Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (769)

Search Parameters:
Keywords = amino acid index

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 490 KiB  
Article
Early Effect of Supplementation with Essential Amino Acids on Cardiac Performance in Elderly Patients with Heart Failure and Sarcopenia
by Giuseppe Armentaro, Velia Cassano, Pasquale Loiacono, Carlo Fuoco, Giandomenico Severini, Carlo Alberto Pastura, Alberto Panza, Marilisa Panza, Elisa Mazza, Sofia Miceli, Arturo Pujia, Tiziana Montalcini and Angela Sciacqua
Int. J. Mol. Sci. 2025, 26(15), 7533; https://doi.org/10.3390/ijms26157533 - 4 Aug 2025
Viewed by 75
Abstract
The aim of the present observational study was to evaluate the early effect of free-form essential amino acid (EAA) supplementation on cardiac and muscular performance in elderly patients with chronic heart failure (HF) with reduced ejection fraction (HFrEF) and sarcopenia, as add-on to [...] Read more.
The aim of the present observational study was to evaluate the early effect of free-form essential amino acid (EAA) supplementation on cardiac and muscular performance in elderly patients with chronic heart failure (HF) with reduced ejection fraction (HFrEF) and sarcopenia, as add-on to the optimized medical therapy (OMT) for HF. The present study included 60 elderly Caucasian patients suffering from HFrEF and sarcopenia. At the baseline and at follow-up, all patients underwent complete physical examination with the determination of the main anthropometric and hemodynamic parameters. After 6 months of supplementation with EAAs, we observed significant improvements in the parameters of sarcopenia. In addition, there was a significant improvement in glycol-metabolic parameters, and in inflammatory index as high sensitivity C-reactive protein (hs-CRP). In accordance with these results, significant decreases were observed in circulating levels of oxidative stress biomarkers Nox-2 (p < 0.001) and 8-Isoprostane (p < 0.001), and platelet aggregation biomarkers such as sP-Selectin (p < 0.001) and Gp-VI (p < 0.001). Of particular interest, after 6 months’ follow-up, there was a significant improvement in LVEF and global longitudinal strain (GLS). In conclusion, this study demonstrates that targeted nutritional intervention with EEAAs represents a viable therapeutic strategy for addressing the complex interplay between cardiac dysfunction and skeletal muscle wasting in elderly HF patients. Full article
(This article belongs to the Special Issue Molecular Pathology and Treatment of Heart Failure)
Show Figures

Figure 1

18 pages, 2188 KiB  
Article
Rational Engineering of a Brevinin-2 Peptide: Decoupling Potency from Toxicity Through C-Terminal Truncation and N-Terminal Chiral Substitution
by Aifang Yao, Zeyu Zhang, Zhengmin Song, Yi Yuan, Xiaoling Chen, Chengbang Ma, Tianbao Chen, Chris Shaw, Mei Zhou and Lei Wang
Antibiotics 2025, 14(8), 784; https://doi.org/10.3390/antibiotics14080784 - 1 Aug 2025
Viewed by 116
Abstract
Background/Objectives: The clinical potential of antimicrobial peptides (AMPs) against dual threats like antimicrobial resistance (AMR) and cancer is often limited by their high host cell toxicity. Here, we focused on brevinin-2OS (B2OS), a novel peptide from the skin of Odorrana schmackeri with [...] Read more.
Background/Objectives: The clinical potential of antimicrobial peptides (AMPs) against dual threats like antimicrobial resistance (AMR) and cancer is often limited by their high host cell toxicity. Here, we focused on brevinin-2OS (B2OS), a novel peptide from the skin of Odorrana schmackeri with potent haemolytic activity. The objective was to study the structure–activity relationship and optimise the safety via targeted modifications. Methods: A dual-modification strategy involving C-terminal truncation and subsequent N-terminal D-amino acid substitution was employed. The bioactivities and safety profiles of the resulting analogues were evaluated using antimicrobial, haemolysis, and cytotoxicity assays. Result: Removal of the rana box in B2OS(1-22)-NH2 substantially reduced haemolysis while maintaining bioactivities. Remarkably, the D-leucine substitution in [D-Leu2]B2OS(1-22)-NH2 displayed a superior HC50 value of 118.1 µM, representing a more than ten-fold improvement compared to its parent peptide (HC50 of 10.44 µM). This optimised analogue also demonstrated faster bactericidal kinetics and enhanced membrane permeabilisation, leading to a greater than 22-fold improvement in its therapeutic index against Gram-positive bacteria. Conclusions: The C-terminal rana box is a primary determinant of toxicity rather than a requirement for activity in the B2OS scaffold. The engineered peptide [D-Leu2]B2OS(1-22)-NH2 emerges as a promising lead compound, and this dual-modification strategy provides a powerful design principle for developing safer, more effective peptide-based therapeutics. Full article
(This article belongs to the Section Antimicrobial Peptides)
Show Figures

