Androgen Effects on Amyloid Precursor Protein Processing Pathways in Cancer: A Systematic Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Search Criteria
2.3. Study Selection and Data Extraction
2.4. Assessment of Risk of Bias
2.5. Data Synthesis
3. Results
3.1. Study Selection
3.2. The Risk of Bias
3.3. Narrative Synthesis
3.3.1. Amyloid Precursor Protein (APP)
3.3.2. Zinc-Metalloproteases (ADAM10)
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| Aβ | Amyloid-beta |
| AD | Alzheimer’s disease |
| ADAM10 | Zinc-Metalloproteases |
| APP | Amyloid precursor protein |
| AR | Androgen receptor |
| BPH | Benign prostate hypertrophy |
| DHT | 5α-dihydrotestosterone |
| ER | Estrogen-receptor |
| PC | Prostate cancer |
| PSA | Prostate-specific antigen |
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Liu, X.H.; Jiang, H. The global, regional, and national prostate cancer burden and trends from 1990 to 2021, results from the global burden of disease study 2021. Front. Public Health 2025, 13, 1553747. [Google Scholar] [CrossRef] [PubMed]
- Sha, R.; Kong, X.M.; Li, X.Y.; Wang, Y.B. Global Burden of Breast Cancer and Attributable Risk Factors in 204 Countries and Territories, from 1990 to 2021: Results from the Global Burden of Disease Study 2021. Biomark. Res. 2024, 12, 87, Erratum in Biomark. Res. 2025, 13, 9. https://doi.org/10.1186/s40364-025-00729-7. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Chung, Y.M.; Sergeeva, O.; Kepe, V.; Berk, M.; Li, J.; Ko, H.K.; Li, Z.; Petro, M.; Di Filippo, F.P.; et al. Loss of dihydrotestosterone-inactivation activity promotes prostate cancer castration resistance detectable by functional imaging. J. Biol. Chem. 2018, 293, 17829–17837. [Google Scholar] [CrossRef] [PubMed]
- Ho, Y.; Li, Z.L.; Shih, Y.J.; Chen, Y.R.; Wang, K.; Whang-Peng, J.; Lin, H.Y.; Davis, P.J. Integrin αvβ3 in the Mediating Effects of Dihydrotestosterone and Resveratrol on Breast Cancer Cell Proliferation. Int. J. Mol. Sci. 2020, 21, 2906. [Google Scholar] [CrossRef]
- Tan, M.H.E.; Li, J.; Xu, H.E.; Melcher, K.; Yong, E.-L. Androgen receptor: Structure, role in prostate cancer and drug discovery. Acta Pharmacol. Sin. 2015, 36, 3–23. [Google Scholar] [CrossRef]
- Tindall, D.J.; Rittmaster, R.S. The Rationale for Inhibiting 5α-Reductase Isoenzymes in the Prevention and Treatment of Prostate Cancer. J. Urol. 2008, 179, 1235–1242, Correction in J. Urol. 2008, 179, 2490. https://doi.org/10.1016/j.juro.2008.04.037. [Google Scholar] [CrossRef]
- Ehsani, M.; David, F.O.; Baniahmad, A. Androgen Receptor-Dependent Mechanisms Mediating Drug Resistance in Prostate Cancer. Cancers 2021, 13, 1534. [Google Scholar] [CrossRef]
- Comstock, C.E.S.; Augello, M.A.; Schiewer, M.J.; Karch, J.; Burd, C.J.; Ertel, A.; Knudsen, E.S.; Jessen, W.J.; Aronow, B.J.; Knudsen, K.E. Cyclin D1 is a selective modifier of androgen-dependent signaling and androgen receptor function. J. Biol. Chem. 2011, 286, 8117–8127. [Google Scholar] [CrossRef]
