Branched-Chain Amino Acids Combined with Exercise Improves Physical Function and Quality of Life in Older Adults: Results from a Pilot Randomized Controlled Trial
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Overview
2.2. Phase 1: Recruitment and Screening
2.3. Phase 2: Baseline: Assessment Measures
2.3.1. Body Composition Measurements
2.3.2. Physical Fatigue and Function (Strength and Endurance)
2.3.3. Self-Report Measures of Mental Fatigue and Psychological Health
2.4. Phase 3: Randomization and Acute (Single-Dose) Supplementation Intervention
2.5. Phase 4: Exercise and Supplement Intervention
2.5.1. Exercise
2.5.2. BCAAs and Placebo Consumption
2.6. Phase 5: Post-Intervention Testing
2.7. Statistical Analysis
3. Results
3.1. Characteristics
3.2. Intervention Effects
3.2.1. Effects of Acute BCAA Supplementation
3.2.2. Effects of 8-Week BCAA Supplementation and Exercise Intervention
4. Discussion
4.1. Physical Fatigue and Function
4.2. Mental Fatigue and Psychological Health
4.3. Mechanistic Insights
4.4. Limitations and Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BCAAs | Branched-chain Amino Acids |
EX + PLA | Exercise combined with placebo group |
EX + BCAAs | Exercise combined with BCAA group |
BMI | Body Mass Index |
MOCA | Montreal Cognitive Assessment |
CES-D | Center for Epidemiological Studies Depression |
DEXA | Dual-Energy X-ray Absorptiometry |
ASMI | Appendicular Skeletal Muscle Index |
CPET | Cardiopulmonary exercise test |
HR | Heart Rate |
FAS | Fatigue Assessment Scale |
ISI | Insomnia Severity Index |
VAS | Visual Analog Scale |
mm | millimeters |
RPE | Rate of Perceived Exertion |
HR | Heart Rate Max |
mTOR | Mammalian target of rapamycin |
References
- Hickie, I.B.; Hooker, A.W.; Hadzi-Pavlovic, D.; Bennett, B.K.; Wilson, A.J.; Lloyd, A.R. Fatigue in selected primary care settings: Sociodemographic and psychiatric correlates. Med. J. Aust. 1996, 164, 585–588. [Google Scholar] [CrossRef]
- Liao, S.; Ferrell, B.A. Fatigue in an older population. J. Am. Geriatr. Soc. 2000, 48, 426–430. [Google Scholar] [CrossRef]
- Edwards, R.H. Human muscle function and fatigue. In Ciba Foundation Symposium 82—Human Muscle Fatigue: Physiological Mechanisms; Pitman Medical: London, UK, 1981; Volume 82, pp. 1–18. [Google Scholar] [CrossRef]
- Bogdanis, G.C. Effects of physical activity and inactivity on muscle fatigue. Front. Physiol. 2012, 3, 142. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Sun, M.A.; Sun, Q.; Mei, H.; Rao, H.; Liu, J. Mental Fatigue Is Associated with Subjective Cognitive Decline among Older Adults. Brain Sci. 2023, 13, 376. [Google Scholar] [CrossRef] [PubMed]
- Gavelin, H.M.; Neely, A.S.; Dunas, T.; Eskilsson, T.; Jarvholm, L.S.; Boraxbekk, C.J. Mental fatigue in stress-related exhaustion disorder: Structural brain correlates, clinical characteristics and relations with cognitive functioning. Neuroimage Clin. 2020, 27, 102337. [Google Scholar] [CrossRef]
- Avlund, K.; Pedersen, A.N.; Schroll, M. Functional decline from age 80 to 85: Influence of preceding changes in tiredness in daily activities. Psychosom. Med. 2003, 65, 771–777. [Google Scholar] [CrossRef] [PubMed]