Figure 1

17 pages, 482 KiB  
Article
Branched-Chain Amino Acids Combined with Exercise Improves Physical Function and Quality of Life in Older Adults: Results from a Pilot Randomized Controlled Trial
by Ronna Robbins, Jason C. O’Connor, Tiffany M. Cortes and Monica C. Serra
Dietetics 2025, 4(3), 32; https://doi.org/10.3390/dietetics4030032 - 1 Aug 2025
Viewed by 245
Abstract
This pilot, randomized, double-blind, placebo-controlled trial investigated the effects of branched-chain amino acids (BCAAs)—provided in a 2:1:1 ratio of leucine:isoleucine:valine—combined with exercise on fatigue, physical performance, and quality of life in older adults. Twenty participants (63% female; BMI: 35 ± 2 kg/m2 [...] Read more.
This pilot, randomized, double-blind, placebo-controlled trial investigated the effects of branched-chain amino acids (BCAAs)—provided in a 2:1:1 ratio of leucine:isoleucine:valine—combined with exercise on fatigue, physical performance, and quality of life in older adults. Twenty participants (63% female; BMI: 35 ± 2 kg/m2; age: 70.5 ± 1.2 years) were randomized to 8 weeks of either exercise + BCAAs (100 mg/kg body weight/d) or exercise + placebo. The program included moderate aerobic and resistance training three times weekly. Physical function was assessed using handgrip strength, chair stands, gait speed, VO2 max, and a 400 m walk. Psychological health was evaluated using the CES-D, Fatigue Assessment Scale (FAS), Insomnia Severity Index (ISI), and global pain, fatigue, and quality of life using a visual analog scale (VAS). Significant group x time interactions were found for handgrip strength (p = 0.03), chair stands (p < 0.01), and 400 m walk time (p < 0.01). Compared to exercise + placebo, exercise + BCAAs showed greater improvements in strength, mobility, and endurance, along with reductions in fatigue (−45% vs. +92%) and depressive symptoms (−29% vs. +5%). Time effects were also observed for ISI (−30%), FAS (−21%), and VAS quality of life (16%) following exercise + BCAA supplementation. These preliminary results suggest that BCAAs combined with exercise may be an effective way to improve physical performance and reduce fatigue and depressive symptoms in older adults. Full article
Show Figures

Figure 1

24 pages, 3204 KiB  
Article
Host Shaping Associated Microbiota in Hydrothermal Vent Snails from the Indian Ocean Ridge
by Xiang Zeng, Jianwei Chen, Guilin Liu, Yadong Zhou, Liping Wang, Yaolei Zhang, Shanshan Liu and Zongze Shao
Biology 2025, 14(8), 954; https://doi.org/10.3390/biology14080954 - 29 Jul 2025
Viewed by 241
Abstract
Snails at hydrothermal vents rely on symbiotic bacteria for nutrition; however, the specifics of these associations in adapting to such extreme environments remain underexplored. This study investigated the community structure and metabolic potential of bacteria associated with two Indian Ocean vent snails, Chrysomallon [...] Read more.
Snails at hydrothermal vents rely on symbiotic bacteria for nutrition; however, the specifics of these associations in adapting to such extreme environments remain underexplored. This study investigated the community structure and metabolic potential of bacteria associated with two Indian Ocean vent snails, Chrysomallon squamiferum and Gigantopelta aegis. Using microscopic, phylogenetic, and metagenomic analyses, this study examines bacterial communities inhabiting the foot and gland tissues of these snails. G. aegis exhibited exceptionally low bacterial diversity (Shannon index 0.14–0.18), primarily Gammaproteobacteria (99.9%), including chemosynthetic sulfur-oxidizing Chromatiales using Calvin–Benson–Bassham cycle and methane-oxidizing Methylococcales in the glands. C. squamiferum hosted significantly more diverse symbionts (Shannon indices 1.32–4.60). Its black variety scales were dominated by Campylobacterota (67.01–80.98%), such as Sulfurovum, which perform sulfur/hydrogen oxidation via the reductive tricarboxylic acid cycle, with both Campylobacterota and Gammaproteobacteria prevalent in the glands. The white-scaled variety of C. squamiferum had less Campylobacterota but a higher diversity of heterotrophic bacteria, including Delta-/Alpha-Proteobacteria, Bacteroidetes, and Firmicutes (classified as Desulfobacterota, Pseudomomonadota, Bacteroidota, and Bacillota in GTDB taxonomy). In C. squamiferum, Gammaproteobacteria, including Chromatiales, Thiotrichales, and a novel order “Endothiobacterales,” were chemosynthetic, capable of oxidizing sulfur, hydrogen, or iron, and utilizing the Calvin–Benson–Bassham cycle for carbon fixation. Heterotrophic Delta- and Alpha-Proteobacteria, Bacteroidetes, and Firmicutes potentially utilize organic matter from protein, starch, collagen, amino acids, thereby contributing to the holobiont community and host nutrition accessibility. The results indicate that host species and intra-species variation, rather than the immediate habitat, might shape the symbiotic microbial communities, crucial for the snails’ adaptation to vent ecosystems. Full article
Show Figures

