Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (80)

Search Parameters:
Keywords = aluminum conductor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4432 KiB  
Article
Radial Temperature Distribution Characteristics of Long-Span Transmission Lines Under Forced Convection Conditions
by Feng Wang, Chuanxing Song, Xinghua Chen and Zhangjun Liu
Processes 2025, 13(7), 2273; https://doi.org/10.3390/pr13072273 - 16 Jul 2025
Viewed by 292
Abstract
This study proposes an iterative method based on thermal equilibrium equations to calculate the radial temperature distribution of long-span overhead transmission lines under forced convection. This paper takes the ACSR 500/280 conductor as the research object, establishes the three-dimensional finite element model considering [...] Read more.
This study proposes an iterative method based on thermal equilibrium equations to calculate the radial temperature distribution of long-span overhead transmission lines under forced convection. This paper takes the ACSR 500/280 conductor as the research object, establishes the three-dimensional finite element model considering the helix angle of the conductor, and carries out the experimental validation for the LGJ 300/40 conductor under the same conditions. The model captures internal temperature distribution through contour analysis and examines the effects of current, wind speed, and ambient temperature. Unlike traditional models assuming uniform conductor temperature, this method reveals internal thermal gradients and introduces a novel three-stage radial attenuation characterization. The iterative method converges and accurately reflects temperature variations. The results show a non-uniform radial distribution, with a maximum temperature difference of 8 °C and steeper gradients in aluminum than in steel. Increasing current raises temperature nonlinearly, enlarging the radial difference. Higher wind speeds reduce both temperature and radial difference, while rising ambient temperatures increase conductor temperature with a stable radial profile. This work provides valuable insights for the safe operation and optimal design of long-span transmission lines and supports future research on dynamic and environmental coupling effects. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

18 pages, 8131 KiB  
Article
Rapid Dismantling of Aluminum Stranded Conductors: An Automated Approach
by Zhinan Cao, Jie Feng, Shijun Xie, Qian Peng, Jiahui Chen, Cheng Wen and Jigang Huang
Machines 2025, 13(7), 608; https://doi.org/10.3390/machines13070608 - 15 Jul 2025
Viewed by 267
Abstract
Currently, the dismantling of aluminum stranded conductors remains predominantly manual due to their structural complexity. To enhance the efficiency and reduce the labor intensity for dismantling aluminum stranded conductors, this study presents an innovative torque-driven dismantling method validated through dynamic simulation analysis. To [...] Read more.
Currently, the dismantling of aluminum stranded conductors remains predominantly manual due to their structural complexity. To enhance the efficiency and reduce the labor intensity for dismantling aluminum stranded conductors, this study presents an innovative torque-driven dismantling method validated through dynamic simulation analysis. To demonstrate the proposed method, a modular prototype machine that includes four main functional modules (transmission, untwisting, separation, and shearing) was developed. Experimental results from the prototype dismantling machine demonstrated that when processing JL/G3A-500/65 conductors (Sichuan Star Cable Co., Ltd., Leshan, China) under the following operational parameters—0.5 rad/s rotational speed, 10 cm extension length, 2400 N clamping force, and 40 N·m torque application—the system achieved a single-layer dismantling efficiency exceeding 98%. This represents a significant improvement in operational speed compared to traditional manual methods. The developed machine achieved collaborative control of axial feed, reverse untwisting, and automatic shearing, elevating the untwisting qualification rate to 95%. This solution provides an efficient and safe approach to conductor inspection, demonstrating substantial engineering application value. Full article
Show Figures

Figure 1

13 pages, 3785 KiB  
Article
Experimental Investigation of Flame Spread Characteristics in Cable Fires Within Covered Trays Under Different Tilt Angles
by Changkun Chen, Yipeng Bao, Boyuan Zuo, Jia Zhang and Yuhuai Wang
Fire 2025, 8(7), 272; https://doi.org/10.3390/fire8070272 - 11 Jul 2025
Viewed by 460
Abstract
In the actual installation of cables, inclined cable laying within covered cable trays is a relatively common method. To investigate the effects of different tilt angles on the combustion behavior of cables within covered cable trays, aluminum conductor polyethylene-insulated power cables were used [...] Read more.
In the actual installation of cables, inclined cable laying within covered cable trays is a relatively common method. To investigate the effects of different tilt angles on the combustion behavior of cables within covered cable trays, aluminum conductor polyethylene-insulated power cables were used as the test cables. The flame morphology, temperature distribution, and fire spread rate during the cable combustion process were analyzed for experimental scenarios for which the cable laying angles and the ignition positions changed. The results indicate that the inclination angle of the covered cable tray has a significant impact on flame propagation and temperature distribution. For the ignition located at the lowest part of the cable, the fire spread rate increases significantly with the tilt angle. In contrast, for the ignition located at the highest part of the cable, the fire spread rate initially decreases slightly and then increases, with a relatively smaller overall change in magnitude. Under both ignition positions, the flame spread rate significantly increases at 15–30°. Therefore, in actual cable installation processes, cables within covered troughs should avoid large-angle inclinations. Full article
(This article belongs to the Special Issue Fire Detection and Public Safety, 2nd Edition)
Show Figures

