Study of lug Operon, SCCmec Elements, Antimicrobial Resistance, MGEs, and STs of Staphylococcus lugdunensis Clinical Isolates Through Whole-Genome Sequencing
Abstract
1. Introduction
2. Results
2.1. Lugdunin Biosynthetic Cassette in 20 S. lugdunensis Strains
2.2. IS256 Insertion Sequence in S. lugdunensis Genome
2.3. CRISPR-Cas Systems in S. lugdunensis Strains
2.4. Phage Sequence Distribution by Sequence Type
2.5. MLST Types and SCCmec Elements in S. lugdunensis
2.6. Antibiotic Resistance in S. lugdunensis
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains
4.2. Multilocus Sequence Typing and SCCmec Typing
4.3. Bioinformatic Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Argemi, X.; Hansmann, Y.; Riegel, P.; Prevost, G. Is Staphylococcus lugdunensis Significant in Clinical Samples? J. Clin. Microbiol. 2017, 55, 3167–3174. [Google Scholar] [CrossRef]
- Heilbronner, S.; Foster, T.J. Staphylococcus lugdunensis: A Skin Commensal with Invasive Pathogenic Potential. Clin. Microbiol. Rev. 2021, 34, e00205-20. [Google Scholar] [CrossRef]
- Non, L.R.; Santos, C.A. The occurrence of infective endocarditis with Staphylococcus lugdunensis bacteremia: A retrospective cohort study and systematic review. J. Infect. 2017, 74, 179–186. [Google Scholar] [CrossRef]
- Chang, S.C.; Kao, C.Y.; Lin, L.C.; Hidrosollo, J.H.; Lu, J.J. Lugdunin production and activity in Staphylococcus lugdunensis isolates are associated with its genotypes. Microbiol. Spectr. 2023, 11, e0129823. [Google Scholar] [CrossRef]
- Maiden, M.C.; Bygraves, J.A.; Feil, E.; Morelli, G.; Russell, J.E.; Urwin, R.; Zhang, Q.; Zhou, J.; Zurth, K.; Caugant, D.A.; et al. Multilocus sequence typing: A portable approach to the identification of clones within populations of pathogenic microorganisms. Proc. Natl. Acad. Sci. USA 1998, 95, 3140–3145. [Google Scholar] [CrossRef]
- Cheng, C.W.; Liu, T.P.; Yeh, C.F.; Lee, M.H.; Chang, S.C.; Lu, J.J. Persistence of a major endemic clone of oxacillin-resistant Staphylococcus lugdunensis sequence type 6 at a tertiary medical centre in northern Taiwan. Int. J. Infect. Dis. 2015, 36, 72–77. [Google Scholar] [CrossRef]
- Chang, S.C.; Lee, M.H.; Yeh, C.F.; Liu, T.P.; Lin, J.F.; Ho, C.M.; Lu, J.J. Characterization of two novel variants of staphylococcal cassette chromosome mec elements in oxacillin-resistant Staphylococcus lugdunensis. J. Antimicrob. Chemother. 2017, 72, 3258–3262. [Google Scholar] [CrossRef]
- Shibuya, R.; Uehara, Y.; Baba, T.; Teruya, K.; Satou, K.; Hirano, T.; Kirikae, T.; Hiramatsu, K. Complete genome sequence of a methicillin-resistant Staphylococcus lugdunensis strain and characteristics of its staphylococcal cassette chromosome mec. Sci. Rep. 2020, 10, 8682. [Google Scholar] [CrossRef]
- Montelongo, C.; Mores, C.R.; Putonti, C.; Wolfe, A.J.; Abouelfetouh, A. Whole-Genome Sequencing of Staphylococcus aureus and Staphylococcus haemolyticus Clinical Isolates from Egypt. Microbiol. Spectr. 2022, 10, e0241321. [Google Scholar] [CrossRef]
- Quainoo, S.; Coolen, J.P.M.; van Hijum, S.; Huynen, M.A.; Melchers, W.J.G.; van Schaik, W.; Wertheim, H.F.L. Whole-Genome Sequencing of Bacterial Pathogens: The Future of Nosocomial Outbreak Analysis. Clin. Microbiol. Rev. 2017, 30, 1015–1063. [Google Scholar] [CrossRef]