Figure 1

19 pages, 4179 KiB  
Article
Camel Milk-Derived Extracellular Vesicles as a Functional Food Component Ameliorate Hypobaric Hypoxia-Induced Colonic Injury Through Microbiota–Metabolite Crosstalk
by Hui Yang, Demtu Er, Yu-Huan Wang, Bin-Tao Zhai and Rili Ge
Nutrients 2025, 17(15), 2431; https://doi.org/10.3390/nu17152431 - 25 Jul 2025
Viewed by 354
Abstract
Background/Objectives: This study investigates the therapeutic potential of camel milk-derived extracellular vesicles (CM-EVs) for treating colonic damage caused by high-altitude hypoxia, supporting the WHO’s “Food as Medicine” initiative. Methods: Using a 5500 m mouse model, researchers induced colonic injury and treated it with [...] Read more.
Background/Objectives: This study investigates the therapeutic potential of camel milk-derived extracellular vesicles (CM-EVs) for treating colonic damage caused by high-altitude hypoxia, supporting the WHO’s “Food as Medicine” initiative. Methods: Using a 5500 m mouse model, researchers induced colonic injury and treated it with oral CM-EVs for 15 days, comparing results to whole camel milk. Results: CM-EVs outperformed whole milk, significantly improving colon health by restoring barrier integrity and reducing disease activity index (DAI) (p < 0.01). They boosted beneficial bacteria like Lactobacillus and Bifidobacterium and decreased Enterobacteriaceae (p < 0.01). Metabolic analysis showed restored bile acid balance and amino acid modulation via the FXR/NF-κB pathway, reducing TLR4/MyD88-mediated inflammation and oxidative stress (p < 0.01). Fecal microbiota transplantation in the CM-EVs group notably decreased DAI and increased colon length (p < 0.05). Conclusions: CM-EVs repair mucosal damage, balance microbiota, and regulate metabolism to combat hypoxia-induced colonic damage, suggesting their potential as nutraceuticals and altitude-adaptive foods. This showcases nanotechnology’s role in enhancing traditional dietary benefits via precision nutrition. Full article
Show Figures