Figure 1

15 pages, 7975 KiB  
Article
Microstructural and Mechanical Characterization of Corroded Aluminum Wires from ACSR Strand
by Laurent Gaillet, Alan Rondineau, Sébastien Langlois, Marc Demers and Lamine Dieng
Corros. Mater. Degrad. 2025, 6(2), 25; https://doi.org/10.3390/cmd6020025 - 17 Jun 2025
Viewed by 329
Abstract
Aluminum Conductors Steel-Reinforced (ACSR) conductors are typically used in overhead transmission lines. Corrosion is an important degradation mechanisms that might affect the lifetime of this essential electricity network component. Considering the complexity of conductors, it is difficult to predict the damage of these [...] Read more.
Aluminum Conductors Steel-Reinforced (ACSR) conductors are typically used in overhead transmission lines. Corrosion is an important degradation mechanisms that might affect the lifetime of this essential electricity network component. Considering the complexity of conductors, it is difficult to predict the damage of these conductors in corrosive environments. The objective of this paper is to evaluate the effect of grease and conductor geometry on the mechanical properties of aluminum strand composing the envelope of ASCR conductors. Thus, ACSR wires and strands have been evaluated in corrosion by the mean of accelerated corrosion tests. Tensile, fatigue and torsion test results are presented to examine the effect of corrosion on aluminum strands. The influence of corrosion on mechanical characteristics is established by a decrease in ductility, maximum elongation and tensile strength for the longest exposition (336 days). This significant reduction in the internal layer of ungreased wires confirms the importance of the galvanic corrosion mechanism of aluminum wires. This evolution concerns only aluminum wires of non-greased conductors, confirming the crucial role of grease as protection against corrosion. Full article
Show Figures

Figure 1

17 pages, 25383 KiB  
Article
RFID Sensor with Integrated Energy Harvesting for Wireless Measurement of dc Magnetic Fields
by Shijie Fu, Greg E. Bridges and Behzad Kordi
Sensors 2025, 25(10), 3024; https://doi.org/10.3390/s25103024 - 10 May 2025
Viewed by 853
Abstract
High-voltage direct-current (HVdc) transmission lines are gaining more attention as an integral part of modern power system networks. Monitoring the dc current is important for metering and the development of dynamic line rating control schemes. However, this has been a challenging task, and [...] Read more.
High-voltage direct-current (HVdc) transmission lines are gaining more attention as an integral part of modern power system networks. Monitoring the dc current is important for metering and the development of dynamic line rating control schemes. However, this has been a challenging task, and there is a need for wireless sensing methods with high accuracy and a dynamic range. Conventional methods require direct contact with the high-voltage conductors and utilize bulky and complex equipment. In this paper, an ultra-high-frequency (UHF) radio frequency identification (RFID)-based sensor is introduced for the monitoring of the dc current of an HVdc transmission line. The sensor is composed of a passive RFID tag with a custom-designed antenna, integrated with a Hall effect magnetic field device and an RF power harvesting unit. The dc current is measured by monitoring the dc magnetic field around the conductor using the Hall effect device. The internal memory of the RFID tag is encoded with the magnetic field data. The entire RFID sensor can be wirelessly powered and interrogated using a conventional RFID reader. The advantage of this approach is that the sensor does not require batteries and does not need additional maintenance during its lifetime. This is an important feature in a high-voltage environment where any maintenance requires either an outage or special equipment. In this paper, the detailed design of the RFID sensor is presented, including the antenna design and measurements for both the RFID tag and the RF harvesting section, the microcontroller interfacing design and testing, the magnetic field sensor calibration, and the RF power harvesting section. The UHF RFID-based magnetic field sensor was fabricated and tested using a laboratory experimental setup. In the experiment, a 40 mm-diameter-aluminum conductor, typically used in 500 kV HVdc transmission lines carrying a dc current of up to 1200 A, was used to conduct dc current tests for the fabricated sensor. The sensor was placed near the conductor such that the Hall effect device was close to the surface of the conductor, and readings were acquired by the RFID reader. The sensitivity of the entire RFID sensor was 30 mV/mT, with linear behavior over a magnetic flux density range from 0 mT to 4.5 mT. Full article
(This article belongs to the Special Issue Advances in Magnetic Sensors and Their Applications)
Show Figures