- Cooper, K.M.; Bilbrew, D.; Dubbert, P.M.; Kerr, K.; Kirchner, K. Health barriers to walking for exercise in elderly primary care. Geriatr. Nurs. 2001, 22, 258–262. [Google Scholar] [CrossRef]
- Yu, D.S.; Lee, D.T.; Man, N.W. Fatigue among older people: A review of the research literature. Int. J. Nurs. Stud. 2010, 47, 216–228. [Google Scholar] [CrossRef]
- Moreh, E.; Jacobs, J.M.; Stessman, J. Fatigue, function, and mortality in older adults. J. Gerontol. A Biol. Sci. Med. Sci. 2010, 65A, 887–895. [Google Scholar] [CrossRef]
- de Lima, E.P.; Tanaka, M.; Lamas, C.B.; Quesada, K.; Detregiachi, C.R.P.; Araujo, A.C.; Guiguer, E.L.; Catharin, V.; de Castro, M.V.M.; Junior, E.B.; et al. Vascular Impairment, Muscle Atrophy, and Cognitive Decline: Critical Age-Related Conditions. Biomedicines 2024, 12, 2096. [Google Scholar] [CrossRef]
- Torossian, M.; Jacelon, C.S. Chronic Illness and Fatigue in Older Individuals: A Systematic Review. Rehabil. Nurs. 2021, 46, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Steen, C.; Zalpur, A.; Bentele, M.; Zipfel, S.; Stengel, A. Non-pharmacological treatment options for fatigue: A systematic review of RCTs in adults. J. Psychosom. Res. 2025, 191, 112084. [Google Scholar] [CrossRef]
- Wender, C.L.A.; Manninen, M.; O’Connor, P.J. The Effect of Chronic Exercise on Energy and Fatigue States: A Systematic Review and Meta-Analysis of Randomized Trials. Front. Psychol. 2022, 13, 907637. [Google Scholar] [CrossRef] [PubMed]
- Kucharski, D.; Lange, E.; Ross, A.B.; Svedlund, S.; Feldthusen, C.; Onnheim, K.; Mannerkorpi, K.; Gjertsson, I. Moderate-to-high intensity exercise with person-centered guidance influences fatigue in older adults with rheumatoid arthritis. Rheumatol. Int. 2019, 39, 1585–1594. [Google Scholar] [CrossRef]
- Puetz, T.W.; O’Connor, P.J.; Dishman, R.K. Effects of chronic exercise on feelings of energy and fatigue: A quantitative synthesis. Psychol. Bull. 2006, 132, 866–876. [Google Scholar] [CrossRef] [PubMed]
- Langlois, F.; Vu, T.T.; Chasse, K.; Dupuis, G.; Kergoat, M.J.; Bherer, L. Benefits of physical exercise training on cognition and quality of life in frail older adults. J. Gerontol. B Psychol. Sci. Soc. Sci. 2013, 68, 400–404. [Google Scholar] [CrossRef]
- Li, X.; Wang, P.; Jiang, Y.; Yang, Y.; Wang, F.; Yan, F.; Li, M.; Peng, W.; Wang, Y. Physical activity and health-related quality of life in older adults: Depression as a mediator. BMC Geriatr. 2024, 24, 26. [Google Scholar] [CrossRef]
- Li, D.C.W.; Rudloff, S.; Langer, H.T.; Norman, K.; Herpich, C. Age-Associated Differences in Recovery from Exercise-Induced Muscle Damage. Cells 2024, 13, 255. [Google Scholar] [CrossRef]
- Dimou, A.; Tsimihodimos, V.; Bairaktari, E. The Critical Role of the Branched Chain Amino Acids (BCAAs) Catabolism-Regulating Enzymes, Branched-Chain Aminotransferase (BCAT) and Branched-Chain alpha-Keto Acid Dehydrogenase (BCKD), in Human Pathophysiology. Int. J. Mol. Sci. 2022, 23, 4022. [Google Scholar] [CrossRef]