- Liao, X.; Tang, S.; Thrasher, J.B.; Griebling, T.L.; Li, B. Small-interfering RNA-induced androgen receptor silencing leads to apoptotic cell death in prostate cancer. Mol. Cancer Ther. 2005, 4, 505–515. [Google Scholar] [CrossRef]
- Lin, H.-K.; Yeh, S.; Kang, H.-Y.; Chang, C. Akt suppresses androgen-induced apoptosis by phosphorylating and inhibiting androgen receptor. Proc. Natl. Acad. Sci. USA 2001, 98, 7200–7205. [Google Scholar] [CrossRef]
- Bleach, R.; McIlroy, M. The Divergent Function of Androgen Receptor in Breast Cancer; Analysis of Steroid Mediators and Tumor Intracrinology. Front. Endocrinol. 2018, 9, 594. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Huang, W.; Bai, X.; Wang, H.; Wang, X.; Xiao, H.; Li, Y. Androgen dihydrotestosterone promotes bladder cancer cell proliferation and invasion via EPPK1-mediated MAPK/JUP signalling. Cell Death Dis. 2023, 14, 363. [Google Scholar] [CrossRef] [PubMed]
- Kashiwagi, E.; Ide, H.; Inoue, S.; Kawahara, T.; Zheng, Y.; Reis, L.O.; Baras, A.S.; Miyamoto, H. Androgen receptor activity modulates responses to cisplatin treatment in bladder cancer. Oncotarget 2016, 7, 49169. [Google Scholar] [CrossRef] [PubMed]
- Chan, Y.X.; Alfonso, H.; Chubb, S.A.; Handelsman, D.J.; Fegan, P.G.; Hankey, G.J.; Golledge, J.; Flicker, L.; Yeap, B.B. Higher Dihydrotestosterone Is Associated with the Incidence of Lung Cancer in Older Men. Horm. Cancer 2017, 8, 119–126. [Google Scholar] [CrossRef]
- Lee, H.N.; Jeong, M.S.; Jang, S.B. Molecular Characteristics of Amyloid Precursor Protein (APP) and Its Effects in Cancer. Int. J. Mol. Sci. 2021, 22, 4999. [Google Scholar] [CrossRef]
- Thinakaran, G.; Koo, E.H. Amyloid precursor protein trafficking, processing, and function. J. Biol. Chem. 2008, 283, 29615–29619. [Google Scholar] [CrossRef]
- Dawkins, E.; Small, D.H. Insights into the physiological function of the β-amyloid precursor protein: Beyond Alzheimer’s disease. J. Neurochem. 2014, 129, 756–769. [Google Scholar] [CrossRef]
- Pandey, P.; Sliker, B.; Peters, H.L.; Tuli, A.; Herskovitz, J.; Smits, K.; Purohit, A.; Singh, R.K.; Dong, J.; Batra, S.K.; et al. Amyloid precursor protein and amyloid precursor-like protein 2 in cancer. Oncotarget 2016, 7, 19430–19444. [Google Scholar] [CrossRef]
- Hoffmann, J.; Twiesselmann, C.; Kummer, M.P.; Romagnoli, P.; Herzog, V. A possible role for the Alzheimer amyloid precursor protein in the regulation of epidermal basal cell proliferation. Eur. J. Cell Biol. 2000, 79, 905–914. [Google Scholar] [CrossRef]
- Tsang, J.Y.S.; Lee, M.A.; Chan, T.H.; Li, J.; Ni, Y.B.; Shao, Y.; Chan, S.K.; Cheungc, S.Y.; Lau, K.F.; Tse, G.M.K. Proteolytic cleavage of amyloid precursor protein by ADAM10 mediates proliferation and migration in breast cancer. eBioMedicine 2018, 38, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Pavliukeviciene, B.; Zentelyte, A.; Jankunec, M.; Valiuliene, G.; Talaikis, M.; Navakauskiene, R.; Niaura, G.; Valincius, G. Amyloid β oligomers inhibit growth of human cancer cells. PLoS ONE 2019, 14, e0221563. [Google Scholar] [CrossRef] [PubMed]