Figure 1

18 pages, 6260 KiB  
Article
The Effect of Aluminum Deformation Conditions on Microhardness and Indentation Size Effect Characteristics
by Peter Blaško, Jozef Petrík, Marek Šolc, Mária Mihaliková, Lenka Girmanová, Alena Pribulová, Peter Futáš, Joanna Furman and Kuczyńska-Chałada Marzena
Crystals 2025, 15(3), 252; https://doi.org/10.3390/cryst15030252 - 7 Mar 2025
Viewed by 597
Abstract
The degree and speed of deformation are factors that influence microstructure and mechanical properties. Aluminum (99.5%) was used as the test material in this experiment. This material is currently mainly used in the electrical industry to manufacture conductors as a substitute for the [...] Read more.
The degree and speed of deformation are factors that influence microstructure and mechanical properties. Aluminum (99.5%) was used as the test material in this experiment. This material is currently mainly used in the electrical industry to manufacture conductors as a substitute for the more expensive copper. The cylindrical samples were deformed at a strain rate of up to 2500 s−1, and the degree of deformation was up to 85%. At the point place of maximum deformation, usually in the center of the sample, the microhardness was measured under various loads, between 10 gf and 100 gf. The obtained data were used to determine the characteristics or parameters of the indentation size effect (ISE) and the influence of the deformation conditions on the microhardness. The results obtained were processed by linear regression analysis, followed by the creation of deformation maps. Full article
(This article belongs to the Special Issue Microstructural Characterization and Property Analysis of Alloys)
Show Figures

Figure 1

12 pages, 3181 KiB  
Article
Selection of a Suitable Conductor for Inductive Power Transfer
by Tanguy Phulpin, Rym Boulahbel, Hafaliana Randrianjanaka and Yann Leroy
Magnetism 2025, 5(1), 7; https://doi.org/10.3390/magnetism5010007 - 7 Mar 2025
Viewed by 869
Abstract
Inductive Power Transfer (IPT) is evolving fast in many domains, but its efficiency, its extensive resource requirements, and its cost remain crucial problems for its development. Although the inverter is mainly responsible for its cost and material consumption, a considerable quantity of conductors [...] Read more.
Inductive Power Transfer (IPT) is evolving fast in many domains, but its efficiency, its extensive resource requirements, and its cost remain crucial problems for its development. Although the inverter is mainly responsible for its cost and material consumption, a considerable quantity of conductors is required for the coupling realization. Therefore, A drastic cost reduction is possible when comparing the traditional most efficient copper Litz wire with aluminum conductors for a similar volume and a lighter embedded system. However, alternative ribbon wire solutions are also characterized and seem promising as substitutes for such applications. First, standard electrical efficiency is evaluated for all cases, before the price and weight. To complement the results and as the alternative couplers imply different materials and production processes, a Life Cycle Assessment is performed. A comparison is carried out on copper and aluminum litz wires and copper and aluminum ribbons. Results demonstrate the promising interest in industrial application of such study, furthermore for systems requiring many couplers as Dynamic IPT (DIPT). Full article
Show Figures

Figure 1

19 pages, 11019 KiB  
Article
Study of the Effect of Graphene Content on the Electrical and Mechanical Properties of Aluminium–Graphene Composites
by Beata Smyrak and Marek Gniełczyk
Materials 2025, 18(3), 590; https://doi.org/10.3390/ma18030590 - 28 Jan 2025
Viewed by 1370
Abstract
The present paper is dedicated to the search for an alternative material based on an aluminum (Al)—few-layer graphene (FLG) composite for use in electrical applications. Due to its excellent properties, graphene has the potential for use in many applications, especially in electronics, electrical [...] Read more.
The present paper is dedicated to the search for an alternative material based on an aluminum (Al)—few-layer graphene (FLG) composite for use in electrical applications. Due to its excellent properties, graphene has the potential for use in many applications, especially in electronics, electrical engineering, aerospace, and the automotive industry. One area where the properties of graphene can be exploited is in overhead power transmission, where the main challenge at the moment is to reduce transmission losses. The utilization of conductors that exhibit superior electrical conductivity is instrumental in ensuring the mitigation of transmission losses. The utilization of graphene or other carbon allotropes is appealing due to their elevated electrical conductivity, substantial mechanical strength, and considerable heat resistance, which can enhance the properties of the composite, thereby increasing its resistance to operational conditions, particularly long-term exposure to temperature, a parameter closely related to the current carrying capacity of the OHL. This article presents the findings of research on the production of a composite based on aluminum powder and graphene, as well as the identification of its electrical and mechanical properties. The primary challenge in this research lies in the development of a method to synthesize carbon materials with aluminum using powder metallurgy, with particular attention paid to the mixing and compacting process, which is of significant importance in ensuring the appropriate distribution of carbon material in the composite. The research carried out has determined the influence of the graphene content (0.1–1 wt.%) on the electrical conductivity (max. 35.4 MS/m) and mechanical properties of Al-FLG composites (UTS = 156 MPa). Full article
(This article belongs to the Special Issue Mechanical Behavior of Composite Materials (3rd Edition))
Show Figures

