Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (605)

Search Parameters:
Keywords = aminoglycoside antibiotics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 806 KiB  
Proceeding Paper
Enterococcus faecalis Biofilm: A Clinical and Environmental Hazard
by Bindu Sadanandan and Kavyasree Marabanahalli Yogendraiah
Med. Sci. Forum 2025, 35(1), 5; https://doi.org/10.3390/msf2025035005 - 5 Aug 2025
Abstract
This review explores the biofilm architecture and drug resistance of Enterococcus faecalis in clinical and environmental settings. The biofilm in E. faecalis is a heterogeneous, three-dimensional, mushroom-like or multilayered structure, characteristically forming diplococci or short chains interspersed with water channels for nutrient exchange [...] Read more.
This review explores the biofilm architecture and drug resistance of Enterococcus faecalis in clinical and environmental settings. The biofilm in E. faecalis is a heterogeneous, three-dimensional, mushroom-like or multilayered structure, characteristically forming diplococci or short chains interspersed with water channels for nutrient exchange and waste removal. Exopolysaccharides, proteins, lipids, and extracellular DNA create a protective matrix. Persister cells within the biofilm contribute to antibiotic resistance and survival. The heterogeneous architecture of the E. faecalis biofilm contains both dense clusters and loosely packed regions that vary in thickness, ranging from 10 to 100 µm, depending on the environmental conditions. The pathogenicity of the E. faecalis biofilm is mediated through complex interactions between genes and virulence factors such as DNA release, cytolysin, pili, secreted antigen A, and microbial surface components that recognize adhesive matrix molecules, often involving a key protein called enterococcal surface protein (Esp). Clinically, it is implicated in a range of nosocomial infections, including urinary tract infections, endocarditis, and surgical wound infections. The biofilm serves as a nidus for bacterial dissemination and as a reservoir for antimicrobial resistance. The effectiveness of first-line antibiotics (ampicillin, vancomycin, and aminoglycosides) is diminished due to reduced penetration, altered metabolism, increased tolerance, and intrinsic and acquired resistance. Alternative strategies for biofilm disruption, such as combination therapy (ampicillin with aminoglycosides), as well as newer approaches, including antimicrobial peptides, quorum-sensing inhibitors, and biofilm-disrupting agents (DNase or dispersin B), are also being explored to improve treatment outcomes. Environmentally, E. faecalis biofilms contribute to contamination in water systems, food production facilities, and healthcare environments. They persist in harsh conditions, facilitating the spread of multidrug-resistant strains and increasing the risk of transmission to humans and animals. Therefore, understanding the biofilm architecture and drug resistance is essential for developing effective strategies to mitigate their clinical and environmental impact. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Antibiotics)
Show Figures

Figure 1

12 pages, 815 KiB  
Article
Profiles of Sensitivity to Antibiotics and Heavy Metals in Strains of Pseudomonas mendocina Isolates from Leachate Pond
by Aura Falco, Alejandra Mondragón-Quiguanas, Laura Burbano, Miguel Ángel Villaquirán-Muriel, Adriana Correa and Carlos Aranaga
Antibiotics 2025, 14(8), 781; https://doi.org/10.3390/antibiotics14080781 - 1 Aug 2025
Viewed by 202
Abstract
Background/Objetives: Antimicrobial Resistance (AMR) is a multifaceted issue that the World Health Organization (WHO) identifies as one of the primary threats to global health for humans, animals, and the environment. In Colombia, AMR has been extensively studied at the hospital level; however, [...] Read more.
Background/Objetives: Antimicrobial Resistance (AMR) is a multifaceted issue that the World Health Organization (WHO) identifies as one of the primary threats to global health for humans, animals, and the environment. In Colombia, AMR has been extensively studied at the hospital level; however, there are limited environmental studies, particularly concerning leachates from landfills. The objective of this study was to identify and determine the genetic relationships, as well as the sensitivity profiles to antibiotics and heavy metals, of ten Pseudomonas mendocina isolates from a leachate pond. Methods: Identification was conducted using MALDI-TOF (Matrix-Assisted Laser Desorption/Ionization Time-of-Flight), while genotyping was performed via rep-PCR. Antibiotic susceptibility to β-lactams, aminoglycosides, and quinolones was assessed using the Kirby-Bauer method. Additionally, sensitivity profile to heavy metals was evaluated using the broth microdilution technique. Results: Rep-PCR analysis indicated that 60% (n = 6/10) of the isolates exhibited a clonal relationship. Sensitivity testing revealed that 30% (n = 3/10) of the isolates displayed reduced sensitivity to aminoglycosides and β-lactams. Finally, the broth microdilution showed that 90% (n = 9/10) of the isolates were tolerant to copper sulfate. Conclusions: These results provide evidence that landfill leachates may serve as a potential reservoir for bacteria harboring antimicrobial resistance determinants. Full article
(This article belongs to the Special Issue Antibiotic Resistance: The Role of Aquatic Environments)
Show Figures

