A Systematic Review on GLP-1 Receptor Agonists in Reproductive Health: Integrating IVF Data, Ovarian Physiology and Molecular Mechanisms
Abstract
1. Introduction
1.1. GLP-1 Physiology and Systemic Metabolic Actions
1.2. Obesity, PCOS, and Reproductive Dysfunction
1.3. GLP-1 Signaling in the Ovary
1.4. Rationale for GLP-1RA Use in Reproductive Medicine
2. Materials and Methods
Study Selection
3. Results
3.1. Clinical Outcomes
3.1.1. IVF and Assisted Reproduction Outcomes
3.1.2. Natural Conception and Ovulation Outcomes
3.1.3. Metabolic and Hormonal Outcomes
3.2. Animal Study Findings
3.3. In Vitro Mechanistic Findings
3.4. Integrated Synthesis of Clinical, Animal, and In Vitro Findings
4. Discussion
4.1. Molecular and Cellular Mechanisms of GLP-1RA Action: Integrating In Vitro, Animal, and Human Evidence
4.2. Clinical Evidence: Integrating IVF, Natural Conception, and Endocrine-Metabolic Outcomes Across Human Studies
4.3. Metabolic and Hormonal Mechanisms Underlying the Clinical Benefits of GLP-1RAs
4.4. Safety Considerations, Endometrial Receptivity, and Knowledge Gaps
4.5. Future Directions and Translational Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| GLP-1 | glucagon-like peptide-1; |
| GLP-1R | glucagon-like peptide-1 receptor; |
| GLP-1RA | glucagon-like peptide-1 receptor agonist; |
| PCOS | polycystic ovary syndrome; |
| IVF | in vitro fertilization; |
| ART | assisted reproductive technology; |
| BMI | body mass index; |
| FSH | follicle-stimulating hormone; |
| LH | luteinizing hormone; |
| GnRH | gonadotropin-releasing hormone; |
| SHBG | sex hormone–binding globulin; |
| AMH | anti-Müllerian hormone; |
| E2 | estradiol; |
| PRG | progesterone; |
| T | testosterone; |
| GC | granulosa cell; |
| FOXO1 | forkhead box O1; |
| BMP | bone morphogenetic protein; |
| StAR | steroidogenic acute regulatory protein; |
| cAMP | cyclic adenosine monophosphate; |
| PKA | protein kinase A; |
| EPAC | exchange protein directly activated by cAMP; |
| PI3K | phosphoinositide 3-kinase; |
| AKT | protein kinase B; |
| HPO axis | hypothalamic–pituitary–ovarian axis; |
| AFC | antral follicle count; |
| NOS | Newcastle–Ottawa Scale; |
| RCT | randomized controlled trial; |
| SC | subcutaneous; |
| QD | once daily; |
| BID | twice daily; |
| NR | not reported; |
| DM | diabetes mellitus; |
| MEN 2 | multiple endocrine neoplasia type 2. |
References
- Smith, N.K.; Hackett, T.A.; Galli, A.; Flynn, C.R. GLP-1: Molecular mechanisms and outcomes of a complex signaling system. Neurochem. Int. 2019, 128, 94–105. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Xu, B.; Zhang, M.; Chen, D.; Wu, S.; Gao, J.; Liu, Y.; Zhang, Z.; Kuang, J.; Fang, Q. Advances in GLP-1 receptor agonists for pain treatment and their future potential. J. Headache Pain 2025, 26, 46. [Google Scholar] [CrossRef] [PubMed]
- Graaf, C.D.; Donnelly, D.; Wootten, D.; Lau, J.; Sexton, P.M.; Miller, L.J.; Ahn, J.-M.; Liao, J.; Fletcher, M.M.; Yang, D.; et al. Glucagon-Like Peptide-1 and Its Class B G Protein–Coupled Receptors: A Long March to Therapeutic Successes. Pharmacol. Rev. 2016, 68, 954–1013. [Google Scholar] [CrossRef] [PubMed]