Figure 1

12 pages, 216 KiB  
Article
Amino Acid Biostimulants Enhance Drought and Heat Stress Tolerance of Creeping Bentgrass (Agrostis Stolonifera L.)
by Xunzhong Zhang, Mike Goatley, Maude Focke, Graham Sherman, Berit Smith, Taylor Motsinger, Catherine Roué and Jay Goos
Horticulturae 2025, 11(7), 853; https://doi.org/10.3390/horticulturae11070853 - 19 Jul 2025
Viewed by 314
Abstract
Creeping bentgrass (Agrostis stolonifera L.) is an important cool-season turfgrass species widely used for golf course putting greens; however, it experiences a summer stress-induced quality decline in the U.S. transition zone and other regions with similar climates. The objective of this study [...] Read more.
Creeping bentgrass (Agrostis stolonifera L.) is an important cool-season turfgrass species widely used for golf course putting greens; however, it experiences a summer stress-induced quality decline in the U.S. transition zone and other regions with similar climates. The objective of this study was to determine the effects of five amino acid biostimulants on creeping bentgrass drought and heat stress tolerance. The five biostimulants, including Superbia, Amino Pro V, Siapton, Benvireo, and Surety, at the rate of 0.22 g of N m−2, were applied biweekly to foliage, and the treatments were arranged in a randomized block design with four replications and were subjected to 56 days of heat and drought stress in growth chamber conditions. The amino acid biostimulants Superbia and Amino Pro V improved the turf quality, photochemical efficiency (PE), normalized difference vegetation index (NDVI), chlorophyll content, antioxidant enzyme superoxide dismutase activity, root growth, and viability and suppressed leaf H2O2 levels when compared to a control. Among the treatments, Superbia and Amino Pro V exhibited greater beneficial effects on turf quality and physiological fitness. The results of this study suggest that foliar application of amino acid biostimulants may improve the summer stress tolerance of cool-season turfgrass species in the U.S. transition zone and other regions with similar climates. Full article
(This article belongs to the Topic Biostimulants in Agriculture—2nd Edition)
14 pages, 2957 KiB  
Article
Patchy Phylogenetic Distribution and Poor Translational Adaptation of a Nested ORF in the Mammalian Mitochondrial cytb Gene
by Sheng-Lin Shi, Dan-Tong Li and Yan-Qun Liu
Genes 2025, 16(7), 833; https://doi.org/10.3390/genes16070833 - 17 Jul 2025
Viewed by 282
Abstract
Background: The mammalian mitochondrial genome has long been considered to encode only 13 proteins. However, a recent study identified a nested alternative open reading frame (nAltORF) within the primate mitochondrial cytb gene, which we designate ncytb, that is reportedly translated in the [...] Read more.
Background: The mammalian mitochondrial genome has long been considered to encode only 13 proteins. However, a recent study identified a nested alternative open reading frame (nAltORF) within the primate mitochondrial cytb gene, which we designate ncytb, that is reportedly translated in the cytosol using the standard genetic code. This discovery challenges conventional understanding and raises questions about the prevalence, conservation, and translational adaptation of such ORFs. Methods: This study conducted a comprehensive bioinformatic analysis of nested ncytb genes in 289 primate and 380 rodent mitochondrial cytb sequences. Results: Nested ncytb genes meeting the criteria (>150 codons, standard genetic code) were identified in only 10.73% of primate and 20.53% of rodent species, suggesting a patchy phylogenetic distribution. While their encoded proteins showed homology to the previously reported protein encoded by the Homo sapiens nested ncytb gene, overall amino acid conservation was low, and characteristic protein domains or signal peptides were generally not predicted. Crucially, the Kozak consensus sequences surrounding the putative start codons of these ncytb genes were exclusively “weak” or “adequate”, with none classified as “strong” or “optimal”. Codon Adaptation Index (CAI) and Relative Codon Deoptimization Index (RCDI) analyses of the nested ncytb genes revealed neither significant adaptation nor deoptimization to the codon usage of nuclear and mitochondrial genes. Furthermore, cosine similarity analysis indicated that ncytb genes exhibit significantly lower codon usage similarity to both nuclear and mitochondrial gene sets compared to their host cytb genes. Conclusions: These findings collectively suggest that while ncytb genes exist in some mammals, their inconsistent presence, weak translational initiation signals, and lack of adaptation to cytosolic codon usage characterize them as dispensable genetic elements rather than core functional genes. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

18 pages, 6067 KiB  
Article
Joint Transcriptomic and Metabolomic Analysis of Molecular Physiological Mechanisms of Tea Tree Roots in Response to pH Regulation
by Qi Zhang, Mingzhe Li, Miao Jia, Zewei Zhou, Yulin Wang, Yankun Liao, Xiaoli Jia, Tingting Wang, Haibin Wang and Jianghua Ye
Horticulturae 2025, 11(7), 821; https://doi.org/10.3390/horticulturae11070821 - 10 Jul 2025
Viewed by 329
Abstract
The tea tree root system is an important tissue for nutrient uptake, accumulation, and transport, and pH is an important environmental factor regulating the growth of tea tree (Camellia sinensis). However, the physiological and molecular mechanisms of how the tea tree [...] Read more.
The tea tree root system is an important tissue for nutrient uptake, accumulation, and transport, and pH is an important environmental factor regulating the growth of tea tree (Camellia sinensis). However, the physiological and molecular mechanisms of how the tea tree root system responds to pH are unclear. In this study, Tieguanyin tea tree was used as the research object, and treated with different pH values to determine the morphological indexes of the tea plant root system and systematically study the physiological and molecular mechanisms of the effect of pH on the growth of the tea plant root system using transcriptomics in combination with metabolomics. The results showed that total root length, root surface area, root volume, total root tips, root fork number, and root crossing number of root crosses of the tea plant root system increased significantly (p < 0.05) with increasing pH. Transcriptome analysis showed that a total of 2654 characteristic genes were obtained in response to pH regulation in the root system of the tea plant, which were mainly enriched in six metabolic pathways. Metabolomics analysis showed that the metabolites with the highest contribution in differentiating tea plant responses to different pH regulations were mainly heterocyclic compounds, amino acids and derivatives, alkaloids, and flavonoids. Interaction network analysis showed that pH positively regulated the metabolic intensity of the MAPK signaling pathway (plant, plant hormone signal transduction, and RNA degradation pathway), positively regulated the content of the heterocyclic compound, amino acids and derivatives, and alkaloids, and positively regulated tea plant root growth. However, it negatively regulated ribosome, protein processing in the endoplasmic reticulum, and phenylpropanoid biosynthesis pathway intensity, and negatively regulated the flavonoid content. This study reveals the physiological and molecular mechanisms of the tea plant root system in response to pH changes and provides an important theoretical basis for the cultivation and management of tea plants in acidified tea plantations. Full article
(This article belongs to the Special Issue Abiotic Stress Tolerance and Breeding Strategies in Tea Plants)
Show Figures