Figure 1

17 pages, 6271 KiB  
Article
Investigation into the Prediction of the Service Life of the Electrical Contacting of a Wheel Hub Drive
by Markus Hempel, Niklas Umland and Matthias Busse
World Electr. Veh. J. 2025, 16(2), 68; https://doi.org/10.3390/wevj16020068 - 25 Jan 2025
Viewed by 754
Abstract
This article examines contacting by means of ultrasonic welding between a cast aluminum winding and a copper conductor of a wheel hub drive for a passenger car. The effect of thermal stress on the formation and growth of intermetallic phases (IMC) in the [...] Read more.
This article examines contacting by means of ultrasonic welding between a cast aluminum winding and a copper conductor of a wheel hub drive for a passenger car. The effect of thermal stress on the formation and growth of intermetallic phases (IMC) in the contact is analyzed. By using microscopy, the growth constant under the specific load conditions can be identified with the help of the parabolic time law and offer a possibility for predicting the service life of the corresponding contacts. As a result, it can be stated that the increase in electrical resistance of the present contact at load temperatures of 120 °C, 150 °C, and 180 °C does not reach a critical value. The growth rates of the IMC also show no critical tendencies at the usual operating temperatures (120 °C and 150 °C, e.g., at 150 °C = 4.59 × 10−7 μm2/s). The activation energy calculated using the Arrhenius plot of 155 kJ/mol (1.61 eV) can be classified as high in comparison to similar studies. In addition, it was found that future investigations of the IMC growth of corresponding electrical contacts should rather be carried out with electric current. The 180 °C sample series were carried out in the oven and with electric current; the samples in the oven did not show clear IMC, while the samples exposed to electric current already showed IMC under the microscope. Full article
Show Figures

Figure 1

17 pages, 3504 KiB  
Article
Discussion on AC Resistance and Temperature of ACSR Based on Finite Element Model Assistance
by Jianbo Yu, Changqing Wu, Hao Huang, Dexin Xie, Feixiang Qin, Jian Jiang and Gaohui He
Energies 2025, 18(3), 539; https://doi.org/10.3390/en18030539 - 24 Jan 2025
Cited by 1 | Viewed by 869
Abstract
In overhead wire transmission systems, the presence of AC resistance results in increased energy dissipation, adversely affecting the lines’ capacity to conduct current. This paper employs a finite element aluminum conductor steel-reinforced (ACSR) model, combined with electrical measurement techniques, to investigate AC resistance. [...] Read more.
In overhead wire transmission systems, the presence of AC resistance results in increased energy dissipation, adversely affecting the lines’ capacity to conduct current. This paper employs a finite element aluminum conductor steel-reinforced (ACSR) model, combined with electrical measurement techniques, to investigate AC resistance. By applying varying levels of AC current, the model is employed to determine the AC resistance which closely aligns with theoretical values estimated using the Morgan algorithm. The trends observed in the parameters are consistent, thereby validating the accuracy of the model. Following simulations and analyses regarding both AC resistance and temperature variations within the conductors—and incorporating empirical measurement results—it is demonstrated that, when environmental factors are not considered, any increase in the conductor temperature can be integrated into a revised model. This updated model is subsequently compared against test results obtained from an experimental platform; the findings confirm that the estimation errors remain within an acceptable range. Overall, this simulation model serves as a valuable reference for assessing AC losses in existing conductors, as well as contributing to reduced experimental costs while mitigating the associated risks and challenges. In summary, this simulation model serves as an essential reference for assessing AC losses in current conductors and aids in reducing experimental costs while addressing the associated risks and challenges. Full article
(This article belongs to the Special Issue Power Cables in Energy Systems)
Show Figures

