Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (221)

Search Parameters:
Keywords = aluminum-zinc oxide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 563 KB  
Article
Assessment of Juniper Ash Elemental Composition for Potential Use in a Traditional Indigenous Dietary Pattern
by Julie M. Hess, Madeline E. Comeau, Derek D. Bussan, Kyra Schwartz and Claudia PromSchmidt
Nutrients 2026, 18(2), 260; https://doi.org/10.3390/nu18020260 - 14 Jan 2026
Viewed by 249
Abstract
Background/Objectives: Ash made from juniper trees and added to cornmeal-based dishes may have provided calcium (Ca) to traditional Indigenous diets. Few studies have quantified the mineral content of juniper ash, including its Ca content. The objective of this study was to determine whether [...] Read more.
Background/Objectives: Ash made from juniper trees and added to cornmeal-based dishes may have provided calcium (Ca) to traditional Indigenous diets. Few studies have quantified the mineral content of juniper ash, including its Ca content. The objective of this study was to determine whether juniper ash could serve as a safe source of non-dairy Ca in an intervention study. Methods: Branches from two varieties of Juniper (Rocky Mountain Juniper, or Juniperus scopulorum and Eastern Red Cedar, or Juniperus virginiana) were harvested and burned to ash in a laboratory setting. Juniper ash from the southwestern U.S. available for retail purchase was used for comparison. All samples were tested for content of 10 nutritive elements (Ca, copper, iron, potassium, magnesium, manganese, sodium, phosphorus, selenium, and zinc) and 20 potentially toxic elements (silver, aluminum, arsenic, barium, beryllium, cadmium, cobalt, chromium, mercury, lithium, molybdenum, nickel, lead, antimony, tin, strontium, thallium, uranium, and vanadium) as well as n = 576 pesticide residues. Results: All samples contained both nutritive and potentially toxic elements. Each teaspoon of ash contained an average of 445 ± 141 mg Ca. However, the samples also contained lead in amounts ranging from 1.09 ppm to 15 ppm. Conclusions: Information on the nutritive and potentially toxic elemental content of juniper ash and how it may interact within a food matrix is insufficient to determine its safety as a Ca source. Further investigation is needed on the bioavailability of calcium oxide and its interaction with other dietary components to clarify the potential role of juniper ash in contemporary food patterns. Full article
(This article belongs to the Special Issue Mineral Nutrition on Human Health and Disease—2nd Edition)
Show Figures

Figure 1

13 pages, 2505 KB  
Article
An Experimental Investigation of the Influence of Deposition Power and Pressure on the Anti-Icing and Wettability Properties of Al-Doped ZnO Thin Films Prepared by Magnetron Sputtering
by Vandan Vyas, Kamlesh V. Chauhan, Sushant Rawal and Noor Mohammad Mohammad
Metals 2025, 15(12), 1389; https://doi.org/10.3390/met15121389 - 18 Dec 2025
Viewed by 305
Abstract
In the presented research, aluminum-doped zinc oxide (AZO) thin films were synthesized on high-power transmission lines using the RF magnetron sputtering process. The impact of deposition power (160 W to 280 W) and deposition pressure (2 Pa to 5 Pa), on key characteristics [...] Read more.
In the presented research, aluminum-doped zinc oxide (AZO) thin films were synthesized on high-power transmission lines using the RF magnetron sputtering process. The impact of deposition power (160 W to 280 W) and deposition pressure (2 Pa to 5 Pa), on key characteristics like material composition, wettability, anti-icing behavior, and average crystal size were analyzed. The optimization of wettability and anti-icing performance was carried out using two-factor, four-level design of the Taguchi method to study the combined effects of multiple parameters rather than the effect of a single parameter. Considerable variation in the water contact angle, from 92.3° to 123.6°, has been observed, suggesting an enhancement in hydrophobic nature with optimized condition. Anti-icing tests demonstrated that the coated surface delayed ice accumulation by approximately 4.56 times compared to the uncoated surface. X-ray diffraction (XRD) analysis was carried out to confirm notable changes in the intensity of the (002) peak along the c-axis, directly correlating with grain size modification. The change in surface roughness was studied using AFM and the results were compared to establish a relationship between surface roughness and average grain size. Overall, the findings highlight the critical role of deposition parameters and their interactions in modifying the surface and structural properties of AZO thin films, which demonstrates their potential application for improving the anti-icing performance of transmission lines. Full article
(This article belongs to the Special Issue Surface Treatments and Coating of Metallic Materials)
Show Figures