Figure 1

19 pages, 808 KiB  
Article
Nutritional and Organoleptic Characterization of Two Quinoa (Chenopodium quinoa) Cultivars Grown in Quebec, Canada
by Aria Haiying Huang, Sophie Turcot, Nancy Graveline, Marylène Pelletier, Hugues Plourde, Sébastien Villeneuve and Isabelle Germain
Foods 2025, 14(13), 2394; https://doi.org/10.3390/foods14132394 - 7 Jul 2025
Viewed by 508
Abstract
Quinoa (Chenopodium quinoa) cultivation and consumption have been increasing globally for its nutritional value and agricultural adaptability, with over 120 countries involved in its production. In Canada, quinoa is cultivated as a specialty crop to increase crop diversity and support agroresilience. [...] Read more.
Quinoa (Chenopodium quinoa) cultivation and consumption have been increasing globally for its nutritional value and agricultural adaptability, with over 120 countries involved in its production. In Canada, quinoa is cultivated as a specialty crop to increase crop diversity and support agroresilience. This study is the first to examine quinoa cultivars grown under northern Quebec conditions and to provide a nutritional and sensory characterization of two Quebec (Canada) varieties (Sweet and Bitter) in comparison to the Bolivian reference cultivar, Royal White. Analyses included proximate composition, amino acids, fatty acids, phenolics, and anti-nutrients. Sensory evaluations involved hedonic and bitterness ranking tests. Bolivian cultivar had higher omega-3 content, while the Quebec cultivars showed favorable protein and lipid profiles, with better lipid health indexes. Protein quality was comparable between the Bolivian and Sweet cultivars. The overall flavor appreciation was similar among twice-brushed Bitter cultivar and Bolivian samples. The Bolivian sample received a better score for texture. Descriptive flavor data support the development of a quinoa flavor lexicon. Notably, total saponins content, commonly used as a bitterness indicator, did not consistently correlate with perceived bitterness, emphasizing the need for a standardized quantification method for cultivar selection and further investigation into other flavor-contributing compounds. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

23 pages, 1189 KiB  
Article
Hyaluronic Acid-Graft-Poly(L-Lysine): Synthesis and Evaluation as a Gene Delivery System
by Viktor Korzhikov-Vlakh, Polina Teterina, Nina Gubina, Apollinariia Dzhuzha, Tatiana Tennikova and Evgenia Korzhikova-Vlakh
Polysaccharides 2025, 6(3), 60; https://doi.org/10.3390/polysaccharides6030060 - 5 Jul 2025
Viewed by 536
Abstract
The synthesis of novel biodegradable polymers as non-viral vectors remains one of the challenging tasks in the field of gene delivery. In this study, the synthesis of the polysaccharide-g-polypeptide copolymers, namely, hyaluronic acid-g-polylysine (HA-g-PLys), using a copper-free [...] Read more.
The synthesis of novel biodegradable polymers as non-viral vectors remains one of the challenging tasks in the field of gene delivery. In this study, the synthesis of the polysaccharide-g-polypeptide copolymers, namely, hyaluronic acid-g-polylysine (HA-g-PLys), using a copper-free strain-promoted azide-alkyne cycloaddition reaction was proposed. For this purpose, hyaluronic acid was modified with dibenzocyclooctyne moieties, and poly-L-lysine with a terminal azido group was obtained using ring-opening polymerization of N-carboxyanhydride of the corresponding protected amino acid, initiated with the amino group azido-PEG3-amine. Two HA-g-PLys samples with different degrees of grafting were synthesized, and the structures of all modified and synthesized polymers were confirmed using 1H NMR and FTIR spectroscopy. The HA-g-PLys samples obtained were able to form nanoparticles in aqueous media due to self-assembly driven by electrostatic interactions. The binding of DNA and model siRNA by copolymers to form polyplexes was analyzed using ethidium bromide, agarose gel electrophoresis, and SybrGreen I assays. The hydrodynamic diameter of polyplexes was ˂300 nm (polydispersity index, PDI ˂ 0.3). The release of a model fluorescently-labeled oligonucleotide in the complex biological medium was significantly higher in the case of HA-g-PLys as compared to that in the case of PLys-based polyplexes. In addition, the cytotoxicity in normal and cancer cells, as well as the ability of HA-g-PLys to facilitate intracellular delivery of anti-GFP siRNA to NIH-3T3/GFP+ cells, were evaluated. Full article
Show Figures