- Chang, S.C.; Lin, L.C.; Lu, J.J. Comparative Genomic Analyses Reveal Potential Factors Responsible for the ST6 Oxacillin-Resistant Staphylococcus lugdunensis Endemic in a Hospital. Front. Microbiol. 2021, 12, 765437. [Google Scholar] [CrossRef]
- Chang, S.C.; Lin, L.C.; Ge, M.C.; Liu, T.P.; Lu, J.J. Characterization of a novel, type II staphylococcal cassette chromosome mec element from an endemic oxacillin-resistant Staphylococcus lugdunensis clone in a hospital setting. J. Antimicrob. Chemother. 2019, 74, 2162–2165. [Google Scholar] [CrossRef]
- Santos, I.N.M.; Kurihara, M.N.L.; Santos, F.F.; Valiatti, T.B.; Silva, J.; Pignatari, A.C.C.; Salles, M.J. Comparative Phenotypic and Genomic Features of Staphylococci from Sonication Fluid of Orthopedic Implant-Associated Infections with Poor Outcome. Microorganisms 2022, 10, 1149. [Google Scholar] [CrossRef]
- Bitschar, K.; Sauer, B.; Focken, J.; Dehmer, H.; Moos, S.; Konnerth, M.; Schilling, N.A.; Grond, S.; Kalbacher, H.; Kurschus, F.C.; et al. Lugdunin amplifies innate immune responses in the skin in synergy with host- and microbiota-derived factors. Nat. Commun. 2019, 10, 2730. [Google Scholar] [CrossRef]
- Zipperer, A.; Konnerth, M.C.; Laux, C.; Berscheid, A.; Janek, D.; Weidenmaier, C.; Burian, M.; Schilling, N.A.; Slavetinsky, C.; Marschal, M.; et al. Human commensals producing a novel antibiotic impair pathogen colonization. Nature 2016, 535, 511–516. [Google Scholar] [CrossRef]
- Kozitskaya, S.; Cho, S.H.; Dietrich, K.; Marre, R.; Naber, K.; Ziebuhr, W. The bacterial insertion sequence element IS256 occurs preferentially in nosocomial Staphylococcus epidermidis isolates: Association with biofilm formation and resistance to aminoglycosides. Infect. Immun. 2004, 72, 1210–1215. [Google Scholar] [CrossRef]
- Kwon, A.S.; Park, G.C.; Ryu, S.Y.; Lim, D.H.; Lim, D.Y.; Choi, C.H.; Park, Y.; Lim, Y. Higher biofilm formation in multidrug-resistant clinical isolates of Staphylococcus aureus. Int. J. Antimicrob. Agents 2008, 32, 68–72. [Google Scholar] [CrossRef]
- Krauss, S.; Zipperer, A.; Wirtz, S.; Saur, J.; Konnerth, M.C.; Heilbronner, S.; Torres Salazar, B.O.; Grond, S.; Krismer, B.; Peschel, A. Secretion of and Self-Resistance to the Novel Fibupeptide Antimicrobial Lugdunin by Distinct ABC Transporters in Staphylococcus lugdunensis. Antimicrob. Agents Chemother. 2020, 65, 10-1128. [Google Scholar] [CrossRef]
- Fischbach, M.A.; Walsh, C.T. Assembly-line enzymology for polyketide and nonribosomal Peptide antibiotics: Logic, machinery, and mechanisms. Chem. Rev. 2006, 106, 3468–3496. [Google Scholar] [CrossRef]
- Fu, S.; Chen, Y.; Hu, K.; Qin, T.; He, Y.; Zhao, L.; Ma, X.; Chen, L.; Yu, W.; Yu, Y.; et al. Characteristics of staphylococcal cassette chromosome mec and lugdunin operon genes in the complete genome of Staphylococcus lugdunensis. Chin. Med. J. 2023, 136, 1367–1369. [Google Scholar] [CrossRef]
- Schilling, N.A.; Berscheid, A.; Schumacher, J.; Saur, J.S.; Konnerth, M.C.; Wirtz, S.N.; Beltran-Belena, J.M.; Zipperer, A.; Krismer, B.; Peschel, A.; et al. Synthetic Lugdunin Analogues Reveal Essential Structural Motifs for Antimicrobial Action and Proton Translocation Capability. Angew. Chem. Int. Ed. Engl. 2019, 58, 9234–9238. [Google Scholar] [CrossRef] [PubMed]