- Zayas-Santiago, A.; Martínez-Montemayor, M.M.; Colón-Vázquez, J.; Ortiz-Soto, G.; Cirino-Simonet, J.G.; Inyushin, M. Accumulation of amyloid beta (Aβ) and amyloid precursor protein (APP) in tumors formed by a mouse xenograft model of inflammatory breast cancer. FEBS Open Bio 2022, 12, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Jin, W.S.; Bu, X.L.; Liu, Y.H.; Shen, L.L.; Zhuang, Z.Q.; Jiao, S.S.; Zhu, C.; Wang, Q.H.; Zhou, H.D.; Zhang, T.; et al. Plasma Amyloid-Beta Levels in Patients with Different Types of Cancer. Neurotox. Res. 2017, 31, 283–288. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. BMJ 2009, 339, b2700. [Google Scholar] [CrossRef]
- McCulloch, D.R.; Harvey, M.; Herington, A.C. The expression of the ADAMs proteases in prostate cancer cell lines and their regulation by dihydrotestosterone. Mol. Cell. Endocrinol. 2000, 167, 11–21. [Google Scholar] [CrossRef]
- McCulloch, D.R.; Akl, P.; Samaratunga, H.; Herington, A.C.; Odorico, D.M. Expression of the disintegrin metalloprotease, ADAM-10, in prostate cancer and its regulation by dihydrotestosterone, insulin-like growth factor I, and epidermal growth factor in the prostate cancer cell model LNCaP. Clin. Cancer Res. 2004, 10, 314–323. [Google Scholar] [CrossRef]
- Arima, T.; Enokida, H.; Kubo, H.; Kagara, I.; Matsuda, R.; Toki, K.; Nishimura, H.; Chiyomaru, T.; Tatarano, S.; Idesako, T. Nuclear translocation of ADAM-10 contributes to the pathogenesis and progression of human prostate cancer. Cancer Sci. 2007, 98, 1720–1726. [Google Scholar] [CrossRef]
- Takayama, K.-I.; Tsutsumi, S.; Suzuki, T.; Horie-Inoue, K.; Ikeda, K.; Kaneshiro, K.; Fujimura, T.; Kumagai, J.; Urano, T.; Sakaki, Y. Amyloid precursor protein is a primary androgen target gene that promotes prostate cancer growth. Cancer Res. 2009, 69, 137–142. [Google Scholar] [CrossRef]
- Takagi, K.; Ito, S.; Miyazaki, T.; Miki, Y.; Shibahara, Y.; Ishida, T.; Watanabe, M.; Inoue, S.; Sasano, H.; Suzuki, T. Amyloid precursor protein in human breast cancer: An androgen-induced gene associated with cell proliferation. Cancer Sci. 2013, 104, 1532–1538. [Google Scholar] [CrossRef]
- Banerjee, P.P.; Banerjee, S.; Brown, T.R.; Zirkin, B.R. Androgen action in prostate function and disease. Am. J. Clin. Exp. Urol. 2018, 6, 62–77. [Google Scholar] [PubMed]
- Russo, G.; Mischi, M.; Scheepens, W.; De la Rosette, J.J.; Wijkstra, H. Angiogenesis in prostate cancer: Onset, progression and imaging. BJU Int. 2012, 110, E794–E808. [Google Scholar] [CrossRef]
- Swerdloff, R.S.; Dudley, R.E.; Page, S.T.; Wang, C.; Salameh, W.A. Dihydrotestosterone: Biochemistry, Physiology, and Clinical Implications of Elevated Blood Levels. Endocr. Rev. 2017, 38, 220–254. [Google Scholar] [CrossRef] [PubMed]
- Tran, C.; Ouk, S.; Clegg, N.J.; Chen, Y.; Watson, P.A.; Arora, V.; Wongvipat, J.; Smith-Jones, P.M.; Yoo, D.; Kwon, A.; et al. Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science 2009, 324, 787–790. [Google Scholar] [CrossRef] [PubMed]
- McLeod, D.G. Antiandrogenic drugs. Cancer 1993, 71, 1046–1049. [Google Scholar] [CrossRef]