- Kaspy, M.S.; Hannaian, S.J.; Bell, Z.W.; Churchward-Venne, T.A. The effects of branched-chain amino acids on muscle protein synthesis, muscle protein breakdown and associated molecular signalling responses in humans: An update. Nutr. Res. Rev. 2024, 37, 273–286. [Google Scholar] [CrossRef]
- Howatson, G.; Hoad, M.; Goodall, S.; Tallent, J.; Bell, P.G.; French, D.N. Exercise-induced muscle damage is reduced in resistance-trained males by branched chain amino acids: A randomized, double-blind, placebo controlled study. J. Int. Soc. Sports Nutr. 2012, 9, 20. [Google Scholar] [CrossRef] [PubMed]
- MacLean, D.A.; Graham, T.E.; Saltin, B. Branched-chain amino acids augment ammonia metabolism while attenuating protein breakdown during exercise. Am. J. Physiol. 1994, 267 Pt 1, E1010–E1022. [Google Scholar] [CrossRef] [PubMed]
- Shimomura, Y.; Inaguma, A.; Watanabe, S.; Yamamoto, Y.; Muramatsu, Y.; Bajotto, G.; Sato, J.; Shimomura, N.; Kobayashi, H.; Mawatari, K. Branched-chain amino acid supplementation before squat exercise and delayed-onset muscle soreness. Int. J. Sport Nutr. Exerc. Metab. 2010, 20, 236–244. [Google Scholar] [CrossRef]
- Tipton, K.D.; Rasmussen, B.B.; Miller, S.L.; Wolf, S.E.; Owens-Stovall, S.K.; Petrini, B.E.; Wolfe, R.R. Timing of amino acid-carbohydrate ingestion alters anabolic response of muscle to resistance exercise. Am. J. Physiol. Endocrinol. Metab. 2001, 281, E197–E206. [Google Scholar] [CrossRef]
- Matsuda, T.; Suzuki, H.; Sugano, Y.; Suzuki, Y.; Yamanaka, D.; Araki, R.; Yahagi, N.; Sekiya, M.; Kawakami, Y.; Osaki, Y.; et al. Effects of Branched-Chain Amino Acids on Skeletal Muscle, Glycemic Control, and Neuropsychological Performance in Elderly Persons with Type 2 Diabetes Mellitus: An Exploratory Randomized Controlled Trial. Nutrients 2022, 14, 3917. [Google Scholar] [CrossRef]
- Churchward-Venne, T.A.; Breen, L.; Di Donato, D.M.; Hector, A.J.; Mitchell, C.J.; Moore, D.R.; Stellingwerff, T.; Breuille, D.; Offord, E.A.; Baker, S.K.; et al. Leucine supplementation of a low-protein mixed macronutrient beverage enhances myofibrillar protein synthesis in young men: A double-blind, randomized trial. Am. J. Clin. Nutr. 2014, 99, 276–286. [Google Scholar] [CrossRef] [PubMed]
- Bai, G.H.; Tsai, M.C.; Tsai, H.W.; Chang, C.C.; Hou, W.H. Effects of branched-chain amino acid-rich supplementation on EWGSOP2 criteria for sarcopenia in older adults: A systematic review and meta-analysis. Eur. J. Nutr. 2022, 61, 637–651. [Google Scholar] [CrossRef]
- Coombes, J.S.; McNaughton, L.R. Effects of branched-chain amino acid supplementation on serum creatine kinase and lactate dehydrogenase after prolonged exercise. J. Sports Med. Phys. Fit. 2000, 40, 240–246. [Google Scholar]
- Hargreaves, M.H.; Snow, R. Amino acids and endurance exercise. Int. J. Sport. Nutr. Exerc. Metab. 2001, 11, 133–145. [Google Scholar] [CrossRef]
- Davis, J.M.; Welsh, R.S.; De Volve, K.L.; Alderson, N.A. Effects of branched-chain amino acids and carbohydrate on fatigue during intermittent, high-intensity running. Int. J. Sports Med. 1999, 20, 309–314. [Google Scholar] [CrossRef]