Figure 1

19 pages, 2130 KiB  
Article
Isolation of ESBL-Producing Enterobacteriaceae in Food of Animal and Plant Origin: Genomic Analysis and Implications for Food Safety
by Rosa Fraccalvieri, Stefano Castellana, Angelica Bianco, Laura Maria Difato, Loredana Capozzi, Laura Del Sambro, Adelia Donatiello, Domenico Pugliese, Maria Tempesta, Antonio Parisi and Marta Caruso
Microorganisms 2025, 13(8), 1770; https://doi.org/10.3390/microorganisms13081770 - 29 Jul 2025
Viewed by 320
Abstract
Background: The spread of ESBL-producing Enterobacteriaceae (ESBL-PE) strains in food poses a potential risk to human health. The aim of the study was to determine the occurrence of ESBL-PE and to investigate their distribution on foods. Methods: A total of 1000 food [...] Read more.
Background: The spread of ESBL-producing Enterobacteriaceae (ESBL-PE) strains in food poses a potential risk to human health. The aim of the study was to determine the occurrence of ESBL-PE and to investigate their distribution on foods. Methods: A total of 1000 food samples, including both raw and ready-to-eat products, was analyzed for the presence of ESBL-producing Enterobacteriaceae using chromogenic selective agar. Antibiotic resistance in the isolated strains was assessed using conventional methods, while whole-genome sequencing was employed to predict antimicrobial resistance and virulence genes. Results: The overall occurrence of ESBL-PE strains was 2.8%, with the highest contamination in raw meat samples (10%). A total of 31 multidrug-resistant (MDR) strains was isolated, mainly Escherichia coli, followed by Klebsiella pneumoniae, Salmonella enterica, and Enterobacter hormaechei. All strains exhibited high levels of resistance to at least four different β-lactam antibiotics, as well as to other antimicrobial classes including sulfonamides, tetracyclines, aminoglycosides, and quinolones. Whole-genome sequencing identified 63 antimicrobial resistance genes, with blaCTX-M being the most prevalent ESBL gene. Twenty-eight (90%) isolates carried Inc plasmids, known vectors of multiple antimicrobial resistance genes, including those associated with ESBLs. Furthermore, several virulence genes were identified. Conclusions: The contamination of food with ESBL-PE represents a potential public health risk, underscoring the importance of the implementation of genomic surveillance to monitor and control the spread of antimicrobial resistance. Full article
(This article belongs to the Special Issue Food Microorganisms and Genomics, 2nd Edition)
Show Figures

Figure 1

25 pages, 3102 KiB  
Article
Rainfall Drives Fluctuating Antibiotic Resistance Gene Levels in a Suburban Freshwater Lake
by Jack Roddey, Karlen Enid Correa Velez and R. Sean Norman
Water 2025, 17(15), 2260; https://doi.org/10.3390/w17152260 - 29 Jul 2025
Viewed by 381
Abstract
Antibiotic resistance genes (ARGs) in suburban freshwater ecosystems pose a growing public health concern by potentially reducing the effectiveness of medical treatments. This study investigated how rainfall influences ARG dynamics in Lake Katherine, a 62-hectare suburban lake in Columbia, South Carolina, over one [...] Read more.
Antibiotic resistance genes (ARGs) in suburban freshwater ecosystems pose a growing public health concern by potentially reducing the effectiveness of medical treatments. This study investigated how rainfall influences ARG dynamics in Lake Katherine, a 62-hectare suburban lake in Columbia, South Carolina, over one year. Surface water was collected under both dry and post-rain conditions from three locations, and ARGs were identified using metagenomic sequencing. Statistical models revealed that six of nine ARG classes with sufficient data showed significant responses to rainfall. Three classes, Bacitracin, Aminoglycoside, and Unclassified, were more abundant after rainfall, while Tetracycline, Multidrug, and Peptide resistance genes declined. Taxonomic analysis showed that members of the Pseudomonadota phylum, especially Betaproteobacteria, were prevalent among ARG-carrying microbes. These findings suggest that rainfall can alter the distribution of ARGs in suburban lakes, highlighting the importance of routine monitoring and water management strategies to limit the environmental spread of antibiotic resistance. Full article
(This article belongs to the Special Issue Water Safety, Ecological Risk and Public Health)
Show Figures