Figure 1

19 pages, 3275 KB  
Article
Dose-Dependent Effect of Foliar ZnO Nanoparticles on the Physiology, Mineral Nutrition, and Redox Status of Coffea arabica Seedlings Under Soil Acidity
by Amilcar Valle-Lopez, Jegnes Benjamín Meléndez-Mori, Eyner Huaman and Manuel Oliva-Cruz
Stresses 2025, 5(4), 70; https://doi.org/10.3390/stresses5040070 - 10 Dec 2025
Cited by 1 | Viewed by 765
Abstract
Soil acidity severely constrains coffee production by reducing nutrient availability and promoting aluminum toxicity and oxidative stress. Foliar zinc oxide nanoparticles (ZnO NPs) have been proposed as redox modulators that can improve nutrient homeostasis under abiotic stress. However, the safe and effective range [...] Read more.
Soil acidity severely constrains coffee production by reducing nutrient availability and promoting aluminum toxicity and oxidative stress. Foliar zinc oxide nanoparticles (ZnO NPs) have been proposed as redox modulators that can improve nutrient homeostasis under abiotic stress. However, the safe and effective range of Coffea arabica L. remains unclear. In this study, seedlings were grown in acidic soil and sprayed twice with ZnO NPs at 10, 25, 50, and 100 mg L−1. Morphophysiological, biochemical, and ionomic parameters were evaluated fifty days after treatment. Moderate ZnO NPs doses led to intermediate stomatal conductance values, whereas net photosynthesis showed intermediate but non-significant responses only at 10–25 mg L−1, with higher doses (50–100 mg L−1) causing a marked decline. These doses did not significantly modify hydrogen peroxide (H2O2) or malondialdehyde (MDA) levels in leaves or roots. In contrast, the highest dose (100 mg L−1) induced a marked increase in H2O2 without affecting MDA, indicating a partial oxidative response rather than clear lipid peroxidation. Foliar analysis showed that 50 mg L−1 ZnO NPs significantly increased P compared with the optimal soil, while Ca and K remained statistically similar across treatments. Na in the optimal soil was comparable to the 10–25 mg L−1 ZnO NPs treatments, whereas Na at 50–100 mg L−1 ZnO NPs was significantly reduced and foliar Zn increased markedly with increasing nanoparticle dose. Proline accumulation reflected a dose-dependent osmotic adjustment, and chlorophyll ratios indicated adaptive photoprotection. Overall, foliar ZnO NPs mitigated acidity-induced stress through physiological and ionomic adjustment, with 10–25 mg L−1 identified as the physiologically safe range for C. arabica seedlings grown under acidic conditions. Full article
(This article belongs to the Section Plant and Photoautotrophic Stresses)
Show Figures