Figure 1

11 pages, 512 KiB  
Article
Validation with the Dynamic Prediction Model of Protein and Amino Acid Requirements for Growth Performance and Health in Layer Chicks
by Zhi-Yuan Xia, Alainaa Refaie, Miao Liu, You-Yang Wei, Lv-Hui Sun and Zhang-Chao Deng
Animals 2025, 15(13), 1968; https://doi.org/10.3390/ani15131968 - 4 Jul 2025
Viewed by 280
Abstract
This study evaluated an established dynamic prediction model for protein and amino acid nutritional requirements on growth performance and health in layer chicks. A total of 288 one-day-old healthy Jing Tint 6 chicks were randomly divided into four treatment groups with 6 replicates [...] Read more.
This study evaluated an established dynamic prediction model for protein and amino acid nutritional requirements on growth performance and health in layer chicks. A total of 288 one-day-old healthy Jing Tint 6 chicks were randomly divided into four treatment groups with 6 replicates of 12 chicks each. The chicks in the four groups were fed a basal diet (BD) according to the feeding standards and a model diet (MD) based on the dynamic prediction model for protein and amino acid values at 90%, 100%, or 110% for 6 weeks. The results showed that, compared to the BD, the 110% MD increased (p < 0.05) the FI and the 100% MD had no effect (p > 0.05) on FI, BWG, and FCR of chicks throughout the entire feeding phase. The 90% MD, however, significantly reduced (p < 0.05) FI and BWG, while also increasing (p < 0.05) FCR during the 3–6- and 0–6-week periods. Additionally, compared to the BD, the 100% MD had a lower (p < 0.05) intake of crude protein, methionine, lysine, and threonine than that of the BD. Both the 100% and 110% MDs increased (p < 0.05) bursa weight and its index at the 2nd week, while the 90% MD reduced (p < 0.05) the weights of the liver, spleen, and pancreas at the 6th week when compared to the BD. Moreover, the 100% MD increased (p < 0.05) the weights of the duodenum and jejunum, while the 90% MD decreased (p < 0.05) jejunum and ileum length at the 2nd or 6th week. Furthermore, no differences (p > 0.05) were found in serum ALT, AST, BUN, and UA between the 100% MD and BD groups. In conclusion, the dynamic prediction model can minimize protein waste while supporting healthy growth and development in layer chicks. Full article
Show Figures

Figure 1

19 pages, 8079 KiB  
Article
Identification and Expression Pattern Analysis of AsSWEET Gene Family in Achnatherum splendens
by Ming Hu, Wei Kou, Mingsu Chen, Xiaoying Li, Jingru Wang, Jiahuan Niu, Fei Wang, Hongbin Li and Rong Li
Int. J. Mol. Sci. 2025, 26(13), 6438; https://doi.org/10.3390/ijms26136438 - 4 Jul 2025
Viewed by 273
Abstract
Sugars Will Eventually Be Exported Transporters (SWEETs) are involved in plant growth and development, particularly in resistance to adverse environments. Achnatherum splendens (Trin.) Nevski exhibits rhizosheath formation and demonstrates notable salt and drought tolerance. We identified 31 sugar transporter family genes [...] Read more.
Sugars Will Eventually Be Exported Transporters (SWEETs) are involved in plant growth and development, particularly in resistance to adverse environments. Achnatherum splendens (Trin.) Nevski exhibits rhizosheath formation and demonstrates notable salt and drought tolerance. We identified 31 sugar transporter family genes (AsSWEETs) from the Achnatherum splendens genome in the NCBI database and performed bioinformatics analyses, including gene structure, subcellular localization, conserved sequences, promoter cis-acting elements, phylogenetic relationships, and chromosomal localization. The 31 AsSWEET genes are distributed across 13 chromosomes, encoding peptides ranging from 375 to 1353 amino acids. Their predicted molecular weights range from 31,499.38 to 109,286.91 Da, with isoelectric points (pI) between 4.78 and 5.21. The aliphatic index values range from 13.59 to 24.19, and the grand average of hydropathicity (GRAVY) values range from 0.663 to 1.664. An analysis of promoter cis-acting elements reveals that all 31 AsSWEET genes contain multiple elements related to light, stress, and hormone responses. Subcellular localization predictions indicate that most genes in this family are localized to the plasma membrane or tonoplast, with AsSWEET12-2 and AsSWEET3b localized in chloroplasts and AsSWEET2b-2 in the nucleus. qRT-PCR results show that AsSWEET13-1, AsSWEET13-3, and AsSWEET1a exhibit upregulated expression in response to salt and drought stress in the roots of Achnatherum splendens. These genes may serve as candidate genes for investigating the stress resistance mechanisms of Achnatherum splendens. The findings provide a theoretical basis for further research on stress resistance mechanisms and candidate gene identification under salt and drought stress in Achnatherum splendens. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