- Hill, R.S.; Oberwetter, J.M.; Boyd, A.E. Increase in cAMP Levels in β-Cell Line Potentiates Insulin Secretion Without Altering Cytosolic Free-Calcium Concentration. Diabetes 1987, 36, 440–446. [Google Scholar] [CrossRef]
- Ejarque, M.; Guerrero-Pérez, F.; De La Morena, N.; Casajoana, A.; Virgili, N.; López-Urdiales, R.; Maymó-Masip, E.; Pujol Gebelli, J.; Garcia Ruiz De Gordejuela, A.; Perez-Maraver, M.; et al. Role of adipose tissue GLP-1R expression in metabolic improvement after bariatric surgery in patients with type 2 diabetes. Sci. Rep. 2019, 9, 6274. [Google Scholar] [CrossRef]
- Wong, C.K.; Drucker, D.J. Antiinflammatory actions of glucagon-like peptide-1–based therapies beyond metabolic benefits. J. Clin. Investig. 2025, 135, e194751. [Google Scholar] [CrossRef]
- Gete Palacios, P.C.; Moscona-Nissan, A.; Saucedo, R.; Ferreira-Hermosillo, A. Impact on Metabolism Generated by Surgical and Pharmacological Interventions for Weight Loss in Women with Infertility. Metabolites 2025, 15, 260. [Google Scholar] [CrossRef]
- Hardy, K.; Chávez-Ross, A.; Franks, S.; Mason, H.D.; Stark, J. Modelling the control of ovulation and polycystic ovary syndrome. J. Math. Biol. 1997, 36, 95–118. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, R.; Zhang, N.; Xu, L. The dual burden of obesity: Decoding metabolism and female reproductive endocrinology. Front. Physiol. 2025, 16, 1627607. [Google Scholar] [CrossRef]
- Harada, M. Pathophysiology of polycystic ovary syndrome revisited: Current understanding and perspectives regarding future research. Reprod. Med. Biol. 2022, 21, e12487. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, Z.; Ou, X.; Zhang, M.; Qin, X.; Wu, G. The role of immunity in insulin resistance in patients with polycystic ovary syndrome. Front. Endocrinol. 2024, 15, 1464561. [Google Scholar] [CrossRef] [PubMed]
- Daniilidis, A.; Dinas, K. Long term health consequences of polycystic ovarian syndrome: A review analysis. Hippokratia 2009, 13, 90–92. [Google Scholar] [PubMed]
- Wang, C.; Zhao, H.; Sibirny, A.; Pan, W.; Liang, R.; Luo, G.; Zhang, G.; Wang, Y.; Kang, Y. Exploration of the mechanism of PCOS induced by microenvironmental changes in follicular fluid based on 16 S rRNA and metabolomics. J. Ovarian Res. 2025, 18, 201. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Ma, D.; Li, R.; Xu, J.; Zou, Y.; He, M. The role of mitochondrial dysfunction in ovarian granulosa cells in polycystic ovary syndrome. Endocr. Connect. 2025, 14, e250186. [Google Scholar] [CrossRef]
- Pandey, S.; Pandey, S.; Maheshwari, A.; Bhattacharya, S. The impact of female obesity on the outcome of fertility treatment. J. Hum. Reprod. Sci. 2010, 3, 62–67. [Google Scholar] [CrossRef]
- Thomson, R.L.; Buckley, J.D.; Moran, L.J.; Noakes, M.; Clifton, P.M.; Norman, R.J.; Brinkworth, G.D. The effect of weight loss on anti-Mullerian hormone levels in overweight and obese women with polycystic ovary syndrome and reproductive impairment. Hum. Reprod. 2009, 24, 1976–1981. [Google Scholar] [CrossRef]
- Torres Fernandez, E.D.; Huffman, A.M.; Syed, M.; Romero, D.G.; Yanes Cardozo, L.L. Effect of GLP-1 Receptor Agonists in the Cardiometabolic Complications in a Rat Model of Postmenopausal PCOS. Endocrinology 2019, 160, 2787–2799. [Google Scholar] [CrossRef]