Graphical abstract

16 pages, 1238 KiB  
Article
Mortality Risk of Colistin vs. Non-Colistin Use in Cancer Patients with Multidrug-Resistant Gram-Negative Bacterial Infections: Stratified by Resistance Profile and Concomitant Medications
by Soo Hyeon Lee, Yongwon Choi, Chang-Young Choi, Yeo Jin Choi and Sooyoung Shin
Medicina 2025, 61(8), 1361; https://doi.org/10.3390/medicina61081361 - 28 Jul 2025
Viewed by 355
Abstract
Background and Objectives: Cancer patients are particularly susceptible to infections caused by multidrug-resistant Gram-negative bacteria (MDR GNB) due to chemotherapy- or radiation therapy-induced immunosuppression. Colistin is often prescribed as a last-resort agent for MDR GNB infection, but its clinical benefit in oncology patients [...] Read more.
Background and Objectives: Cancer patients are particularly susceptible to infections caused by multidrug-resistant Gram-negative bacteria (MDR GNB) due to chemotherapy- or radiation therapy-induced immunosuppression. Colistin is often prescribed as a last-resort agent for MDR GNB infection, but its clinical benefit in oncology patients remains unclear. This study aims to evaluate the mortality risk associated with colistin versus non-colistin regimens in cancer patient with MDR GNB infections, stratified by resistance profiles, infection sites, and concomitant medication use. Materials and Methods: A retrospective cohort study was conducted in adult cancer patients with MDR GNB infections that are resistant to at least three antibiotic classes and identified from at least two anatomical sites at a tertiary care hospital in Korea. Propensity score-matched in a 1:3 ratio either to the colistin group or non-colistin group and multivariate Cox hazard regression analyses were used to evaluate mortality in cancer patients with MDR GNB infections, primarily Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Results: A total of 85 patients (29 patients in the colistin and 56 patients in the non-colistin group) were included in the analysis. Overall, colistin use did not show a statistically significant mortality benefit compared to non-colistin regimens (hazard ratio (HR) 0.93, 95% CI 0.47–1.87). However, the subgroup analysis revealed that colistin had a potential association with significantly lower mortality in pneumonia patients with aminoglycoside-resistant infections (HR 0.04, 95% CI 0.002–0.69). Concomitant use of antipsychotics and benzodiazepines in selected resistance profiles also correlated with improved outcomes. In contrast, a potential association was found between concomitant macrolide use and increased mortality in patients with fluoroquinolone- or penicillin-resistant profiles. Conclusions: Colistin may offer survival benefits in selected high-risk cancer patients with MDR GNB pneumonia. Treatment outcomes are influenced by resistance profiles, infection sites, and concomitant medications, indicating the significant importance of individualized antimicrobial therapy and antimicrobial stewardship in oncology patients. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

25 pages, 2344 KiB  
Review
Proteomic Insights into Bacterial Responses to Antibiotics: A Narrative Review
by Sara Elsa Aita, Maria Vittoria Ristori, Antonio Cristiano, Tiziana Marfoli, Marina De Cesaris, Vincenzo La Vaccara, Roberto Cammarata, Damiano Caputo, Silvia Spoto and Silvia Angeletti
Int. J. Mol. Sci. 2025, 26(15), 7255; https://doi.org/10.3390/ijms26157255 - 27 Jul 2025
Viewed by 234
Abstract
Antimicrobial resistance is an escalating global threat that undermines the efficacy of modern antibiotics and places a substantial economic burden on healthcare systems—costing Europe alone over EUR 11.7 billion each year due to rising medical expenses and productivity losses. While genomics and transcriptomics [...] Read more.
Antimicrobial resistance is an escalating global threat that undermines the efficacy of modern antibiotics and places a substantial economic burden on healthcare systems—costing Europe alone over EUR 11.7 billion each year due to rising medical expenses and productivity losses. While genomics and transcriptomics have significantly advanced our understanding of the genetic foundations of resistance, they often fail to capture the dynamic, real-time adaptations that enable bacterial survival. Proteomics, particularly mass spectrometry-based strategies, bridges this gap by uncovering the functional protein-level changes that drive resistance, persistence, and tolerance under antibiotic pressure. In this review, we examine how proteomic approaches provide new insights into resistance mechanisms across various antibiotic classes, with a particular focus on β-lactams, aminoglycosides, and fluoroquinolones, highlighting clinically relevant pathogens, especially members of the ESKAPE group. Finally, we examine future directions, including the integration of proteomics with other omic technologies and the growing role of artificial intelligence in resistance prediction, paving the way for more predictive, personalized, and effective solutions to combat antimicrobial resistance. Full article
Show Figures