Graphical abstract

13 pages, 2981 KB  
Article
The Impact of Phase Change in Laser-Ablated Aluminum Alloy Materials on Ablation Damage Characteristics
by Jing Xiao, Tengfei Li, Rongjun Guo, Xinming Wu, Congzhou Li, Xuan Dai, Junyi He, Yongjun Xu, Xianchao Liu, Lian Zhang and Jinghua Han
Photonics 2025, 12(12), 1158; https://doi.org/10.3390/photonics12121158 - 25 Nov 2025
Viewed by 476
Abstract
Laser weapons, characterized by their rapid response capabilities, precision targeting, and operational stealth, have emerged as essential directed energy systems for neutralizing missile, satellite, and drone threats. This paper examines the widely utilized 7075 high-strength aluminum alloy in military applications, conducting a comprehensive [...] Read more.
Laser weapons, characterized by their rapid response capabilities, precision targeting, and operational stealth, have emerged as essential directed energy systems for neutralizing missile, satellite, and drone threats. This paper examines the widely utilized 7075 high-strength aluminum alloy in military applications, conducting a comprehensive analysis of the material’s ablation characteristics under continuous laser exposure. The study elucidates the phase change phenomena and elemental separation mechanisms that occur as a result of ablation. Findings indicate that the aluminum (Al) element primarily undergoes a process of melting, driven by gravitational flow and subsequent resolidification, resulting in the formation of a bright silver Al-rich solidified layer at the base of the ablation zone. Conversely, the zinc (Zn) element vaporizes at elevated temperatures, with its byproducts oxidizing and condensing in the atmosphere, leading to the formation of gray- white zinc oxide (ZnO) deposits above the ablation area. This research highlights the synergistic damage mechanisms of vaporization and melting, thereby providing a critical theoretical framework for understanding the damage mechanisms associated with laser ablation of aluminum alloys. Full article
Show Figures

Figure 1

66 pages, 9255 KB  
Review
Recent Advances in Polymer-Coated Metal and Metal Oxide Nanoparticles: From Design to Promising Applications
by Refia Atik, Rafiqul Islam, Melissa Ariza Gonzalez, Pailinrut Chinwangso and T. Randall Lee
Nanomaterials 2025, 15(22), 1744; https://doi.org/10.3390/nano15221744 - 20 Nov 2025
Cited by 3 | Viewed by 2251
Abstract
The integration of polymer coatings with metal and metal oxide nanoparticles represents a significant advancement in nanotechnology, enhancing the stability, biocompatibility, and functional versatility of these materials. These enhanced properties make polymer-coated nanoparticles key components in a wide range of applications, including biomedicine, [...] Read more.
The integration of polymer coatings with metal and metal oxide nanoparticles represents a significant advancement in nanotechnology, enhancing the stability, biocompatibility, and functional versatility of these materials. These enhanced properties make polymer-coated nanoparticles key components in a wide range of applications, including biomedicine, catalysis, environmental remediation, electronics, and energy storage. The unique combination of polymeric materials with metal and metal oxide cores results in hybrid structures with superior performance characteristics, making them highly desirable for various technological innovations. Polymer-coated metal and metal oxide nanoparticles can be synthesized through various methods, such as grafting to, grafting from, grafting through, in situ techniques, and layer-by-layer assembly, each offering distinct control over nanoparticle size, shape, and surface functionality. The distinctive contribution of this review lies in its systematic comparison of polymer-coating synthesis approaches for different metal and metal oxide nanoparticles, revealing how variations in polymer architecture and surface chemistry govern their stability, functionality, and application performance. The aim of this paper is to provide a comprehensive overview of the current state of research on polymer-coated nanoparticles, including metals such as gold, silver, copper, platinum, and palladium, as well as metal oxides like iron oxide, titanium dioxide, zinc oxide, and aluminum oxide. This review highlights their design strategies, synthesis methods, characterization approaches, and diverse emerging applications, including biomedicine (e.g., targeted drug delivery, gene delivery, bone tissue regeneration, imaging, antimicrobials, and therapeutic interventions), environmental remediation (e.g., antibacterials and sensors), catalysis, electronics, and energy conversion. Full article
(This article belongs to the Collection Metallic and Metal Oxide Nanohybrids and Their Applications)
Show Figures