- Liu, H.-L.; Zhong, H.-Y.; Song, T.-Q.; Li, J.-Z. A Molecular Modeling Study of the Hydroxyflutamide Resistance Mechanism Induced by Androgen Receptor Mutations. Int. J. Mol. Sci. 2017, 18, 1823. [Google Scholar] [CrossRef]
- Hussain, M.; Fizazi, K.; Saad, F.; Rathenborg, P.; Shore, N.; Ferreira, U.; Ivashchenko, P.; Demirhan, E.; Modelska, K.; Phung, D.; et al. Enzalutamide in Men with Nonmetastatic, Castration-Resistant Prostate Cancer. N. Engl. J. Med. 2018, 378, 2465–2474. [Google Scholar] [CrossRef]
- Smith, M.R.; Saad, F.; Chowdhury, S.; Oudard, S.; Hadaschik, B.A.; Graff, J.N.; Olmos, D.; Mainwaring, P.N.; Lee, J.Y.; Uemura, H.; et al. Apalutamide Treatment and Metastasis-free Survival in Prostate Cancer. N. Engl. J. Med. 2018, 378, 1408–1418. [Google Scholar] [CrossRef]
- Carson, C., III; Rittmaster, R. The role of dihydrotestosterone in benign prostatic hyperplasia. Urology 2003, 61, 2–7. [Google Scholar] [CrossRef]
- Soulitzis, N.; Karyotis, I.; Delakas, D.; Spandidos, D.A. Expression analysis of peptide growth factors VEGF, FGF2, TGFB1, EGF and IGF1 in prostate cancer and benign prostatic hyperplasia. Int. J. Oncol. 2006, 29, 305–314. [Google Scholar] [CrossRef]
- Tang, C.-E.; Guan, Y.-J.; Yi, B.; Li, X.-H.; Liang, K.; Zou, H.-Y.; Yi, H.; Li, M.-Y.; Zhang, P.-F.; Li, C.; et al. Identification of the Amyloid β-Protein Precursor and Cystatin C as Novel Epidermal Growth Factor Receptor Regulated Secretory Proteins in Nasopharyngeal Carcinoma by Proteomics. J. Proteome Res. 2010, 9, 6101–6111. [Google Scholar] [CrossRef] [PubMed]
- Adlerz, L.; Holback, S.; Multhaup, G.; Iverfeldt, K. IGF-1-induced processing of the amyloid precursor protein family is mediated by different signaling pathways. J. Biol. Chem. 2007, 282, 10203–10209. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, K.T.; Adlerz, L.; Multhaup, G.; Iverfeldt, K. Insulin-like growth factor-1 (IGF-1)-induced processing of amyloid-beta precursor protein (APP) and APP-like protein 2 is mediated by different metalloproteinases. J. Biol. Chem. 2010, 285, 10223–10231. [Google Scholar] [CrossRef] [PubMed]
- Rowlands, M.A.; Holly, J.M.; Hamdy, F.; Phillips, J.; Goodwin, L.; Marsden, G.; Gunnell, D.; Donovan, J.; Neal, D.E.; Martin, R.M. Serum insulin-like growth factors and mortality in localised and advanced clinically detected prostate cancer. Cancer Causes Control 2012, 23, 347–354. [Google Scholar] [CrossRef]
- Sahin, U.; Blobel, C.P. Ectodomain shedding of the EGF-receptor ligand epigen is mediated by ADAM17. FEBS Lett. 2007, 581, 41–44. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brenann, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]




| Author (Year) | Study Title | Cancer Type | Experimental Techniques | Study Outcomes |
|---|---|---|---|---|
| (McCulloch et al., 2000) [26] | The expression of the Adams proteases in prostate cancer cell lines and their regulation by dihydrotestosterone | Prostate | Prostate cancer (PCa) cell line, reverse transcription polymerase chain reaction (RT-PCR), northern blotting, and MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assay |
|