Figure 1

14 pages, 384 KiB  
Article
Outbreak Caused by VIM-1- and VIM-4-Positive Proteus mirabilis in a Hospital in Zagreb
by Branka Bedenić, Gernot Zarfel, Josefa Luxner, Andrea Grisold, Marina Nađ, Maja Anušić, Vladimira Tičić, Verena Dobretzberger, Ivan Barišić and Jasmina Vraneš
Pathogens 2025, 14(8), 737; https://doi.org/10.3390/pathogens14080737 - 26 Jul 2025
Viewed by 290
Abstract
Background/objectives: Proteus mirabilis is a frequent causative agent of urinary and wound infections in both community and hospital settings. It develops resistance to expanded-spectrum cephalosporins (ESCs) due to the production of extended-spectrum β-lactamases (ESBLs) or plasmid-mediated AmpC β-lactamases (p-AmpCs). Recently, carbapenem-resistant isolates of [...] Read more.
Background/objectives: Proteus mirabilis is a frequent causative agent of urinary and wound infections in both community and hospital settings. It develops resistance to expanded-spectrum cephalosporins (ESCs) due to the production of extended-spectrum β-lactamases (ESBLs) or plasmid-mediated AmpC β-lactamases (p-AmpCs). Recently, carbapenem-resistant isolates of P. mirabilis emerged due to the production of carbapenemases, mostly belonging to Ambler classes B and D. Here, we report an outbreak of infections due to carbapenem-resistant P. mirabilis that were observed in a psychiatric hospital in Zagreb, Croatia. The characteristics of ESBL and carbapenemase-producing P. mirabilis isolates, associated with an outbreak, were analyzed. Materials and methods: The antibiotic susceptibility testing was performed by the disk-diffusion and broth dilution methods. The double-disk synergy test (DDST) and inhibitor-based test with clavulanic and phenylboronic acid were applied to screen for ESBLs and p-AmpCs, respectively. Carbapenemases were screened by the modified Hodge test (MHT), while carbapenem hydrolysis was investigated by the carbapenem inactivation method (CIM) and EDTA-carbapenem-inactivation method (eCIM). The nature of the ESBLs, carbapenemases, and fluoroquinolone-resistance determinants was investigated by PCR. Plasmids were characterized by PCR-based replicon typing (PBRT). Selected isolates were subjected to molecular characterization of the resistome by an Inter-Array Genotyping Kit CarbaResisit and whole-genome sequencing (WGS). Results: In total, 20 isolates were collected and analyzed. All isolates exhibited resistance to amoxicillin alone and when combined with clavulanic acid, cefuroxime, cefotaxime, ceftriaxone, cefepime, imipenem, ceftazidime–avibactam, ceftolozane–tazobactam, gentamicin, amikacin, and ciprofloxacin. There was uniform susceptibility to ertapenem, meropenem, and cefiderocol. The DDST and combined disk test with clavulanic acid were positive, indicating the production of an ESBL. The MHT was negative in all except one isolate, while the CIM showed moderate sensitivity, but only with imipenem as the indicator disk. Furthermore, eCIM tested positive in all of the CIM-positive isolates, consistent with a metallo-β-lactamase (MBL). PCR and sequencing of the selected amplicons identified VIM-1 and VIM-4. The Inter-Array Genotyping Kit CarbaResist and WGS identified β-lactam resistance genes blaVIM, blaCTX-M-15, and blaTEM genes; aminoglycoside resistance genes aac(3)-IId, aph(6)-Id, aph(3″)-Ib, aadA1, armA, and aac(6′)-IIc; as well as resistance genes for sulphonamides sul1 and sul2, trimethoprim dfr1, chloramphenicol cat, and tetracycline tet(J). Conclusions: This study revealed an epidemic spread of carbapenemase-producing P. mirabilis in two wards in a psychiatric hospital. Due to the extensively resistant phenotype (XDR), therapeutic options were limited. This is the first report of carbapenemase-producing P. mirabilis in Croatia. Full article
(This article belongs to the Special Issue Emerging and Neglected Pathogens in the Balkans)
Show Figures

Figure 1

17 pages, 798 KiB  
Review
Beyond the Usual Suspects: Weeksella virosa as a Potential Human and Animal Pathogen
by Ioana Alina Colosi, Dan Alexandru Toc, Vlad Sever Neculicioiu, Paul-Ștefan Panaitescu, Pavel Șchiopu, Adrian-Gabriel Pană, Razvan Vlad Opris, Alina Mihaela Baciu, George Berar, Alexandru Botan and Carmen Costache
Trop. Med. Infect. Dis. 2025, 10(8), 210; https://doi.org/10.3390/tropicalmed10080210 - 26 Jul 2025
Viewed by 347
Abstract
Weeksella virosa (W. virosa) is a rare, non-saccharolytic Gram-negative bacterium initially described in the 1970s, later proposed as a distinct genus in 1986. The genus Weeksella currently contains two species, namely W. virosa and W. massiliensis. Although primarily considered non-pathogenic, recent [...] Read more.
Weeksella virosa (W. virosa) is a rare, non-saccharolytic Gram-negative bacterium initially described in the 1970s, later proposed as a distinct genus in 1986. The genus Weeksella currently contains two species, namely W. virosa and W. massiliensis. Although primarily considered non-pathogenic, recent evidence has linked W. virosa to a limited number of clinical infections, mostly in immunocompromised patients. This review aims to consolidate the current body of knowledge on W. virosa, encompassing its microbiological and biochemical characteristics, involvement in human and animal infections, antimicrobial susceptibility profiles, and a critical evaluation of existing diagnostic methodologies. This review includes 13 case reports detailing 16 human cases retrieved from multiple databases, highlighting diagnostic inconsistencies and a lack of standardized antimicrobial susceptibility testing. Although W. virosa is generally susceptible to most antibiotics with the exception of aminoglycosides, recent reports seem to suggest a possible emerging resistance trend. The presence of this organism in hospital environments raises concerns about its potential transmission within healthcare settings. While biochemical testing appears to offer reasonably accurate identification of W. virosa, molecular confirmation may be warranted in some cases mainly due to the organism’s rarity. The reliability of MALDI-TOF MS for the identification of W. virosa remains currently uncertain. Further studies, including electron microscopy and genome-wide analysis, are urgently needed to clarify the pathogenic potential of this bacterium and guide clinical management. This review underscores the necessity for awareness among clinicians and microbiologists regarding this underrecognized pathogen. Full article
Show Figures