- Plotkin, D.L.; Delcastillo, K.; Van Every, D.W.; Tipton, K.D.; Aragon, A.A.; Schoenfeld, B.J. Isolated Leucine and Branched-Chain Amino Acid Supplementation for Enhancing Muscular Strength and Hypertrophy: A Narrative Review. Int. J. Sport Nutr. Exerc. Metab. 2021, 31, 292–301. [Google Scholar] [CrossRef] [PubMed]
- Martinho, D.V.; Nobari, H.; Faria, A.; Field, A.; Duarte, D.; Sarmento, H. Oral Branched-Chain Amino Acids Supplementation in Athletes: A Systematic Review. Nutrients 2022, 14, 4002. [Google Scholar] [CrossRef] [PubMed]
- Salem, A.; Ben Maaoui, K.; Jahrami, H.; AlMarzooqi, M.A.; Boukhris, O.; Messai, B.; Clark, C.C.T.; Glenn, J.M.; Ghazzaoui, H.A.; Bragazzi, N.L.; et al. Attenuating Muscle Damage Biomarkers and Muscle Soreness After an Exercise-Induced Muscle Damage with Branched-Chain Amino Acid (BCAA) Supplementation: A Systematic Review and Meta-analysis with Meta-regression. Sports Med. Open 2024, 10, 42. [Google Scholar] [CrossRef]
- Robbins, R.N.; Cortes, T.; O’Connor, J.C.; Jiwani, R.; Serra, M.C. The Influence of Branched-Chain Amino Acid Supplementation on Fatigue and Tryptophan Metabolism After Acute and Chronic Exercise in Older Adults: Protocol for a Pilot Randomized Controlled Trial. JMIR Res. Protoc. 2023, 12, e52199. [Google Scholar] [CrossRef]
- Xue, Q.L.; Tian, J.; Fried, L.P.; Kalyani, R.R.; Varadhan, R.; Walston, J.D.; Bandeen-Roche, K. Physical Frailty Assessment in Older Women: Can Simplification Be Achieved Without Loss of Syndrome Measurement Validity? Am. J. Epidemiol. 2016, 183, 1037–1044. [Google Scholar] [CrossRef] [PubMed]
- Dautzenberg, G.; Lijmer, J.G.; Beekman, A.T.F. The Montreal Cognitive Assessment (MoCA) with a double threshold: Improving the MoCA for triaging patients in need of a neuropsychological assessment. Int. Psychogeriatr. 2022, 34, 571–583. [Google Scholar] [CrossRef]
- Hann, D.; Winter, K.; Jacobsen, P. Measurement of depressive symptoms in cancer patients: Evaluation of the Center for Epidemiological Studies Depression Scale (CES-D). J. Psychosom. Res. 1999, 46, 437–443. [Google Scholar] [CrossRef]
- Shepherd, J.A.; Ng, B.K.; Sommer, M.J.; Heymsfield, S.B. Body composition by DXA. Bone 2017, 104, 101–105. [Google Scholar] [CrossRef]
- Hiol, A.N.; von Hurst, P.R.; Conlon, C.A.; Mugridge, O.; Beck, K.L. Body composition associations with muscle strength in older adults living in Auckland, New Zealand. PLoS ONE 2021, 16, e0250439. [Google Scholar] [CrossRef]
- Lorente Ramos, R.M.; Azpeitia Arman, J.; Arevalo Galeano, N.; Munoz Hernandez, A.; Garcia Gomez, J.M.; Gredilla Molinero, J. Dual energy X-ray absorptimetry: Fundamentals, methodology, and clinical applications. Radiologia 2012, 54, 410–423. [Google Scholar] [CrossRef]
- Adam, C.E.; Fitzpatrick, A.L.; Leary, C.S.; Hajat, A.; Ilango, S.D.; Park, C.; Phelan, E.A.; Semmens, E.O. Change in gait speed and fall risk among community-dwelling older adults with and without mild cognitive impairment: A retrospective cohort analysis. BMC Geriatr. 2023, 23, 328. [Google Scholar] [CrossRef]