- Peng, K.T.; Chen, P.C.; Chen, J.L.; Huang, T.Y.; Peng, Y.H.; Liu, J.F.; Lee, C.W.; Chang, P.J. A Comparative Phenotypic and Genomic Analysis of Methicillin-Resistant Staphylococcus aureus ST45 Isolates From Cellulitis and Osteomyelitis in Taiwan. J. Infect. Dis. 2024, 230, e568–e578. [Google Scholar] [CrossRef] [PubMed]
- Mikkelsen, K.; Bowring, J.Z.; Ng, Y.K.; Svanberg Frisinger, F.; Maglegaard, J.K.; Li, Q.; Sieber, R.N.; Petersen, A.; Andersen, P.S.; Rostol, J.T.; et al. An Endogenous Staphylococcus aureus CRISPR-Cas System Limits Phage Proliferation and Is Efficiently Excised from the Genome as Part of the SCCmec Cassette. Microbiol. Spectr. 2023, 11, e0127723. [Google Scholar] [CrossRef]
- Kao, C.Y.; Lu, J.J.; Lin, L.C.; Lin, H.C.; Chang, S.C. Phylogenetic Distribution of CRISPR-Cas Systems in Staphylococcus lugdunensis. Microbiol. Spectr. 2021, 9, e0124721. [Google Scholar] [CrossRef]
- Koonin, E.V.; Makarova, K.S. Mobile Genetic Elements and Evolution of CRISPR-Cas Systems: All the Way There and Back. Genome Biol. Evol. 2017, 9, 2812–2825. [Google Scholar] [CrossRef]
- Chassain, B.; Lemee, L.; Didi, J.; Thiberge, J.M.; Brisse, S.; Pons, J.L.; Pestel-Caron, M. Multilocus sequence typing analysis of Staphylococcus lugdunensis implies a clonal population structure. J. Clin. Microbiol. 2012, 50, 3003–3009. [Google Scholar] [CrossRef]
- Argemi, X.; Matelska, D.; Ginalski, K.; Riegel, P.; Hansmann, Y.; Bloom, J.; Pestel-Caron, M.; Dahyot, S.; Lebeurre, J.; Prevost, G. Comparative genomic analysis of Staphylococcus lugdunensis shows a closed pan-genome and multiple barriers to horizontal gene transfer. BMC Genom. 2018, 19, 621. [Google Scholar] [CrossRef]
- Abdullahi, I.N.; Lozano, C.; Latorre-Fernandez, J.; Zarazaga, M.; Stegger, M.; Torres, C. Genomic analysis of multi-drug resistant coagulase-negative staphylococci from healthy humans and animals revealed unusual mechanisms of resistance and CRISPR-Cas system. Int. Microbiol. 2024, 28, 941–963. [Google Scholar] [CrossRef]
- Shehreen, S.; Chyou, T.Y.; Fineran, P.C.; Brown, C.M. Genome-wide correlation analysis suggests different roles of CRISPR-Cas systems in the acquisition of antibiotic resistance genes in diverse species. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2019, 374, 20180384. [Google Scholar] [CrossRef]
- Touchon, M.; Bernheim, A.; Rocha, E.P. Genetic and life-history traits associated with the distribution of prophages in bacteria. ISME J. 2016, 10, 2744–2754. [Google Scholar] [CrossRef]
- Ho, P.L.; Law, Y.H.; Liu, M.C.; Lau, A.; Tong, M.K.; Chow, K.H.; Wu, A.K.; Tse, C.W.; Cheng, V.C.; Que, T.L. Improved Detection of mecA-Mediated beta-Lactam Resistance in Staphylococcus lugdunensis Using a New Oxacillin Salt Agar Screen. Front. Microbiol. 2021, 12, 704552. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; CLSI Document M100; Clinical and Laboratory Standards Institute: Malvern, PA, USA, 2020. [Google Scholar]
- Kondo, Y.; Ito, T.; Ma, X.X.; Watanabe, S.; Kreiswirth, B.N.; Etienne, J.; Hiramatsu, K. Combination of multiplex PCRs for staphylococcal cassette chromosome mec type assignment: Rapid identification system for mec, ccr, and major differences in junkyard regions. Antimicrob. Agents Chemother. 2007, 51, 264–274. [Google Scholar] [CrossRef]