Graphical abstract

19 pages, 4943 KB  
Article
From Waste to Value: Recycling Industrial Waste into Functional ZnO Nanofibers
by Erika Mudra, Ivan Shepa, Kateryna Nemesh, Jana Piroskova, Jakub Klimko, Klaudia Kundrakova, Dusan Orac, Alexandra Kovalcikova, Maksym Lisnichuk, Frantisek Kromka and Ondrej Petrus
Sustainability 2025, 17(18), 8373; https://doi.org/10.3390/su17188373 - 18 Sep 2025
Viewed by 809
Abstract
This study details the sustainable synthesis and characterization of electrospun zinc oxide nanofibers, uniquely derived from industrial waste streams. Our approach leverages diverse industrial byproducts—specifically sal ammoniac skimming from hot-dip galvanizing, electric arc furnace dust, and galvanization flue dust—as sustainable raw materials. Following [...] Read more.
This study details the sustainable synthesis and characterization of electrospun zinc oxide nanofibers, uniquely derived from industrial waste streams. Our approach leverages diverse industrial byproducts—specifically sal ammoniac skimming from hot-dip galvanizing, electric arc furnace dust, and galvanization flue dust—as sustainable raw materials. Following hydrometallurgical treatment with various leaching agents (HCl, (NH4)2CO3, or H2SO4) to obtain zinc-rich leachates, electrospinning solutions were formulated. The resulting fibers were subsequently calcined, yielding three distinct ZnO-based materials. Comprehensive characterization by XRD, SEM-EDX, and TEM revealed that the choice of leaching strategy significantly influenced the resultant fibers’ morphology and chemical composition. To demonstrate the potential applicability of these waste-derived materials, their photocatalytic activity was assessed through the degradation of methylene blue dye under UVA irradiation. ZnO fibers derived from HCl leaching exhibited remarkable photodegradation capabilities, achieving nearly complete dye removal within 690 min at optimal catalyst-to-dye ratios. Conversely, the H2SO4-prepared sample displayed impaired efficiency, primarily due to the formation of an undesirable Al2ZnO4 phase stemming from high aluminum content in the input waste, a critical consideration for waste-to-product strategies. The results showed that the cost-effective ZnO fibers obtained by electrospinning from industrial waste products have potential for applications in photocatalytic water treatment. Full article
(This article belongs to the Special Issue Sustainable Materials: Recycled Materials Toward Smart Future)
Show Figures

Figure 1

16 pages, 2736 KB  
Article
A Novel, Single-Step 3D-Printed Shadow Mask Fabrication Method for TFTs
by Kelsea A. Yarbrough, Makhes K. Behera, Sangram K. Pradhan and Messaoud Bahoura
Processes 2025, 13(9), 2976; https://doi.org/10.3390/pr13092976 - 18 Sep 2025
Viewed by 1345
Abstract
This work presents a low-cost and scalable method for fabricating thin-film transistors (TFTs) using a single-step, 3D-printed shadow mask approach. Room temperature growth of both aluminum-doped zinc oxide (AZO) thin film was used as the semiconductor channel, and zirconium oxide (ZrO2) [...] Read more.
This work presents a low-cost and scalable method for fabricating thin-film transistors (TFTs) using a single-step, 3D-printed shadow mask approach. Room temperature growth of both aluminum-doped zinc oxide (AZO) thin film was used as the semiconductor channel, and zirconium oxide (ZrO2) as the high-k dielectric, and the films were never exposed to any post-annealing treatment. Structural and morphological characterization confirmed smooth, compact films with stable dielectric behavior. Electrical measurements revealed a field-effect mobility of 13.1 cm2/V·s, a threshold voltage of ~4.1 V, and an on/off ratio of ~104, validating effective gate modulation and drain current saturation. The off-state current, estimated from AZO conductivity measurements, was ~10−10 A, while the on-state current reached ~10−6 A. Benchmarking against state-of-the-art devices shows that these transistors rival ALD-processed IGZO TFTs and significantly outperform reported indium-free ZnO/AZO devices, while avoiding scarce indium and costly high-temperature or photolithographic processing. These findings establish 3D-printed shadow masks as a practical alternative to conventional lithography for oxide TFT fabrication. The method offers high device performance with simplified, indium-free, and room-temperature processing, underscoring its potential for scalable, transparent, and flexible electronics. Full article
(This article belongs to the Special Issue Advanced Functionally Graded Materials)
Show Figures