Figure 1

15 pages, 1416 KiB  
Article
High Prevalence of Virulence and blaOXA Genes Encoding Carbapenemases Among Acinetobacter baumannii Isolates from Hospitalised Patients in Three Regions of Poland
by Magdalena Szemraj, Małgorzata Piechota, Kamila Olszowiec, Jolanta Wicha, Agata Pruss, Monika Sienkiewicz, Małgorzata Witeska, Piotr Szweda and Barbara Kot
Pathogens 2025, 14(8), 731; https://doi.org/10.3390/pathogens14080731 - 24 Jul 2025
Viewed by 374
Abstract
Infections caused by Acinetobacter baumannii are increasing worldwide. We evaluated the antibiotic resistance profile, biofilm production, and the frequency of 12 genes encoding carbapenemases and 13 virulence factors in 90 isolates from patients of three hospitals in various regions of Poland. Antibiotic resistance [...] Read more.
Infections caused by Acinetobacter baumannii are increasing worldwide. We evaluated the antibiotic resistance profile, biofilm production, and the frequency of 12 genes encoding carbapenemases and 13 virulence factors in 90 isolates from patients of three hospitals in various regions of Poland. Antibiotic resistance survey was performed using the disc-diffusion method, genes encoding resistance to carbapenems and virulence factors were detected with PCR, and biofilm formation was tested using microtiter plates. A total of 52.2% of isolates were resistant to all tested antibiotic groups (penicillins with β-lactamase inhibitors, cephalosporins, carbapenems, aminoglycosides, fluoroquinolones, and trimethoprim plus sulfamethoxazole). Among the genes encoding carbapenem resistance, the blaOXA-23 (68.9%), blaOXA-40 (83.3%), and ISAba-blaOXA-51 (18.9%) were detected. The ompA, ata, and recA genes responsible for biofilm formation, adhesion, and stress response, respectively, occurred in all isolates. Genes responsible for the production of other adhesins (bap—94.4%, espA—4.4%, chop—37.7%), biofilm formation (pbpG—90.0%), production of siderophore (basD—97.7%), toxins (lipA—92.2%, cpaA—1.1%), glycoconjugates (bfmR—84.4%), and inducing host cell death (fhaB—71.1%, abeD—93.3%) were also found. A total of 68.8% of isolates produced biofilm. The isolates from Masovia had more virulence genes than isolates from the other regions; moreover, all isolates from Masovia and West Pomerania were multidrug-resistant (MDR), including resistance to carbapenems. Full article
(This article belongs to the Section Bacterial Pathogens)
Show Figures

Figure 1

25 pages, 3886 KiB  
Article
Amikacin Coated 3D-Printed Metal Devices for Prevention of Postsurgical Infections (PSIs)
by Chu Zhang, Ishwor Poudel, Nur Mita, Xuejia Kang, Manjusha Annaji, Seungjong Lee, Peter Panizzi, Nima Shamsaei, Oladiran Fasina, R. Jayachandra Babu and Robert D. Arnold
Pharmaceutics 2025, 17(7), 911; https://doi.org/10.3390/pharmaceutics17070911 - 14 Jul 2025
Viewed by 380
Abstract
Background/Objectives: Personalized 3D-printed (3DP) metallic implants delivery systems are being explored to repair bone fractures, allowing the customization of medical implants that respond to individual patient needs, making it potentially more effective and of greater quality than mass-produced devices. However, challenges associated [...] Read more.
Background/Objectives: Personalized 3D-printed (3DP) metallic implants delivery systems are being explored to repair bone fractures, allowing the customization of medical implants that respond to individual patient needs, making it potentially more effective and of greater quality than mass-produced devices. However, challenges associated with postsurgical infections caused by bacterial adhesion remain a clinical issue. To address this, local antibiotic therapies are receiving extensive attention to minimize the risk of implant-related infections. This study investigated the use of amikacin (AMK), a broad-spectrum aminoglycoside antibiotic, incorporated onto 3D-printed 316L stainless steel implants using biodegradable polymer coatings of chitosan and poly lactic-co-glycolic acid (PLGA). Methods: This research examined different approaches to coat 3DP implants with amikacin. Various polymer-based coatings were studied to determine the optimal formulation based on the characteristics and release profile. The optimal formulation was performed on the antibacterial activity studies. Results: AMK-chitosan with PLGA coating implants controlled the rate of drug release for up to one month. The 3DP drug-loaded substrates demonstrated effective, concentration-dependent antibacterial activity against common infective pathogens. AMK-loaded substrates showed antimicrobial effectiveness for one week and inhibited bacteria significantly compared to the uncoated controls. Conclusions: This study demonstrated that 3DP metal surfaces coated with amikacin can provide customizable drug release profiles while effectively inhibiting bacterial growth. These findings highlight the potential of combining 3D printing with localized delivery strategies to prevent implant-associated infections and advance the development of personalized therapies. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Graphical abstract