- Zankari, E.; Hasman, H.; Cosentino, S.; Vestergaard, M.; Rasmussen, S.; Lund, O.; Aarestrup, F.M.; Larsen, M.V. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 2012, 67, 2640–2644. [Google Scholar] [CrossRef]
- Jia, B.; Raphenya, A.R.; Alcock, B.; Waglechner, N.; Guo, P.; Tsang, K.K.; Lago, B.A.; Dave, B.M.; Pereira, S.; Sharma, A.N.; et al. CARD 2017: Expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 2017, 45, D566–D573. [Google Scholar] [CrossRef]
- Chen, L.; Zheng, D.; Liu, B.; Yang, J.; Jin, Q. VFDB 2016: Hierarchical and refined dataset for big data analysis—10 years on. Nucleic Acids Res. 2016, 44, D694–D697. [Google Scholar] [CrossRef]
- Clausen, P.; Aarestrup, F.M.; Lund, O. Rapid and precise alignment of raw reads against redundant databases with KMA. BMC Bioinform. 2018, 19, 307. [Google Scholar] [CrossRef]
- Zhou, Y.; Liang, Y.; Lynch, K.H.; Dennis, J.J.; Wishart, D.S. PHAST: A fast phage search tool. Nucleic Acids Res. 2011, 39, W347–W352. [Google Scholar] [CrossRef]
Strain ID | MLST | SCCmec | Oxacillin Susceptibility | Crispr Type | Lugdunin Operon | IS256 | WGS Method | Plasmid |
---|---|---|---|---|---|---|---|---|
53 | 1 | - | S | IIIA | + | − | Nanopore | - |
249 | - | S | IIIA | + | − | Nanopore | - | |
47 | 3 | V | R | - | + | − | Nanopore | 1 |
71 | V | S | - | + | − | Nanopore | - | |
99 | V | R | - | + | − | Nanopore | 1 | |
131 | V | R | - | + | − | PacBio | 2 | |
135 | Vt | S | - | + | − | Nanopore | 1 | |
138 | IV | R | - | + | − | Nanopore | - | |
220 | - | S | - | + | + | Nanopore | - | |
30 | 4 | - | S | IIC | − | − | Nanopore | - |
167 | - | S | IIC | − | − | Nanopore | - | |
195 | - | S | IIC | − | + | Nanopore | - | |
36 | 6 | II | R | IIIA | + | + | Nanopore | - |
118 | II | R | IIIA | + | + | PacBio | 1 | |
29 | 27 | V | S | IIC | − | − | Nanopore | 2 |
35 | V | S | IIC | − | − | Nanopore | - | |
149 | Vt | R | IIC | − | − | Nanopore | - | |
37 | - | S | IIC | − | − | Nanopore | - | |
210 | - | S | IIC | − | − | Nanopore | - | |
248 | 29 | - | S | IIC | − | − | Nanopore | - |
Strain ID | ST | Phage Sequence | Region Length | Completeness | Score | Most Common Phage | GC % |
---|---|---|---|---|---|---|---|
SL249 | 1 | 2 | 34.2 Kb | questionable | 81 | Staphy_PT1028_NC_007045 | 32.1% |
44.5 Kb | incomplete | 30 | Staphy_StB12_NC_020490 | 34.5% | |||
SL53 | 1 | 1 | 34.3 Kb | questionable | 81 | Staphy_PT1028_NC_007045 | 32.3% |
SL47 | 3 | not found | |||||
SL71 | 3 | 1 | 47.9 Kb | intact | 94 | Staphy_StB20_like_NC_028821 | 32.5% |
SL99 | 3 | not found | |||||
SL131 | 3 | not found | |||||
SL135 | 3 | not found | |||||
SL138 | 3 | not found | |||||
SL220 | 3 | 1 | 20.2 Kb | incomplete | 10 | Staphy_PT1028_NC_007045 | 31.4% |
SL30 | 4 | 1 | 27.7 Kb | incomplete | 40 | Staphy_PT1028_NC_007045 | 30.1% |
2 | 48.2 Kb | intact | 120 | Staphy_187_NC_007047 | 34.5% | ||
SL167 | 4 | 1 | 34.3 Kb | intact | 150 | Staphy_187_NC_007047 | 29.6% |
2 | 27.6 Kb | incomplete | 40 | Staphy_PT1028_NC_007045 | 30.0% | ||
3 | 62.2 Kb | incomplete | 50 | Staphy_CNPx_NC_031241 | 35.1% | ||