Figure 1

14 pages, 2389 KB  
Article
Neural Synaptic Simulation Based on ZnAlSnO Thin-Film Transistors
by Yang Zhao, Chao Wang, Laizhe Ku, Liang Guo, Xuefeng Chu, Fan Yang, Jieyang Wang, Chunlei Zhao, Yaodan Chi and Xiaotian Yang
Micromachines 2025, 16(9), 1025; https://doi.org/10.3390/mi16091025 - 7 Sep 2025
Viewed by 957
Abstract
In the era of artificial intelligence, neuromorphic devices that simulate brain functions have received increasingly widespread attention. In this paper, an artificial neural synapse device based on ZnAlSnO thin-film transistors was fabricated, and its electrical properties were tested: the current-switching ratio was 1.18 [...] Read more.
In the era of artificial intelligence, neuromorphic devices that simulate brain functions have received increasingly widespread attention. In this paper, an artificial neural synapse device based on ZnAlSnO thin-film transistors was fabricated, and its electrical properties were tested: the current-switching ratio was 1.18 × 107, the subthreshold oscillation was 1.48 V/decade, the mobility was 2.51 cm2V−1s−1, and the threshold voltage was −9.40 V. Stimulating artificial synaptic devices with optical signals has the advantages of fast response speed and good anti-interference ability. The basic biological synaptic characteristics of the devices were tested under 365 nm light stimulation, including excitatory postsynaptic current (EPSC), paired-pulse facilitation (PPF), short-term plasticity (STP), and long-term plasticity (LTP). This device shows good synaptic plasticity. In addition, by changing the gate voltage, the excitatory postsynaptic current of the device at different gate voltages was tested, two different logical operations of “AND” and “OR” were achieved, and the influence of different synaptic states on memory was simulated. This work verifies the application potential of the device in the integrated memory and computing architecture, which is of great significance for promoting the high-quality development of neuromorphic computing hardware. Full article
(This article belongs to the Special Issue Advanced Wide Bandgap Semiconductor Materials and Devices)
Show Figures

Figure 1

17 pages, 4214 KB  
Article
Resistive Switching Behavior of Sol–Gel-Processed ZnMgO/ZnO Bilayer in Optoelectronic Devices
by Hee Sung Shin, Dong Hyun Kim, Donggu Lee and Jaehoon Kim
Nanomaterials 2025, 15(17), 1353; https://doi.org/10.3390/nano15171353 - 3 Sep 2025
Viewed by 1300
Abstract
Sol–gel-processed zinc oxide (ZnO) and magnesium-doped zinc oxide (ZnMgO) are widely used in quantum dot light-emitting diodes (QLEDs) due to their excellent charge transport properties, ease of fabrication, and tunable film characteristics. In particular, the ZnMgO/ZnO bilayer structure has attracted considerable attention for [...] Read more.
Sol–gel-processed zinc oxide (ZnO) and magnesium-doped zinc oxide (ZnMgO) are widely used in quantum dot light-emitting diodes (QLEDs) due to their excellent charge transport properties, ease of fabrication, and tunable film characteristics. In particular, the ZnMgO/ZnO bilayer structure has attracted considerable attention for its dual functionality: defect passivation by ZnMgO and efficient charge transport by ZnO. However, while the effects of resistive switching (RS) in individual ZnO and ZnMgO layers on the aging behavior of QLEDs have been studied, the RS characteristics of sol–gel-processed ZnMgO/ZnO bilayers remain largely unexplored. In this study, we systematically analyzed RS properties of an indium tin oxide (ITO)/ZnMgO/ZnO/aluminum (Al) device, demonstrating superior performance compared to devices with single layers of either ZnMgO or ZnO. We also investigated the shelf-aging characteristics of RS devices with single and bilayer structures, finding that the bilayer structure exhibited the least variation over time, thereby confirming its enhanced uniformity and reliability. Furthermore, based on basic current–voltage measurements, we estimated accuracy variations in MNIST pattern recognition using a two-layer perceptron model. These results not only identify a promising RS device architecture based on the sol–gel process but also offer valuable insights into the aging behavior of QLEDs incorporating ZnMgO/ZnO bilayers, ITO, and Al electrodes. Full article
Show Figures

