabetic wounds (25 mg/mL), and were monitored for 14 days. Percentage wound contraction and the time required for complete wound closure were observed and recorded. In addition, oxidative stress and inflammatory markers such as NO, CRP, MPO, TGF-β1, TNF-α, IL-6, IL-1β, NO, and hexosamine were estimated in wound exudates and tissue over 14 days. TS treatment resulted in 100% wound contraction in all treated wounds within 14 days compared to untreated non-diabetic and diabetic wounds. Increased NO, TGF-β1, and hexosamine activity was observed in TS-treated wounds when compared to untreated diabetic wounds. In addition, TS treatment decreased the activity of IL-1β, TNF-α, IL-6, CRP, and MPO, all of which were elevated in the untreated diabetic wounds. The current study shows that the application of TS significantly improved diabetic wound contraction and aided the healing process. Angiogenic markers, such as TGF-β1 and NO, were prominently increased, supporting the role of sympathetic nerve stimulation in angiogenesis. Full article
Show Figures

Figure 1

Back to TopTop