16 pages, 3493 KiB  
Article
Molecular Mechanisms of Aminoglycoside-Induced Ototoxicity in Murine Auditory Cells: Implications for Otoprotective Drug Development
by Cheng-Yu Hsieh, Jia-Ni Lin, Yi-Fan Chou, Chuan-Jen Hsu, Peir-Rong Chen, Yu-Hsuan Wen, Chen-Chi Wu and Chuan-Hung Sun
Int. J. Mol. Sci. 2025, 26(14), 6720; https://doi.org/10.3390/ijms26146720 - 13 Jul 2025
Viewed by 347
Abstract
Aminoglycoside antibiotics are critical in clinical use for treating severe infections, but they can occasionally cause irreversible sensorineural hearing loss. To establish a rational pathway for otoprotectant discovery, we provide an integrated, three-tier methodology—comprising cell-model selection, transcriptomic analysis, and a gentamicin–Texas Red (GTTR) [...] Read more.
Aminoglycoside antibiotics are critical in clinical use for treating severe infections, but they can occasionally cause irreversible sensorineural hearing loss. To establish a rational pathway for otoprotectant discovery, we provide an integrated, three-tier methodology—comprising cell-model selection, transcriptomic analysis, and a gentamicin–Texas Red (GTTR) uptake assay—to guide the development of otoprotective strategies. We first utilized two murine auditory cell lines—UB/OC-2 and HEI-OC1. We focused on TMC1 and OCT2 and further explored the underlying mechanisms of ototoxicity. UB/OC-2 exhibited a higher sensitivity to gentamicin, which correlated with elevated OCT2 expression confirmed via RT-PCR and Western blot. Transcriptomic analysis revealed upregulation of PI3K-Akt, calcium, and GPCR-related stress pathways in gentamicin-treated HEI-OC1 cells. Protein-level analysis further confirmed that gentamicin suppressed phosphorylated Akt while upregulating ER stress markers (GRP78, CHOP) and apoptotic proteins (cleaved caspase 3, PARP). Co-treatment with PI3K inhibitors (LY294002, wortmannin) further suppressed Akt phosphorylation, supporting the role of PI3K-Akt signaling in auditory cells. To visualize drug entry, we used GTTR to evaluate its applicability as a fluorescence-based uptake assay in these cell lines, which were previously employed mainly in cochlear explants. Sodium thiosulfate (STS) and N-acetylcysteine (NAC) significantly decreased GTTR uptake, suggesting a protective effect against gentamicin-induced hair cell damage. In conclusion, our findings showed a complex ototoxic cascade involving OCT2- and TMC1-mediated drug uptake, calcium imbalance, ER stress, and disruption of PI3K-Akt survival signaling. We believe that UB/OC-2 cells serve as a practical in vitro model for mechanistic investigations and screening of otoprotective compounds. Additionally, GTTR may be a simple, effective method for evaluating protective interventions in auditory cell lines. Overall, this study provides molecular-level insights into aminoglycoside-induced ototoxicity and introduces a platform for protective strategies. Full article
(This article belongs to the Special Issue Hearing Loss: Molecular Biological Insights)
Show Figures