Figure 1

16 pages, 2397 KB  
Article
Electromagnetic Field Shielding Using Interior Paints Enhanced with Metal Powders
by Ján Zbojovský and Pavol Liptai
Materials 2025, 18(16), 3916; https://doi.org/10.3390/ma18163916 - 21 Aug 2025
Viewed by 1300
Abstract
This article deals with the issue of electromagnetic radiation, specifically methods of eliminating radiation using protective coatings. Protective coatings were created from commercially available fabricated but also recycled metal powders and commonly available interior paint. The aim of the experiments was to produce [...] Read more.
This article deals with the issue of electromagnetic radiation, specifically methods of eliminating radiation using protective coatings. Protective coatings were created from commercially available fabricated but also recycled metal powders and commonly available interior paint. The aim of the experiments was to produce protective coatings with different qualitative and quantitative compositions and subsequently test their shielding effects. For the preparation of the coatings, mixtures in the form of commercially produced powder with a particle size of <10 μm were used, namely aluminum oxide (Al2O3), manganese dioxide (MnO2), and graphite (C). Recycled powders are powdered iron (Fe) and zinc oxide (ZnO) with a particle size of <50 μm. The powders were mixed in various ratios and compounds into a commercially available white interior paint. Measurements were performed in the frequency range of 0.9–9 GHz with a step of 0.1 GHz, evaluating the shielding effectiveness, absorption, and reflection. The best shielding values were achieved for samples containing 100 g of carbon powder, 100 g of iron powder, and 100 g of manganese dioxide, ranging from 0.38 to 6.2 dB in the full measured frequency range. Full article
Show Figures

Graphical abstract

24 pages, 19050 KB  
Article
Innovative Deposition of AZO as Recombination Layer on Silicon Nanowire Scaffold for Potential Application in Silicon/Perovskite Tandem Solar Cell
by Grażyna Kulesza-Matlak, Marek Szindler, Magdalena M. Szindler, Milena Kiliszkiewicz, Urszula Wawrzaszek, Anna Sypień, Łukasz Major and Kazimierz Drabczyk
Energies 2025, 18(15), 4193; https://doi.org/10.3390/en18154193 - 7 Aug 2025
Cited by 2 | Viewed by 1357
Abstract
Transparent conductive aluminum-doped zinc oxide (AZO) films were investigated as potential recombination layers for perovskite/silicon tandem solar cells, comparing the results of atomic layer deposition (ALD) and magnetron sputtering (MS) on vertically aligned silicon nanowire (SiNW) scaffolds. Conformality and thickness control were examined [...] Read more.
Transparent conductive aluminum-doped zinc oxide (AZO) films were investigated as potential recombination layers for perovskite/silicon tandem solar cells, comparing the results of atomic layer deposition (ALD) and magnetron sputtering (MS) on vertically aligned silicon nanowire (SiNW) scaffolds. Conformality and thickness control were examined by cross-sectional SEM/TEM and profilometry, revealing fully conformal ALD coatings with tunable thicknesses (40–120 nm) versus tip-capped, semi-uniform MS films (100–120 nm). Optical transmission measurements on glass substrates showed that both 120 nm ALD and MS layers exhibit interference maxima near 450–500 nm and 72–89% transmission across 800–1200 nm; the thinnest ALD films reached up to 86% near-IR transparency. Four-point probe analysis demonstrated that ALD reduces surface resistance from 1150 Ω/□ at 40 nm to 245 Ω/□ at 120 nm, while MS layers achieved 317 Ω/□ at 120 nm. These results delineate the balance between conformality, transparency, and conductivity, providing design guidelines for AZO recombination interfaces in next-generation tandem photovoltaics. Full article
(This article belongs to the Special Issue Perovskite Solar Cells and Tandem Photovoltaics)
Show Figures