SL195 | 4 | 1 | 52.9 Kb | intact | 150 | Staphy_CNPx_NC_031241 | 35.2% |
SL36 | 6 | 1 | 32.8 Kb | intact | 110 | Staphy_phiETA2_NC_008798 | 34.4% |
2 | 112.2 Kb | intact | 93 | Staphy_SPbeta_like_NC_029119 | 30.9% | ||
SL118 | 6 | 1 | 110.4 Kb | intact | 94 | Staphy_SPbeta_like_NC_029119 | 30.9% |
2 | 33.4 Kb | incomplete | 30 | Staphy_StB12_NC_020490 | 34.4% | ||
SL29 | 27 | 1 | 37.5 Kb | incomplete | 60 | Staphy_SPbeta_like_NC_029119 | 30.6% |
SL35 | 27 | 1 | 37.5 Kb | incomplete | 60 | Staphy_SPbeta_like_NC_029119 | 30.6% |
SL37 | 27 | not found | |||||
SL149 | 27 | not found | |||||
SL210 | 27 | not found | |||||
SL248 | 29 | 1 | 45.4 Kb | intact | 150 | Staphy_CNPx_NC_031241 | 35.4% |
Strain ID | SCCmec | P 1 | FOX 2 | CC | E | SXT | TEC | VA 3 | ResFinder Gene |
---|---|---|---|---|---|---|---|---|---|
53 | - | S | S | S | S | S | S | S | Not Found |
249 | - | S | S | S | S | S | S | S | Not Found |
47 | V | R | R | S | S | S | S | S | blaZ, mecA |
71 | V | R | S | S | S | S | S | S | blaZ, mecA |
99 | V | R | R | S | S | S | S | S | blaZ, mecA |
131 | V | R | R | S | S | S | S | S | blaZ, mecA |
135 | Vt | R | S | S | S | S | S | S | blaZ, mecA |
138 | IV | R | R | R | R | S | S | S | blaZ, mecA |
220 | - | R | S | R | R | R | S | S | blaZ, mecA |
30 | - | R | S | S | S | S | S | S | blaZ |
167 | - | R | S | S | S | S | S | S | Not Found |
195 | - | S | S | S | S | S | S | S | blaZ; aac(6′)-aph(2″) |
36 | II | R | R | R | R | S | S | S | aac(6′)-aph(2″); aph(3′)-III; ant(9)-Ia; ant(6)-Ia; mecA; blaZ; erm(A) |
118 | II | R | R | R | R | S | S | S | aac(6′)-aph(2″); aph(3′)-III; ant(9)-Ia; ant(6)-Ia; mecA; blaZ; fusB; erm(A) |
29 | V | S | S | S | S | S | S | S | mecA |
35 | V | S | S | S | S | S | S | S | mecA |
149 | Vt | R | R | S | S | S | S | S | mecA; lnu(A) |
37 | - | R | S | S | S | S | S | S | blaZ |
210 | - | S | S | S | R | S | S | S | Not Found |
248 | - | S | S | R | R | S | S | S | ant(9)-Ia; erm(A) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, T.-Y.; Lin, L.-C.; Kao, C.-Y.; Lu, J.-J. Study of lug Operon, SCCmec Elements, Antimicrobial Resistance, MGEs, and STs of Staphylococcus lugdunensis Clinical Isolates Through Whole-Genome Sequencing. Int. J. Mol. Sci. 2025, 26, 6106. https://doi.org/10.3390/ijms26136106
Chang T-Y, Lin L-C, Kao C-Y, Lu J-J. Study of lug Operon, SCCmec Elements, Antimicrobial Resistance, MGEs, and STs of Staphylococcus lugdunensis Clinical Isolates Through Whole-Genome Sequencing. International Journal of Molecular Sciences. 2025; 26(13):6106. https://doi.org/10.3390/ijms26136106
Chicago/Turabian StyleChang, Tein-Yao, Lee-Chung Lin, Cheng-Yen Kao, and Jang-Jih Lu. 2025. "Study of lug Operon, SCCmec Elements, Antimicrobial Resistance, MGEs, and STs of Staphylococcus lugdunensis Clinical Isolates Through Whole-Genome Sequencing" International Journal of Molecular Sciences 26, no. 13: 6106. https://doi.org/10.3390/ijms26136106
APA StyleChang, T.-Y., Lin, L.-C., Kao, C.-Y., & Lu, J.-J. (2025). Study of lug Operon, SCCmec Elements, Antimicrobial Resistance, MGEs, and STs of Staphylococcus lugdunensis Clinical Isolates Through Whole-Genome Sequencing. International Journal of Molecular Sciences, 26(13), 6106. https://doi.org/10.3390/ijms26136106