- Bohannon, R.W. Muscle strength: Clinical and prognostic value of hand-grip dynamometry. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 465–470. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.J.; Rikli, R.E.; Beam, W.C. A 30-s chair-stand test as a measure of lower body strength in community-residing older adults. Res. Q. Exerc. Sport. 1999, 70, 113–119. [Google Scholar] [CrossRef]
- MoTr, P.A.C.S.G.; Jakicic, J.M.; Kohrt, W.M.; Houmard, J.A.; Miller, M.E.; Radom-Aizik, S.; Rasmussen, B.B.; Ravussin, E.; Serra, M.; Stowe, C.L.; et al. Molecular Transducers of Physical Activity Consortium (MoTrPAC): Human studies design and protocol. J. Appl. Physiol. 2024, 137, 473–493. [Google Scholar] [CrossRef]
- Albouaini, K.; Egred, M.; Alahmar, A.; Wright, D.J. Cardiopulmonary exercise testing and its application. Postgrad. Med. J. 2007, 83, 675–682. [Google Scholar] [CrossRef]
- American College of Sports Medicine Position Stand. Exercise and physical activity for older adults. Med. Sci. Sports Exerc. 1998, 30, 992–1008. [Google Scholar]
- Michielsen, H.J.; De Vries, J.; Van Heck, G.L. Psychometric qualities of a brief self-rated fatigue measure: The Fatigue Assessment Scale. J. Psychosom. Res. 2003, 54, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Lewinsohn, P.M.; Seeley, J.R.; Roberts, R.E.; Allen, N.B. Center for Epidemiologic Studies Depression Scale (CES-D) as a screening instrument for depression among community-residing older adults. Psychol. Aging 1997, 12, 277–287. [Google Scholar] [CrossRef]
- Bastien, C.H.; Vallieres, A.; Morin, C.M. Validation of the Insomnia Severity Index as an outcome measure for insomnia research. Sleep. Med. 2001, 2, 297–307. [Google Scholar] [CrossRef]
- Lee, K.A.; Hicks, G.; Nino-Murcia, G. Validity and reliability of a scale to assess fatigue. Psychiatry Res. 1991, 36, 291–298. [Google Scholar] [CrossRef]
- Price, D.D.; McGrath, P.A.; Rafii, A.; Buckingham, B. The validation of visual analogue scales as ratio scale measures for chronic and experimental pain. Pain 1983, 17, 45–56. [Google Scholar] [CrossRef] [PubMed]
- de Boer, A.G.; van Lanschot, J.J.; Stalmeier, P.F.; van Sandick, J.W.; Hulscher, J.B.; de Haes, J.C.; Sprangers, M.A. Is a single-item visual analogue scale as valid, reliable and responsive as multi-item scales in measuring quality of life? Qual. Life Res. 2004, 13, 311–320. [Google Scholar] [CrossRef] [PubMed]
- Boonstra, A.M.; Schiphorst Preuper, H.R.; Balk, G.A.; Stewart, R.E. Cut-off points for mild, moderate, and severe pain on the visual analogue scale for pain in patients with chronic musculoskeletal pain. Pain 2014, 155, 2545–2550. [Google Scholar] [CrossRef]
- Pickard, A.S.; Neary, M.P.; Cella, D. Estimation of minimally important differences in EQ-5D utility and VAS scores in cancer. Health Qual. Life Outcomes 2007, 5, 70. [Google Scholar] [CrossRef]
- Gary, R. Evaluation of frailty in older adults with cardiovascular disease: Incorporating physical performance measures. J. Cardiovasc. Nurs. 2012, 27, 120–131. [Google Scholar] [CrossRef] [PubMed]
- Pinter, D.; Ritchie, S.J.; Gattringer, T.; Bastin, M.E.; Hernandez, M.; Corley, J.; Maniega, S.M.; Pattie, A.; Dickie, D.A.; Gow, A.J.; et al. Predictors of gait speed and its change over three years in community-dwelling older people. Aging 2018, 10, 144–153. [Google Scholar] [CrossRef]