Figure 1

9 pages, 1477 KB  
Proceeding Paper
Preparation of Nanosized Mesoporous Metal Oxides
by Olena Korchuganova, Emiliia Tantsiura, Kamila Abuzarova and Alina M. Balu
Chem. Proc. 2025, 17(1), 7; https://doi.org/10.3390/chemproc2025017007 - 1 Aug 2025
Viewed by 684
Abstract
Nowadays, nanosized mesoporous oxides are of increasing interest to scientists. They can be used as components of heterogeneous catalysts, for photo- and electrocatalysis, as gas sensors, etc. For instance, the desired properties in catalysts include a nano size and homogeneity of the particles [...] Read more.
Nowadays, nanosized mesoporous oxides are of increasing interest to scientists. They can be used as components of heterogeneous catalysts, for photo- and electrocatalysis, as gas sensors, etc. For instance, the desired properties in catalysts include a nano size and homogeneity of the particles that form the catalyst. The particle sizes of oxides are set at the initial stage of their formation, as precursors of precipitation in the context of wet chemistry. The creation of optimal conditions is possible through the use of homogeneous precipitation, where the precipitant is formed within the solution itself as a result of a hydrolysis reaction. The resolution of this issue involved the utilization of urea in our experimental setup, obtaining the hydrolysis products of ammonia and carbon dioxide. Consequently, precipitation reactions can be utilized to obtain hydroxides, carbonates, or hydroxy carbonates of metals. The precursors were calcined, obtaining nanosized mesoporous oxides, which can have a wide range of applications. Nanosized 0.1–50 nm metal oxides were obtained, including those aluminum, iron, indium, zinc, nickel, and cobalt. Full article
(This article belongs to the Proceedings of The 3rd International Electronic Conference on Catalysis Sciences)
Show Figures

Graphical abstract

24 pages, 1483 KB  
Review
Towards AZO Thin Films for Electronic and Optoelectronic Large-Scale Applications
by Elena Isabela Bancu, Valentin Ion, Stefan Antohe and Nicu Doinel Scarisoreanu
Crystals 2025, 15(8), 670; https://doi.org/10.3390/cryst15080670 - 23 Jul 2025
Cited by 3 | Viewed by 2395
Abstract
Transparent conductive oxides (TCOs) have become essential components in a broad range of modern devices, including smartphones, flat-panel displays, and photovoltaic cells. Currently, indium tin oxide (ITO) is used in approximately 90% of these devices. However, ITO prices continue to rise due to [...] Read more.
Transparent conductive oxides (TCOs) have become essential components in a broad range of modern devices, including smartphones, flat-panel displays, and photovoltaic cells. Currently, indium tin oxide (ITO) is used in approximately 90% of these devices. However, ITO prices continue to rise due to the limited supply of indium (In), making the development of alternative materials for TCOs indispensable. Therefore, this study highlights the latest advances in creating new, affordable materials, with a focus on aluminum-doped zinc oxide (AZO). Over the last few decades, this material has been widely studied to improve its physical properties, particularly its low electrical resistivity, which can affect the performance of various devices. Now, it is close to replacing ITO due to several advantages including cost-effectiveness, stability under hydrogen plasma, low processing temperatures, and lack of toxicity. Besides that, in comparison to other TCOs such as IZO, IGZO, or IZrO, AZO achieved a low electrical resistivity (10−5 ohm cm) while maintaining a high transparency across the visible spectrum (over 85%). Additionally, due to the increasing development of technologies utilizing such materials, it is essential to develop more effective techniques for producing TCOs on a larger scale. Additionally, due to the increasing development of technologies utilizing such materials, it is essential to develop more effective techniques for producing TCOs on a larger scale. This review emphasizes the potential of AZO as a cost-effective and scalable alternative to ITO, highlighting key advancements in deposition techniques such as pulsed laser deposition (PLD). Full article
Show Figures