17 pages, 572 KiB  
Article
Synthetic Human Lactoferrin Peptide hLF(1-11) Shows Antifungal Activity and Synergism with Fluconazole and Anidulafungin Towards Candida albicans and Various Non-Albicans Candida Species, Including Candidozyma auris
by Carlo Brouwer, Youp van der Linden, Maria Rios Carrasco, Saleh Alwasel, Tarad Abalkhail, Fatimah O. Al-Otibi, Teun Boekhout and Mick M. Welling
Antibiotics 2025, 14(7), 671; https://doi.org/10.3390/antibiotics14070671 - 2 Jul 2025
Viewed by 543
Abstract
Introduction: Candidozyma auris (Cz. auris) has emerged globally, and diseases caused by it are associated with a mortality rate of 30–72%. This yeast is often multidrug-resistant and challenging to treat. A synthetic peptide, consisting of 11 amino acids of human lactoferrin [...] Read more.
Introduction: Candidozyma auris (Cz. auris) has emerged globally, and diseases caused by it are associated with a mortality rate of 30–72%. This yeast is often multidrug-resistant and challenging to treat. A synthetic peptide, consisting of 11 amino acids of human lactoferrin (hLF1-11), offers a new therapy that is active against Candida albicans, non-albicans Candida yeasts, as well as Cz. auris. The current study examined the susceptibility of clinically relevant Candida species to hLF(1-11) in vitro and investigated the synergistic interaction of this peptide with fluconazole (FLU) and anidulafungin (ANI). Methods: Susceptibility of the yeasts to hLF(1-11) was tested with a microdilution method to determine minimum inhibitory concentrations (MICs). A total of 59 strains belonging to 16 species of Candida or Candidozyma were tested. The treatment cohort included 20 strains of Cz. auris originating from six different countries. Results: Mean MIC values of all susceptible strains ranged from 16.66 ± 6.46 μg/mL to 45.83 ± 10.21 μg/mL. There were no statistical differences in the susceptibility of hLF(1-11) for Cz. auris across geographic origins. In the combinatory tests, drugs acting together, the fractional inhibitory concentration indexes [FIC] < 1.0, showed a synergistic or additive effect on the efficacy of FLU and ANI when used in combination with hLF(1-11). [FIC] indexes 1–2 were interpreted as intermediate. MIC values in combinatory use were 1–2 titer steps lower than when used alone. Conclusions: hLF(1-11) inhibits the growth of yeasts that belong to the genus Candida, including Cz. auris. The combinatory use may be further investigated to treat infections caused by resistant yeasts. Full article
(This article belongs to the Special Issue Bioactive Peptides and Their Antibiotic Activity)
Show Figures