- Sun, Z.; Li, P.; Wang, X.; Lai, S.; Qiu, H.; Chen, Z.; Hu, S.; Yao, J.; Shen, J. GLP-1/GLP-1R Signaling Regulates Ovarian PCOS-Associated Granulosa Cells Proliferation and Antiapoptosis by Modification of Forkhead Box Protein O1 Phosphorylation Sites. Int. J. Endocrinol. 2020, 2020, 1484321. [Google Scholar] [CrossRef]
- Diz-Chaves, Y.; Herrera-Pérez, S.; González-Matías, L.C.; Lamas, J.A.; Mallo, F. Glucagon-Like Peptide-1 (GLP-1) in the Integration of Neural and Endocrine Responses to Stress. Nutrients 2020, 12, 3304. [Google Scholar] [CrossRef]
- Liu, S.; Jia, Y.; Meng, S.; Luo, Y.; Yang, Q.; Pan, Z. Mechanisms of and Potential Medications for Oxidative Stress in Ovarian Granulosa Cells: A Review. Int. J. Mol. Sci. 2023, 24, 9205. [Google Scholar] [CrossRef]
- Kopij, G.; Kiezun, M.; Gudelska, M.; Dobrzyn, K.; Zarzecka, B.; Rytelewska, E.; Zaobidna, E.; Swiderska, B.; Malinowska, A.; Rak, A.; et al. Visfatin impact on the proteome of porcine luteal cells during implantation. Sci. Rep. 2024, 14, 14625. [Google Scholar] [CrossRef]
- Hoteit, B.H.; Kotaich, J.; Ftouni, H.; Hazime, F.; Safawi, A.; Masri, R.; Marwani, M. The dual impact of GLP-1 receptor agonists on metabolic and reproductive health in polycystic ovary syndrome: Insights from human and animal trials. Ther. Adv. Endocrinol. Metab. 2025, 16, 20420188251383064. [Google Scholar] [CrossRef] [PubMed]
- Bednarz, K.; Kowalczyk, K.; Cwynar, M.; Czapla, D.; Czarkowski, W.; Kmita, D.; Nowak, A.; Madej, P. The Role of Glp-1 Receptor Agonists in Insulin Resistance with Concomitant Obesity Treatment in Polycystic Ovary Syndrome. Int. J. Mol. Sci. 2022, 23, 4334. [Google Scholar] [CrossRef] [PubMed]
- Telek, S.B. Relevance of GLP-1 Agonists for Infertility Practice. Reprod. Biomed. Online 2024, 49, 104522. [Google Scholar] [CrossRef]
- Merhi, Z.; Karekar, M.; Mouanness, M. GLP-1 receptor agonist for weight loss and fertility: Social media and online perception versus evidence-based medicine. PLoS ONE 2025, 20, e0326210. [Google Scholar] [CrossRef]
- Liang, Y.; Doré, V.; Rowe, C.C.; Krishnadas, N. Clinical Evidence for GLP-1 Receptor Agonists in Alzheimer’s Disease: A Systematic Review. J. Alzheimers Dis. Rep. 2024, 8, 777–789. [Google Scholar] [CrossRef]
- Minis, E.; Stanford, F.C.; Mahalingaiah, S. Glucagon-like peptide-1 receptor agonists and safety in the preconception period. Curr. Opin. Endocrinol. Diabetes Obes. 2023, 30, 273–279. [Google Scholar] [CrossRef]
- Salamun, V.; Jensterle, M.; Janez, A.; Vrtacnik Bokal, E. Liraglutide increases IVF pregnancy rates in obese PCOS women with poor response to first-line reproductive treatments: A pilot randomized study. Eur. J. Endocrinol. 2018, 179, 1–11. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.; Zheng, S.; Lin, R.; Xie, Y.; Chen, H.; Zheng, Y.; Liu, E.; Chen, L.; Yan, J.; et al. Efficacy of exenatide on weight loss, metabolic parameters and pregnancy in overweight/obese polycystic ovary syndrome. Clin. Endocrinol. 2017, 87, 767–774. [Google Scholar] [CrossRef]