Figure 1

22 pages, 6898 KB  
Article
The Impact of Aluminum Doping on the Performance of MgV2O4 Spinel Cathodes for High-Rate Zinc-Ion Energy Storage
by He Lin, Zhiwen Wang and Yu Zhang
Molecules 2025, 30(13), 2833; https://doi.org/10.3390/molecules30132833 - 1 Jul 2025
Viewed by 1129
Abstract
This study explores the development of aluminum-doped MgV2O4 spinel cathodes for aqueous zinc-ion batteries (AZIBs), addressing the challenges of poor Zn2+ ion diffusion and structural instability. Al3+ ions were pre-inserted into the spinel structure using a sol-gel method, [...] Read more.
This study explores the development of aluminum-doped MgV2O4 spinel cathodes for aqueous zinc-ion batteries (AZIBs), addressing the challenges of poor Zn2+ ion diffusion and structural instability. Al3+ ions were pre-inserted into the spinel structure using a sol-gel method, which enhanced the material’s structural stability and electrical conductivity. The doping of Al3+ mitigates the electrostatic interactions between Zn2+ ions and the cathode, thereby improving ion diffusion and facilitating efficient charge/discharge processes. While pseudocapacitive behavior plays a dominant role in fast charge storage, the diffusion of Zn2+ within the bulk material remains crucial for long-term performance and stability. Our findings demonstrate that Al-MgV2O4 exhibits enhanced Zn2+ diffusion kinetics and robust structural integrity under high-rate cycling conditions, contributing to its high electrochemical performance. The Al-MgVO cathode retains a capacity of 254.3 mAh g−1 at a high current density of 10 A g−1 after 1000 cycles (93.6% retention), and 186.8 mAh g−1 at 20 A g−1 after 2000 cycles (90.2% retention). These improvements, driven by enhanced bulk diffusion and the stabilization of the crystal framework through Al3+ doping, make it a promising candidate for high-rate energy storage applications. Full article
(This article belongs to the Special Issue Inorganic Chemistry in Asia)
Show Figures

Figure 1

20 pages, 4257 KB  
Article
Photocatalytic Degradation of Toxic Dyes on Cu and Al Co-Doped ZnO Nanostructured Films: A Comparative Study
by Nadezhda D. Yakushova, Ivan A. Gubich, Andrey A. Karmanov, Alexey S. Komolov, Aleksandra V. Koroleva, Ghenadii Korotcenkov and Igor A. Pronin
Technologies 2025, 13(7), 277; https://doi.org/10.3390/technologies13070277 - 1 Jul 2025
Cited by 2 | Viewed by 1082
Abstract
The article suggests a simple one-step sol–gel method for synthesizing nanostructured zinc oxide films co-doped with copper and aluminum. It shows the possibility of forming hierarchical ZnO:Al:Cu nanostructures combining branches of different sizes and ranks and quasi-spherical fractal aggregates. It demonstrates the use [...] Read more.
The article suggests a simple one-step sol–gel method for synthesizing nanostructured zinc oxide films co-doped with copper and aluminum. It shows the possibility of forming hierarchical ZnO:Al:Cu nanostructures combining branches of different sizes and ranks and quasi-spherical fractal aggregates. It demonstrates the use of the synthesized samples as highly efficient photocatalysts providing the decomposition of toxic dyes (methyl orange) under the action of both ultraviolet radiation and visible light. It establishes the contribution of the average crystallite size, the proportion of zinc atoms in the crystalline phase, their nanostructure, as well as X-ray amorphous phases of copper and aluminum to the efficiency of the photocatalysis process. Full article
(This article belongs to the Section Environmental Technology)
Show Figures

Graphical abstract

Back to TopTop