- Studenski, S.; Perera, S.; Patel, K.; Rosano, C.; Faulkner, K.; Inzitari, M.; Brach, J.; Chandler, J.; Cawthon, P.; Connor, E.B.; et al. Gait speed and survival in older adults. JAMA 2011, 305, 50–58. [Google Scholar] [CrossRef]
- Lindemann, U.; Krumpoch, S.; Becker, C.; Sieber, C.C.; Freiberger, E. The course of gait speed during a 400m walk test of mobility limitations in community-dwelling older adults. Z. Gerontol. Geriatr. 2021, 54, 768–774. [Google Scholar] [CrossRef]
- Ko, C.H.; Wu, S.J.; Wang, S.T.; Chang, Y.F.; Chang, C.S.; Kuan, T.S.; Chuang, H.Y.; Chang, C.M.; Chou, W.; Wu, C.H. Effects of enriched branched-chain amino acid supplementation on sarcopenia. Aging 2020, 12, 15091–15103. [Google Scholar] [CrossRef]
- VanDusseldorp, T.A.; Escobar, K.A.; Johnson, K.E.; Stratton, M.T.; Moriarty, T.; Cole, N.; McCormick, J.J.; Kerksick, C.M.; Vaughan, R.A.; Dokladny, K.; et al. Effect of Branched-Chain Amino Acid Supplementation on Recovery Following Acute Eccentric Exercise. Nutrients 2018, 10, 1389. [Google Scholar] [CrossRef]
- Jafari-Vayghan, H.; Moludi, J.; Saleh-Ghadimi, S.; Enamzadeh, E.; Seyed-Mohammadzad, M.H.; Alizadeh, M. Impact of Melatonin and Branched-Chain Amino Acids Cosupplementation on Quality of Life, Fatigue, and Nutritional Status in Cachectic Heart Failure Patients: A Randomized Controlled Trial. Am. J. Lifestyle Med. 2022, 16, 130–140. [Google Scholar] [CrossRef] [PubMed]
- Siramolpiwat, S.; Limthanetkul, N.; Pornthisarn, B.; Vilaichone, R.K.; Chonprasertsuk, S.; Bhanthumkomol, P.; Nunanan, P.; Issariyakulkarn, N. Branched-chain amino acids supplementation improves liver frailty index in frail compensated cirrhotic patients: A randomized controlled trial. BMC Gastroenterol. 2023, 23, 154. [Google Scholar] [CrossRef]
- Orsso, C.E.; Caretero, A.; Poltronieri, T.S.; Arends, J.; de van der Schueren, M.A.; Kiss, N.; Laviano, A.; Prado, C.M. Effects of high-protein supplementation during cancer therapy: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2024, 120, 1311–1324. [Google Scholar] [CrossRef] [PubMed]
- Nie, C.; He, T.; Zhang, W.; Zhang, G.; Ma, X. Branched Chain Amino Acids: Beyond Nutrition Metabolism. Int. J. Mol. Sci. 2018, 19, 954. [Google Scholar] [CrossRef]
- Blomstrand, E.; Eliasson, J.; Karlsson, H.K.; Kohnke, R. Branched-chain amino acids activate key enzymes in protein synthesis after physical exercise. J. Nutr. 2006, 136 (Suppl. 1), 269S–273S. [Google Scholar] [CrossRef] [PubMed]
- Fujita, S.; Volpi, E. Amino acids and muscle loss with aging. J. Nutr. 2006, 136 (Suppl. 1), 277S–280S. [Google Scholar] [CrossRef]
- Waldron, M.; Whelan, K.; Jeffries, O.; Burt, D.; Howe, L.; Patterson, S.D. The effects of acute branched-chain amino acid supplementation on recovery from a single bout of hypertrophy exercise in resistance-trained athletes. Appl. Physiol. Nutr. Metab. 2017, 42, 630–636. [Google Scholar] [CrossRef]
- Blomstrand, E. A role for branched-chain amino acids in reducing central fatigue. J. Nutr. 2006, 136, 544S–547S. [Google Scholar] [CrossRef]