- Nylander, M.; Frøssing, S.; Clausen, H.V.; Kistorp, C.; Faber, J.; Skouby, S.O. Effects of liraglutide on ovarian dysfunction in polycystic ovary syndrome: A randomized clinical trial. Reprod. Biomed. Online 2017, 35, 121–127. [Google Scholar] [CrossRef]
- Nishiyama, Y.; Hasegawa, T.; Fujita, S.; Iwata, N.; Nagao, S.; Hosoya, T.; Inagaki, K.; Wada, J.; Otsuka, F. Incretins modulate progesterone biosynthesis by regulating bone morphogenetic protein activity in rat granulosa cells. J. Steroid Biochem. Mol. Biol. 2018, 178, 82–88. [Google Scholar] [CrossRef]
- Saber, S.M.; Abd El-Rahman, H.A. Liraglutide treatment effects on rat ovarian and uterine tissues. Reprod. Biol. 2019, 19, 237–244. [Google Scholar] [CrossRef]
- Munir, I.; Yen, H.-W.; Geller, D.H.; Torbati, D.; Bierden, R.M.; Weitsman, S.R.; Agarwal, S.K.; Magoffin, D.A. Insulin Augmentation of 17α-Hydroxylase Activity Is Mediated by Phosphatidyl Inositol 3-Kinase but Not Extracellular Signal-Regulated Kinase-1/2 in Human Ovarian Theca Cells. Endocrinology 2004, 145, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Xiong, C.; Wu, J.; Ma, Y.; Li, N.; Wang, X.; Li, Y.; Ding, X. Effects of Glucagon-Like Peptide-1 Receptor Agonists on Gut Microbiota in Dehydroepiandrosterone-Induced Polycystic Ovary Syndrome Mice: Compared Evaluation of Liraglutide and Semaglutide Intervention. Diabetes Metab. Syndr. Obes. 2024, 17, 865–880. [Google Scholar] [CrossRef] [PubMed]
- Yin, D.; Li, F.; Xia, L.; Wei, T.; Shan, C.; Zhang, Z.; Wei, R. GLP-1 receptor agonists show no detrimental effect on sperm quality in mouse models and cell lines. Endocrine 2025, 89, 614–626. [Google Scholar] [CrossRef] [PubMed]
- Celik, O.; Yazici, D.; Ciudin, A.; Macut, D.; Micic, D.; Yumuk, V.; Yildiz, B.O. GLP-1 Receptor Analogs: Evidence Linking to Effect on Metabolic and Reproductive Functions in Patients with PCOS and Obesity. Obes. Facts 2025, 2, 1–15. [Google Scholar] [CrossRef]
- Zhou, L.; Qu, H.; Yang, L.; Shou, L. Effects of GLP1RAs on pregnancy rate and menstrual cyclicity in women with polycystic ovary syndrome: A meta-analysis and systematic review. BMC Endocr. Disord. 2023, 23, 245. [Google Scholar] [CrossRef]
- Varughese, M.S.; O’Mahony, F.; Varadhan, L. GLP-1 receptor agonist therapy and pregnancy: Evolving and emerging evidence. Clin. Med. 2025, 25, 100298. [Google Scholar] [CrossRef]
- Napier, B.A.; Allegretti, J.R.; Feuerstadt, P.; Kelly, C.R.; Van Hise, N.W.; Jäger, R.; Kassam, Z.; Reid, G. Multi-Species Synbiotic Supplementation Enhances Gut Microbial Diversity, Increases Urolithin A and Butyrate Production, and Reduces Inflammation in Healthy Adults: A Randomized, Placebo-Controlled Trial. Nutrients 2025, 17, 2734. [Google Scholar] [CrossRef]
- Sridharan, K.; Sivaramakrishnan, G. Expanding therapeutic horizons: Glucagon-like peptide-1 receptor agonists and sodium glucose transporter-2 inhibitors in poly cystic ovarian syndrome: A comprehensive review including systematic review and network meta-analysis of randomized clinical trials. Diabetol. Metab. Syndr. 2025, 17, 168. [Google Scholar] [CrossRef]