Figure 1

17 pages, 8138 KiB  
Article
Function and Molecular Mechanism of Circhomer1 in Myogenesis
by Zonggang Yu, Kaiming Wang, Bohe Chen, Jingwen Liu, Wenwu Chen and Haiming Ma
Int. J. Mol. Sci. 2025, 26(13), 6264; https://doi.org/10.3390/ijms26136264 - 28 Jun 2025
Viewed by 387
Abstract
Skeletal muscle is one of the largest tissues in the body. It is of great significance to analyze the molecular mechanism of skeletal muscle development for the further study of meat quality improvement and muscle diseases. CircRNA has been reported to be involved [...] Read more.
Skeletal muscle is one of the largest tissues in the body. It is of great significance to analyze the molecular mechanism of skeletal muscle development for the further study of meat quality improvement and muscle diseases. CircRNA has been reported to be involved in many biological processes, but further research is needed in skeletal muscle. In this study, we detected the authenticity, stability, and spatio-temporal expression characteristics of circHOMER1 and its effect on the proliferation, apoptosis, and differentiation of muscle cells, and analyzed its possible molecular mechanism. The results showed that circHOMER1 exists in the skeletal muscle of the Ningxiang pig, is more stable than linear RNA, and is significantly upregulated in adipose tissue and during the early growth of myoblasts. In terms of function, overexpression of circHOMER1 significantly promoted the expression levels of proliferation marker genes and proteins and significantly increased the EdU positive cell rate, optical density (OD) value (at 450 nm), and proportion of S-phase cells. Overexpression of circHOMER1 also significantly promoted the expression levels of apoptosis marker genes and proteins and significantly increased the proportions of cells in Q2 (with late apoptosis) and Q3 (with early apoptosis). Overexpression of circHOMER1 significantly inhibited the expression levels of differentiation marker genes and proteins, significantly inhibited the differentiation index, and decreased the proportion of 5-nucleus muscle fibers. Conversely, opposite results were obtained after circHOMER1 interference. In terms of molecules mechanism, subcellular localization analysis showed that circHOMER1 was mainly distributed in cytoplasm, and mechanism analysis showed that circHOMER1 participated in myoblast development by forming a 4-element interaction network with 4 miRNAs, 2 lncRNAs, and 20 mRNAs, and possibly regulated myoblast development by encoding 79 amino acids. To sum up, we verified that circHOMER1 promoted the proliferation and apoptosis of myoblasts and inhibited their differentiation. It may regulate the development of myoblasts through ceRNA or by encoding small peptides. These results provided a reference for the regulation mechanism of muscle development and the breeding of Ningxiang pigs. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

13 pages, 1211 KiB  
Article
Collection, Evaluation, and New Cultivar Breeding of Actinidia chinensis var. chinensis in Wudang Mountains, China
by Tao Xiao, Tianjiao Jia, Wei Wu, Jiaqing Peng, Liang Pan, Xianbo Zhu, Tao Liu, Junhuan Cheng, Hualing Wang, Lili Xiao, Hailei Huang, Guangming Hu and Shuaiyu Zou
Horticulturae 2025, 11(7), 739; https://doi.org/10.3390/horticulturae11070739 - 26 Jun 2025
Viewed by 414
Abstract
To develop new kiwifruit cultivars (Actinidia chinensis var. chinensis) with desirable traits, we conducted wild resource surveys in the Wudang Mountains region of China. Seven promising accessions were identified through preliminary screening, exhibiting fruit weights ranging from 50.46 g to 75.06 [...] Read more.
To develop new kiwifruit cultivars (Actinidia chinensis var. chinensis) with desirable traits, we conducted wild resource surveys in the Wudang Mountains region of China. Seven promising accessions were identified through preliminary screening, exhibiting fruit weights ranging from 50.46 g to 75.06 g and a soluble solids content (SSC) between 14.33% and 16.32%. The accession ‘WD-03-1’ stood out by meeting the dual selection criteria of fruit weight exceeding 70 g and a SSC above 15%. After a decade-long evaluation, this elite genotype was officially certified as a superior cultivar by the Hubei Provincial Variety Committee for Forestry in 2016, receiving the registered name ‘Wudang 1’. Distinguished as a rare green-fleshed variety in the A. chinensis var. chinensis, ‘Wudang 1’ produces uniform elliptical fruits (shape index of 1.34) with an average weight of 83.22 g. Its flesh combines sweet and tart flavors with exceptional nutritional parameters: 16.33% SSC, 15.28% dry matter, 12.10% soluble sugars, 1.24% titratable acidity, 132.10 mg/100 g vitamin C, and 7.77 mg/g amino acids. Comparative analysis with established cultivars ‘Jinnong’ and ‘Cuiyu’ revealed that ‘Wudang 1’ matures earlier and demonstrates superior performance in three key quality metrics (SSC, dry matter, and vitamin C). Further analysis of aromatic profiles during the prime consumption stage identified 41 volatile compounds, predominantly comprising aldehydes, esters, alcohols, and ketones, which collectively contribute to its distinctive fragrance. Full article
(This article belongs to the Special Issue New Insights into Breeding and Genetic Improvement of Fruit Crops)
Show Figures

Figure 1

Back to TopTop