- Allison, D.J.; Ditor, D.S. The common inflammatory etiology of depression and cognitive impairment: A therapeutic target. J. Neuroinflamm. 2014, 11, 151. [Google Scholar] [CrossRef]
- Lanser, L.; Kink, P.; Egger, E.M.; Willenbacher, W.; Fuchs, D.; Weiss, G.; Kurz, K. Inflammation-Induced Tryptophan Breakdown is Related with Anemia, Fatigue, and Depression in Cancer. Front. Immunol. 2020, 11, 249. [Google Scholar] [CrossRef]
- Reus, G.Z.; Jansen, K.; Titus, S.; Carvalho, A.F.; Gabbay, V.; Quevedo, J. Kynurenine pathway dysfunction in the pathophysiology and treatment of depression: Evidences from animal and human studies. J. Psychiatr. Res. 2015, 68, 316–328. [Google Scholar] [CrossRef] [PubMed]
- Westbrook, R.; Chung, T.; Lovett, J.; Ward, C.; Joca, H.; Yang, H.; Khadeer, M.; Tian, J.; Xue, Q.L.; Le, A.; et al. Kynurenines link chronic inflammation to functional decline and physical frailty. JCI Insight 2020, 5, e136091. [Google Scholar] [CrossRef] [PubMed]
EX + BCAAs (N = 9) | EX + PLA (N = 10) | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre-Intervention | Post-Intervention | Change | Pre-Intervention | Post-Intervention | Change | Baseline Group Comparison | Group × Time Effect | Overall Group Effect | Overall Time Effect | |||||||||||||||
Mean | ± | SEM | Mean | ± | SEM | Mean | ± | SEM | p-Value * | Mean | ± | SEM | Mean | ± | SEM | Mean | ± | SEM | p-Value * | p-Value | p-Value | p-Value | p-Value | |
Age (years) | 70.4 | ± | 1.2 | - | - | 70.7 | ± | 1.1 | - | - | ||||||||||||||
Weight (kg) | 84.3 | ± | 6.5 | 83.5 | ± | 6.5 | −0.78 | ± | 0.43 | 0.11 | 94.0 | ± | 4.9 | 94.5 | ± | 5.1 | 0.42 | ± | 0.47 | 0.39 | 0.75 | 0.10 | 0.23 | 0.58 |
BMI (wt/ht2) | 32.2 | ± | 3.4 | 31.9 | ± | 3.4 | −0.3 | ± | 0.1 | 0.10 | 36.4 | ± | 1.6 | 36.6 | ± | 1.6 | 0.2 | ± | 0.2 | 0.45 | 0.16 | 0.11 | 0.26 | 0.74 |
Total Body Fat (%) | 33.7 | ± | 3.3 | 32.8 | ± | 3.5 | −0.90 | ± | 0.64 | 0.20 | 47.1 | ± | 1.2 | 46.5 | ± | 1.2 | −0.054 | ± | 0.30 | 0.11 | 0.22 | 0.62 | 0.06 | <0.01 |
Total Body Lean Mass (kg) | 48.6 | ± | 2.6 | 49.0 | ± | 2.9 | 0.42 | ± | 0.64 | 0.53 | 47.0 | ± | 2.9 | 47.8 | ± | 3.1 | 0.79 | ± | 0.40 | 0.08 | <0.01 | 0.13 | 0.73 | 0.63 |
ASMI (kg/m2) | 7.90 | ± | 0.45 | 8.11 | ± | 0.69 | 0.24 | ± | 0.16 | 0.43 | 7.45 | ± | 0.48 | 7.85 | ± | 0.57 | 0.40 | ± | 0.16 | 0.04 | 0.95 | 0.28 | 0.63 | 0.04 |
EX + BCAAs (N = 9) | EX + PLA (N = 10) | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre-Intervention | Post-Intervention | Change | Pre-Intervention | Post-Intervention | Change | Baseline Group Comparison | Group × Time Effect | Overall Group Effect | Overall Time Effect | |||||||||||||||
Mean | ± | SEM | Mean | ± | SEM | Mean | ± | SEM | p-Value * | Mean | ± | SEM | Mean | ± | SEM | Mean | ± | SEM | p-Value * | p-Value | p-Value | p-Value | p-Value | |
CES-D score | 9.0 | ± | 1.3 | 6.4 | ± | 1.3 | −2.6 | ± | 1.5 | 0.13 | 5.6 | ± | 1.7 | 10.7 | ± | 1.6 | 5.1 | ± | 1.4 | 0.01 | 0.13 | <0.01 | 0.82 | 0.25 |
MoCA score | 26.4 | ± | 0.8 | 27.3 | ± | 1.1 | 0.9 | ± | 1.0 | 0.43 | 27.9 | ± | 0.6 | 27.4 | ± | 0.9 | −0.5 | ± | 0.8 | 0.53 | 0.14 | 0.29 | 0.42 | 0.77 |