- Wolszczak, M.; Wołodkiewicz, H.; Szmit, J. The Impact of GLP-1 Receptor Agonists on Women’s Reproductive Health: A Review. J. Educ. Health Sport 2025, 82, 60194. [Google Scholar] [CrossRef]
- Ma, R.; Ding, X.; Wang, Y.; Deng, Y.; Sun, A. The therapeutic effects of glucagon-like peptide-1 receptor agonists and metformin on polycystic ovary syndrome: A protocol for systematic review and meta-analysis. Medicine 2021, 100, e26295. [Google Scholar] [CrossRef] [PubMed]
- Austregésilo De Athayde De Hollanda Morais, B.; Martins Prizão, V.; De Moura De Souza, M.; Ximenes Mendes, B.; Rodrigues Defante, M.L.; Cosendey Martins, O.; Rodrigues, A.M. The efficacy and safety of GLP-1 agonists in PCOS women living with obesity in promoting weight loss and hormonal regulation: A meta-analysis of randomized controlled trials. J. Diabetes Complications 2024, 38, 108834. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, A.S.; Boots, C.E. Treating obesity and fertility in the era of glucagon-like peptide 1 receptor agonists. Fertil. Steril. 2024, 122, 211–218. [Google Scholar] [CrossRef]
- Su, W.; Zhang, L.; Cheng, J.; Fu, Y.; Zhao, J.; Chen, H. Impact of BMI on pregnancy outcomes in PCOS patients undergoing ultralong GnRH-a protocol with blastocyst transfer. Eur. J. Med. Res. 2025, 30, 849. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sola-Leyva, A.; Pathare, A.D.S.; Apostolov, A.; Aleksejeva, E.; Kask, K.; Tammiste, T.; Ruiz-Durán, S.; Risal, S.; Acharya, G.; Salumets, A. The hidden impact of GLP-1 receptor agonists on endometrial receptivity and implantation. Acta Obstet. Gynecol. Scand. 2025, 104, 258–266. [Google Scholar] [CrossRef]
- Frangie Machado, M.; Shunk, T.; Hansen, G.; Harvey, C.; Fulford, B.; Hauf, S.; Schuh, O.; Kaldas, M.; Arcaroli, E.; Ortiz, J.; et al. Clinical Effects of Glucagon-Like Peptide-1 Agonist Use for Weight Loss in Women with Polycystic Ovary Syndrome: A Scoping Review. Cureus 2024, 16, e66691. [Google Scholar] [CrossRef]
- Turetta, C.; Turetta, C.; Giannini, A.; Tarsitano, M.G.; Gianfrilli, D.; Paoli, A.; Kontopantelis, E.; De Angelis, E.; Minnetti, M.; Poggiogalle, E.; et al. Impact of Ketogenic Diet on Weight, Metabolic, and Endocrine Parameters in Women with Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis. Gynecol. Obstet. Investig. 2025, 90, 515–534. [Google Scholar] [CrossRef] [PubMed]
- Tong, X.; Song, X.; Zhang, Y.; Zhao, Q. Efficacy and safety of glucagon-like peptide-1 receptor agonists in the treatment of polycystic ovary syndrome-A systematic review and meta-analysis. Arch. Physiol. Biochem. 2024, 130, 1005–1011. [Google Scholar] [CrossRef]
- Merhi, Z. Impact of dramatic weight loss with the new injectable medications on reproduction in healthy non–polycystic ovary syndrome obese women. FS Rep. 2025, 6, 4–9. [Google Scholar] [CrossRef]
- Cragan, J.D.; Friedman, J.M.; Holmes, L.B.; Uhl, K.; Green, N.S.; Riley, L. Ensuring the Safe and Effective Use of Medications During Pregnancy: Planning and Prevention Through Preconception Care. Matern. Child Health J. 2006, 10, 129–135. [Google Scholar] [CrossRef]