Figure 1

23 pages, 3213 KiB  
Article
Multidrug Resistance and Virulence Traits of Salmonella enterica Isolated from Cattle: Genotypic and Phenotypic Insights
by Nada A. Fahmy, Sumin Karna, Angel Bhusal, Ajran Kabir, Erdal Erol and Yosra A. Helmy
Antibiotics 2025, 14(7), 689; https://doi.org/10.3390/antibiotics14070689 - 8 Jul 2025
Viewed by 634
Abstract
Background/Objective: Non-typhoidal Salmonella is a leading cause of foodborne illness worldwide and presents a significant One Health concern due to zoonotic transmission. Although antibiotic therapy remains a standard approach for treating salmonellosis in severe cases in animals, the widespread misuse of antibiotics has [...] Read more.
Background/Objective: Non-typhoidal Salmonella is a leading cause of foodborne illness worldwide and presents a significant One Health concern due to zoonotic transmission. Although antibiotic therapy remains a standard approach for treating salmonellosis in severe cases in animals, the widespread misuse of antibiotics has contributed to the emergence of multidrug-resistant (MDR) Salmonella strains. This study provides insights into the genotypic and phenotypic characteristics among Salmonella isolates from necropsied cattle. Methods: A total of 1008 samples were collected from necropsied cattle. Salmonella enterica subspecies were identified by MALDI-TOF MS and subsequently confirmed by serotyping. The biofilm-forming ability of the isolated bacteria was assessed using a crystal violet assay. The motility of the isolates was assessed on soft agar plates. Additionally, the antimicrobial resistance genes (ARGs) and virulence genes were investigated. Antimicrobial resistance patterns were investigated against 19 antibiotics representing 9 different classes. Results:Salmonella species were isolated and identified in 27 necropsied cattle. Salmonella Dublin was the most prevalent serotype (29.6%). Additionally, all the isolates were biofilm producers at different levels of intensity, and 96.3% of the isolates exhibited both swarming and swimming motility. Furthermore, virulence genes, including invA, hilA, fimA, and csgA, were detected in all the isolates. The highest resistance was observed to macrolides (azithromycin and clindamycin) (100%), followed by imipenem (92.6%), and chloramphenicol (85.2%). All isolates were multidrug-resistant, with a multiple antibiotic resistance (MAR) index ranging between 0.32 and 0.74. The aminoglycoside resistance gene aac(6′)-Ib was detected in all the isolates (100%), whereas the distribution of other antimicrobial resistance genes (ARGs) varied among the isolates. Conclusions: The increasing prevalence of MDR Salmonella poses a significant public health risk. These resistant strains can reduce the effectiveness of standard treatments and elevate outbreak risks. Strengthening surveillance and regulating antibiotic use in livestock are essential to mitigating these threats. Full article
Show Figures

Figure 1

18 pages, 797 KiB  
Review
Impact of Invasive Mechanical Ventilation on the Lung Microbiome
by Jose Luis Estela-Zape, Valeria Sanclemente-Cardoza, Maria Alejandra Espinosa-Cifuentes and Leidy Tatiana Ordoñez-Mora
Adv. Respir. Med. 2025, 93(4), 23; https://doi.org/10.3390/arm93040023 - 1 Jul 2025
Viewed by 575
Abstract
The lung microbiota is integral to maintaining microenvironmental homeostasis, influencing immune regulation, host defense against pathogens, and overall respiratory health. The dynamic interplay among the lung microbiota emphasizes their significance in shaping the respiratory milieu and potential impact on diverse pulmonary affections. This [...] Read more.
The lung microbiota is integral to maintaining microenvironmental homeostasis, influencing immune regulation, host defense against pathogens, and overall respiratory health. The dynamic interplay among the lung microbiota emphasizes their significance in shaping the respiratory milieu and potential impact on diverse pulmonary affections. This investigation aimed to identify the effects of invasive mechanical ventilation on the lung microbiome. Materials and Methods: A systematic review was conducted with registration number CRD42023461618, based on a search of PubMed, SCOPUS, and Web of Science databases, in line with the PRISMA guidelines. To achieve this, “(mechanical ventilation) AND (microbiota)” was used as the search term, replicable across all databases. The closing date of the search was 12 March 2025, and the evidence was scored using the MINORS scale. Results: A total of 16 studies were included, with patients aged 13.6 months to 76 years, predominantly male (64.2%). Common ICU admission diagnoses requiring invasive mechanical ventilation (IMV) included pneumonia, acute respiratory failure, and COVID-19. IMV was associated with reduced lung microbiota diversity and an increased prevalence of pathogenic bacteria, including Prevotella, Streptococcus, Staphylococcus, Pseudomonas, and Acinetobacter. The most frequently used antibiotics were cephalosporins, aminoglycosides, and penicillins. IMV-induced pulmonary dysbiosis correlated with higher infection risk and mortality, particularly in pneumonia and COVID-19 cases. Factors such as antimicrobial therapy, enteral nutrition, and systemic inflammation contributed to these alterations. Conclusions: Invasive mechanical ventilation has been associated with the development of alterations in the respiratory microbiome, resulting in reduced diversity of lung microorganisms. Full article
Show Figures