ISI score | 10.6 | ± | 2.0 | 9.0 | ± | 1.8 | −1.6 | ± | 1.4 | 0.31 | 9.4 | ± | 2.4 | 5.3 | ± | 1.6 | −4.1 | ± | 2.1 | 0.09 | 0.58 | 0.36 | 0.36 | <0.05 |
FAS score | 19.5 | ± | 1.7 | 17.3 | ± | 1.1 | −2.3 | ± | 0.9 | 0.04 | 25.8 | ± | 2.9 | 18.9 | ± | 1.9 | −6.9 | ± | 2.4 | 0.02 | 0.28 | 0.11 | 0.15 | <0.01 |
Fatigue (mm) ^ | 28.6 | ± | 4.7 | 15.7 | ± | 2.9 | −12.9 | ± | 5.7 | 0.06 | 35.3 | ± | 6.9 | 37.2 | ± | 7.8 | 1.9 | ± | 3.3 | 0.58 | 0.96 | 0.03 | 0.12 | 0.10 |
Pain (mm) ^ | 21.9 | ± | 6.8 | 13.1 | ± | 4.7 | −8.7 | ± | 4.6 | 0.11 | 29.7 | ± | 7.6 | 30.7 | ± | 8.1 | 1.0 | ± | 3.3 | 0.77 | 0.53 | 0.10 | 0.22 | 0.18 |
QOL (mm) ^ | 68.3 | ± | 8.9 | 85.9 | ± | 1.4 | 17.6 | ± | 9.3 | 0.11 | 69.7 | ± | 8.3 | 75.3 | ± | 5.0 | 5.7 | ± | 5.9 | 0.36 | 0.58 | 0.28 | 0.58 | 0.04 |
EX + BCAAs (N = 9) | EX + PLA (N = 10) | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre-Intervention | Post-Intervention | Change | Pre-Intervention | Post-Intervention | Change | Baseline Group Comparison | Group × Time Effect | Overall Group Effect | Overall Time Effect | |||||||||||||||
Mean | ± | SEM | Mean | ± | SEM | Mean | ± | SEM | p-Value * | Mean | ± | SEM | Mean | ± | SEM | Mean | ± | SEM | p-Value * | p-Value | p-Value | p-Value | p-Value | |
Handgrip strength (kg) | 29.6 | ± | 3.2 | 34.2 | ± | 3.6 | 4.6 | ± | 1.1 | <0.01 | 23.3 | ± | 2.0 | 21.9 | ± | 2.9 | −1.4 | ± | 2.2 | 0.54 | 0.14 | 0.03 | 0.03 | 0.21 |
Usual gait speed (m/s) | 1.07 | ± | 0.11 | 1.21 | ± | 0.10 | 0.14 | ± | 0.06 | <0.05 | 0.92 | ± | 0.09 | 0.91 | ± | 0.08 | −0.02 | ± | 0.05 | 0.75 | 0.33 | 0.06 | 0.10 | 0.14 |
Chair Stands (number) | 15.5 | ± | 1.8 | 18.9 | ± | 1.8 | 3.4 | ± | 0.9 | 0.01 | 13.5 | ± | 2.6 | 14.6 | ± | 2.2 | 1.1 | ± | 0.6 | 0.11 | 0.33 | <0.01 | 0.31 | <0.05 |
VO2max (ml/kg/min) | 18.6 | ± | 1.7 | 25.4 | ± | 3.2 | 6.7 | ± | 1.6 | 0.02 | 15.2 | ± | 1.6 | 18.0 | ± | 2.5 | 2.8 | ± | 2.3 | 0.20 | 0.16 | 0.60 | 0.07 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Robbins, R.; O’Connor, J.C.; Cortes, T.M.; Serra, M.C. Branched-Chain Amino Acids Combined with Exercise Improves Physical Function and Quality of Life in Older Adults: Results from a Pilot Randomized Controlled Trial. Dietetics 2025, 4, 32. https://doi.org/10.3390/dietetics4030032
Robbins R, O’Connor JC, Cortes TM, Serra MC. Branched-Chain Amino Acids Combined with Exercise Improves Physical Function and Quality of Life in Older Adults: Results from a Pilot Randomized Controlled Trial. Dietetics. 2025; 4(3):32. https://doi.org/10.3390/dietetics4030032
Chicago/Turabian StyleRobbins, Ronna, Jason C. O’Connor, Tiffany M. Cortes, and Monica C. Serra. 2025. "Branched-Chain Amino Acids Combined with Exercise Improves Physical Function and Quality of Life in Older Adults: Results from a Pilot Randomized Controlled Trial" Dietetics 4, no. 3: 32. https://doi.org/10.3390/dietetics4030032
APA StyleRobbins, R., O’Connor, J. C., Cortes, T. M., & Serra, M. C. (2025). Branched-Chain Amino Acids Combined with Exercise Improves Physical Function and Quality of Life in Older Adults: Results from a Pilot Randomized Controlled Trial. Dietetics, 4(3), 32. https://doi.org/10.3390/dietetics4030032