- Vale-Fernandes, E.; Moreira, M.V.; Bernardino, R.L.; Sousa, D.; Brandão, R.; Leal, C.; Barreiro, M.; Monteiro, M.P. Polycystic ovary syndrome and excessive body weight impact independently and synergically on fertility treatment outcomes. Reprod. Biol. Endocrinol. 2025, 23, 97. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]

| Author/Year | Study Type | Cases (Number) | Groups | Interventions | Selection Bias (0–4) | Comparability (0–2) | Outcome Assessment (0–3) | Total NOS Score (0–9) | Risk of Bias |
|---|---|---|---|---|---|---|---|---|---|
| Salamun et al., 2018, [28] | RCT, Open-label, PCOS | 28 | MET vs. MET + Liraglutide | Liraglutide 1.2 mg + MET | 3/4 | 2/2 | 3/3 | 8/9 | Low |
| Liu et al., 2017, [29] | RCT, Open-label, PCOS | 176 | Exenatide vs. Metformin | Exenatide 10 μg BID | 3/4 | 2/2 | 3/3 | 8/9 | Low |
| Nylander et al., 2017, [30] | RCT, Double-blind, PCOS | 72 | Liraglutide vs. Placebo | Liraglutide 1.8 mg/day | 4/4 | 2/2 | 3/3 | 9/9 | Low |
| Sun et al., 2020, [18] | In vivo (PCOS mouse model) + In vitro granulosa cells | Not applicable (mouse + cell lines) | GLP-1RA-treated vs. untreated | GLP-1 (dose-dependent) | 2/4 | 1/2 | 3/3 | 6/9 | Moderate |
| Nishiyama et al., 2017, [31] | In vitro rat granulosa cells | Cell lines | Incretins (GLP-1, GIP) ± FSH, BMP-6 | GLP-1/GIP stimulation | 2/4 | 1/2 | 3/3 | 6/9 | Moderate |
| Saber et al., 2019, [32] | In vivo animal study (Female rats) | 30 rats | Control vs. Liraglutide vs. Recovery | Liraglutide (therapeutic dose) | 2/4 | 1/2 | 3/3 | 6/9 | Moderate |
| Year | Author | Country | Type of Study | Sample Size (Cases/Controls) | GLP-1RA Used | GLP-1RA Duration | Inclusion Criteria | Exclusion Criteria | Recruitment Period | IVF Protocol Used | Outcome Investigated | Results | Adverse Effects of GLP-1RA |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 2018 | Salamun et al., [28] | Slovenia | RCT |
27
| Liraglutide 1.2 mg QD SC |
|
|
| 2014–2015 | Short GnRH antagonist protocol (cetrorelix) | Pregnancy Rate |
|
|
| 2017 | Nylander et al., [30] | Denmark | RCT | 65
| Liraglutide SC
| 24 weeks |
|
| 2014–2015 | n/a |
|
|
|
| 2019 | Saber et al., [32] | Egypt | Animal study | 30
| Liraglutide SC
| 4 weeks | n/a | n/a | NR | n/a |
|
| n/a |
| 2020 | Sun et al., [18] | China | Animal study | 50
| Liraglutide BID SC (0.2 mg/kg) | 21 days | n/a | n/a | NR | n/a |
|
| n/a |
| 2018 | Nishiyama et al., [31] | Japan | Animal study | Rats exposed to DES (10 mg) and FSH (30 ng/mL) | GLP-1RA (100 Nm) | n/a | n/a | n/a | NR | n/a |
|
| n/a |
| 2017 | Liu et al., [29] | China | RCT | 176
| Exenatide BID (10 μg) | 12 weeks |
|
| NR | n/a |
|
|
|
| Evidence Level | Key Findings | Interpretation | Overall Direction |
|---|---|---|---|
| Clinical Studies (Human) | • GLP-1RAs improved menstrual regularity, ovulation, and natural pregnancy rates in overweight/obese women with PCOS. • Liraglutide + metformin increased IVF pregnancy rate (85.7% vs. 28.6%). • Significant improvements in weight, insulin resistance, SHBG, and free testosterone. | GLP-1RAs appear to enhance reproductive outcomes primarily in metabolically dysregulated populations (PCOS + obesity) through systemic metabolic correction and improved endocrine balance. | Beneficial for metabolic PCOS, improved fertility outcomes. |