| (McCulloch et al., 2004) [27] | Expression of the Disintegrin Metalloprotease, ADAM-10, in Prostate Cancer and Its Regulation by Dihydrotestosterone, Insulin-Like Growth Factor I, and Epidermal Growth Factor in the Prostate Cancer Cell Model LNCaP | Prostate | (PCa) cell line, immunohistochemistry (IHC), MTT assay, western blotting (WB), RT-PCR, and assessment of molecules in nuclear and cytoplasmic protein fractions |
|
| (Arima et al., 2007) [28] | Nuclear translocation of ADAM-10 contributes to the pathogenesis and progression of human prostate cancer. | Prostate | (PCa) cell line, IHC, WB, nuclear and cytoplasmic protein fractions, immunoprecipitation (IP), immunocytochemistry (ICC), RT-PCR, small interfering RNA (siRNA) transfection, and MTT assay. |
|
| (Takayama et al., 2009) [29] | Amyloid Precursor Protein Is a Primary Androgen Target Gene That Promotes Prostate Cancer Growth | Prostate | (PCa) cell line, WB, RT-PCR, RNA Sequencing, siRNA transfection, proliferation assay, luciferase assay, chromatin immunoprecipitation (ChIP DNA), IHC, and ICC |
|
| (Takagi et al., 2013) [30] | Amyloid precursor protein in human breast cancer: An androgen-induced gene associated with cell proliferation | Breast | Breast cancer cell lines, IHC, RT-PCR, WB, scoring immunoreactivity, siRNA transfection, MTT assay, and apoptosis assay (TaliTM apoptosis kit) |
|
| Rating Criteria for Study Quality | McCulloch et al., 2000 [26] | McCulloch et al., 2004 [27] | Arima et al., 2007 [28] | Takayama et al., 2009 [29] | Takagi et al., 2013 [30] | |
|---|---|---|---|---|---|---|
| Use of In Vivo Models |
| N/A | N/A | N/A | 3 | N/A |
| Use of Human Tissue Samples |
| N/A | 5 | 5 | 5 | 5 |
| Analysis of Clinical Data |
| N/A | N/A | 5 | 5 | 5 |
| Measurement of mRNA and Protein Expression |
| 3 | 5 | 5 | 5 | 5 |
| Methodological Complexity |
| 3 | 5 | 5 | 5 | 5 |
| Mechanistic Insights |
| N/A | N/A | 3 | 3 | 3 |
| Total |
| 6 | 15 | 23 | 26 | 23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhadrami, M.; Stone, G.; Barker, R.M.; Palmer, J.C.; Kehoe, P.G.; Perks, C.M. Androgen Effects on Amyloid Precursor Protein Processing Pathways in Cancer: A Systematic Review. Curr. Issues Mol. Biol. 2025, 47, 1041. https://doi.org/10.3390/cimb47121041
Alhadrami M, Stone G, Barker RM, Palmer JC, Kehoe PG, Perks CM. Androgen Effects on Amyloid Precursor Protein Processing Pathways in Cancer: A Systematic Review. Current Issues in Molecular Biology. 2025; 47(12):1041. https://doi.org/10.3390/cimb47121041
Chicago/Turabian StyleAlhadrami, Mai, Gideon Stone, Rachel M. Barker, Jennifer C. Palmer, Patrick G. Kehoe, and Claire M. Perks. 2025. "Androgen Effects on Amyloid Precursor Protein Processing Pathways in Cancer: A Systematic Review" Current Issues in Molecular Biology 47, no. 12: 1041. https://doi.org/10.3390/cimb47121041
APA StyleAlhadrami, M., Stone, G., Barker, R. M., Palmer, J. C., Kehoe, P. G., & Perks, C. M. (2025). Androgen Effects on Amyloid Precursor Protein Processing Pathways in Cancer: A Systematic Review. Current Issues in Molecular Biology, 47(12), 1041. https://doi.org/10.3390/cimb47121041