Figure 1

14 pages, 1152 KiB  
Article
Study of lug Operon, SCCmec Elements, Antimicrobial Resistance, MGEs, and STs of Staphylococcus lugdunensis Clinical Isolates Through Whole-Genome Sequencing
by Tein-Yao Chang, Lee-Chung Lin, Cheng-Yen Kao and Jang-Jih Lu
Int. J. Mol. Sci. 2025, 26(13), 6106; https://doi.org/10.3390/ijms26136106 - 25 Jun 2025
Viewed by 425
Abstract
Staphylococcus lugdunensis is a coagulase-negative staphylococcus known for its significant pathogenic potential, often causing severe infections such as endocarditis and bacteremia, with virulence comparable to S. aureus. Despite general susceptibility to most antibiotics, the emergence of oxacillin-resistant strains is increasingly concerning. This [...] Read more.
Staphylococcus lugdunensis is a coagulase-negative staphylococcus known for its significant pathogenic potential, often causing severe infections such as endocarditis and bacteremia, with virulence comparable to S. aureus. Despite general susceptibility to most antibiotics, the emergence of oxacillin-resistant strains is increasingly concerning. This study conducted whole-genome sequencing on 20 S. lugdunensis isolates from Chang Gung Memorial Hospital to explore their genetic diversity, antimicrobial resistance mechanisms, and mobile genetic elements. The lugdunin biosynthetic operon, essential for antimicrobial peptide production, was present in multilocus sequence typing (MLST) types 1, 3, and 6 but absent in STs 4, 27, and 29. Additionally, IS256 insertion elements, ranging from 7 to 17 copies, were identified in four strains and linked to multidrug resistance. CRISPR-Cas systems varied across STs, with type III-A predominant in ST1 and ST6 and type IIC in ST4, ST27, and ST29; notably, ST3 lacked CRISPR systems, correlating with a higher diversity of SCCmec elements and an increased potential for horizontal gene transfer. Phage analysis revealed stable phage–host associations in ST1, ST6, and ST29, whereas ST4 displayed a varied prophage profile. Phenotypic resistance profiles generally aligned with genomic predictions, although discrepancies were observed for aminoglycosides and clindamycin. These findings highlight the complex genetic landscape and evolutionary dynamics of S. lugdunensis, emphasizing the need for genomic surveillance to inform clinical management and prevent the spread of resistant strains. Full article
Show Figures

Figure 1

15 pages, 1308 KiB  
Article
Trends in Antimicrobial Resistance of Acinetobacter baumannii and Pseudomonas aeruginosa from Bloodstream Infections: An Eight-Year Study in a Romanian Tertiary Hospital
by Alina Maria Borcan, Elena Rotaru, Laura Georgiana Caravia, Mihai-Cezar Filipescu and Mădălina Simoiu
Pharmaceuticals 2025, 18(7), 948; https://doi.org/10.3390/ph18070948 - 24 Jun 2025
Viewed by 553
Abstract
Background: Bloodstream infections (BSIs) caused by multidrug-resistant non-fermenting Gram-negative bacilli, particularly Pseudomonas aeruginosa and Acinetobacter baumannii, represent a growing public health concern, especially in tertiary care settings. This study aimed to describe the epidemiological and antimicrobial resistance trends of P. aeruginosa [...] Read more.
Background: Bloodstream infections (BSIs) caused by multidrug-resistant non-fermenting Gram-negative bacilli, particularly Pseudomonas aeruginosa and Acinetobacter baumannii, represent a growing public health concern, especially in tertiary care settings. This study aimed to describe the epidemiological and antimicrobial resistance trends of P. aeruginosa and A. baumannii isolated from blood cultures over an eight-year period (2017–2024) at a tertiary infectious disease hospital in Bucharest, Romania, especially in the context of the disruption caused by the SARS-CoV-2 pandemic. Methods: A retrospective study was conducted on 43,951 blood cultures processed at the National Institute of Infectious Diseases. Species identification and antibiotic susceptibility testing (AST) were performed using VITEK2, MALDI-TOF MS, and supplementary phenotypic methods. AST interpretation followed EUCAST guidelines. Results: Out of all of the positive blood cultures, 112 (3.63%) were P. aeruginosa and 158 (5.12%) A. baumannii. Multidrug-resistance (MDR) was identified in 46% of P. aeruginosa and 90.73% of A. baumannii isolates. Resistance trends varied, with P. aeruginosa showing a decrease in MDR rates post-COVID-19 pandemic and following antimicrobial stewardship implementation. In contrast, A. baumannii displayed persistently high resistance, with carbapenem and aminoglycoside resistance rates reaching 100% by 2024. Colistin resistance, though low overall, increased in the latter years. Conclusions: The findings highlight the dynamic nature of antimicrobial resistance among P. aeruginosa and A. baumannii. Effective infection control and antimicrobial stewardship programs are crucial in curbing the rise of MDR strains, particularly amid healthcare system disruptions such as the COVID-19 pandemic. Full article
(This article belongs to the Special Issue Antibiotic Resistance and Misuse)
Show Figures

Figure 1

Back to TopTop