| Animal Studies (In vivo) | • In PCOS-like models: GLP-1RA exposure increased granulosa-cell proliferation, reduced apoptosis, activated FOXO1 phosphorylation, and improved ovarian health. • In healthy rodents: high-dose liraglutide caused granulosa-cell apoptosis, follicular atresia, oxidative stress, reduced FSH/LH/E2/PRG, and increased testosterone. • Partial recovery after drug discontinuation. | GLP-1RA actions are highly context-dependent. Beneficial in insulin-resistant ovaries but harmful in healthy ovaries under supraphysiological exposure. Highlights the importance of metabolic status and treatment duration. | Mixed (beneficial in PCOS-like models, potentially harmful in normal ovaries). |
| In vitro Studies | • GLP-1 increased granulosa-cell survival by inducing FOXO1 phosphorylation and nuclear exclusion. • Modulated FSH–cAMP steroidogenesis by suppressing StAR, P450scc, and 3β-HSD. • Selective interaction with BMP–Smad signaling (GIP > GLP-1). • Receptor-dependent changes in ALK-3/ALK-6 and Smad6 expression. | GLP-1R signaling intersects with granulosa-cell survival, steroidogenesis, and intra-ovarian growth-factor pathways, offering mechanistic explanations for clinical endocrine improvements. | Mechanistically supportive of clinical benefits in PCOS. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Voros, C.; Chatzinikolaou, F.; Papapanagiotou, I.; Polykalas, S.; Mavrogianni, D.; Koulakmanidis, A.-M.; Athanasiou, D.; Kanaka, V.; Bananis, K.; Athanasiou, A.; et al. A Systematic Review on GLP-1 Receptor Agonists in Reproductive Health: Integrating IVF Data, Ovarian Physiology and Molecular Mechanisms. Int. J. Mol. Sci. 2026, 27, 759. https://doi.org/10.3390/ijms27020759
Voros C, Chatzinikolaou F, Papapanagiotou I, Polykalas S, Mavrogianni D, Koulakmanidis A-M, Athanasiou D, Kanaka V, Bananis K, Athanasiou A, et al. A Systematic Review on GLP-1 Receptor Agonists in Reproductive Health: Integrating IVF Data, Ovarian Physiology and Molecular Mechanisms. International Journal of Molecular Sciences. 2026; 27(2):759. https://doi.org/10.3390/ijms27020759
Chicago/Turabian StyleVoros, Charalampos, Fotios Chatzinikolaou, Ioannis Papapanagiotou, Spyridon Polykalas, Despoina Mavrogianni, Aristotelis-Marios Koulakmanidis, Diamantis Athanasiou, Vasiliki Kanaka, Kyriakos Bananis, Antonia Athanasiou, and et al. 2026. "A Systematic Review on GLP-1 Receptor Agonists in Reproductive Health: Integrating IVF Data, Ovarian Physiology and Molecular Mechanisms" International Journal of Molecular Sciences 27, no. 2: 759. https://doi.org/10.3390/ijms27020759
APA StyleVoros, C., Chatzinikolaou, F., Papapanagiotou, I., Polykalas, S., Mavrogianni, D., Koulakmanidis, A.-M., Athanasiou, D., Kanaka, V., Bananis, K., Athanasiou, A., Athanasiou, A., Papadimas, G., Tsimpoukelis, C., Vaitsis, D., Karpouzos, A., Daskalaki, M. A., Kanakas, N., Theodora, M., Thomakos, N., ... Daskalakis, G. (2026). A Systematic Review on GLP-1 Receptor Agonists in Reproductive Health: Integrating IVF Data, Ovarian Physiology and Molecular Mechanisms. International Journal of Molecular Sciences, 27(2), 759. https://doi.org/10.3390/ijms27020759