Figure 1

14 pages, 10429 KiB  
Article
Studies of Thermal Conductivity of Graphite Foil-Based Composite Materials
by Vladimir A. Shulyak, Nikolai S. Morozov, Roman A. Minushkin, Viktor Yu. Gubin, Dmitriy V. Vakhrushin, Alexandra V. Gracheva, Ildar Kh. Nigmatullin, Sergei N. Chebotarev and Viktor V. Avdeev
Materials 2025, 18(2), 233; https://doi.org/10.3390/ma18020233 - 8 Jan 2025
Cited by 2 | Viewed by 1149
Abstract
We have proposed and developed a method for measuring the thermal conductivity of highly efficient thermal conductors. The measurement method was tested on pure metals with high thermal conductivity coefficients: aluminum (99.999 wt.% Al) and copper (99.990 wt.% Cu). It was demonstrated that [...] Read more.
We have proposed and developed a method for measuring the thermal conductivity of highly efficient thermal conductors. The measurement method was tested on pure metals with high thermal conductivity coefficients: aluminum (99.999 wt.% Al) and copper (99.990 wt.% Cu). It was demonstrated that their thermal conductivities at a temperature of T = 22 ± 1 °C were <λAl> = 243 ± 3 W/m·K and <λCu> = 405 ± 4 W/m·K, which was in good agreement with values reported in the literature. Artificial graphite (ρG1 = 1.8 g/cm3) and natural graphite (ρG2 = 1.7 g/cm3) were used as reference carbon materials; the measured thermal conductivities were <λG1> = 87 ± 1 W/m·K and <λG2> = 145 ± 3 W/m·K, respectively. It is well established that measuring the thermal conductivity coefficient of thin flexible graphite foils is a complex metrological task. We have proposed to manufacture a solid rectangular sample formed by alternating layers of thin graphite foils connected by layers of ultra-thin polyethylene films. Computer modelling showed that, for equal thermal conductivities of solid products made of compacted thermally exfoliated graphite and products made of a composite material consisting of 100 layers of thin graphite foil and 99 layers of polyethylene, the differences in temperature fields did not exceed 1%. The obtained result substantiates our proposed approach to measuring thermal conductivity of flexible graphite foil by creating a multi-layer composite material. The thermal conductivity coefficient of such a composite at room temperature was <λGF> = 184 ± 6 W/m·K, which aligns well with measurements by the laser flash method. Full article
(This article belongs to the Section Carbon Materials)
Show Figures

Figure 1

16 pages, 2102 KiB  
Article
The Role of AC Resistance of Bare Stranded Conductors for Developing Dynamic Line Rating Approaches
by Jordi-Roger Riba
Appl. Sci. 2024, 14(19), 8982; https://doi.org/10.3390/app14198982 - 5 Oct 2024
Cited by 3 | Viewed by 2080
Abstract
Overhead transmission line conductors are usually helically stranded. The current-carrying section is made of aluminum and/or aluminum alloys. Several factors affect their electrical resistance, such as the conductivity of the conductor material, the cross-sectional area, the lay length of the different layers of [...] Read more.
Overhead transmission line conductors are usually helically stranded. The current-carrying section is made of aluminum and/or aluminum alloys. Several factors affect their electrical resistance, such as the conductivity of the conductor material, the cross-sectional area, the lay length of the different layers of aluminum, and the presence of a steel core used to increase the mechanical strength of the conductor. The direct current (DC) and alternating current (AC) resistances per unit length of stranded conductors are different due to the effect of the eddy currents. In steel-reinforced conductors, there are other effects, such as the transformer effect due to the magnetization of the steel core, which make the AC resistance dependent on the current. Operating temperature also has an important effect on electrical resistance. Resistive losses are the main source of heating in transmission line conductors, so their temperature rise is highly dominated by such power losses, making it critical to know the value of the AC resistance per unit length when applying dynamic line rating (DLR) methods. They are of great interest especially in congested lines, as by applying DLR approaches it is possible to utilize the full line capacity of the line. This paper highlights the difficulty of accurately calculating the electrical resistance of helically stranded conductors, especially those with a magnetic core, and the importance of accurate measurements for the development of conductor models and DLR approaches. Full article
Show Figures

Figure 1

17 pages, 12871 KiB  
Article
Morphological and Doping Effects on Electrical Conductivity of Aluminum Metal Substrate through Pulsed Electrodeposition Coating of Cu-MWCNT
by Alberto S. Silva, Mário E. S. Sousa, Eduardo M. Braga and Marcos A. L. Reis
Metals 2024, 14(9), 1060; https://doi.org/10.3390/met14091060 - 17 Sep 2024
Cited by 1 | Viewed by 1601
Abstract
The demand for more efficient and sustainable electrical systems has driven research in the quest for innovative materials that enhance the properties of electrical conductors. This study investigated the influence of copper (Cu) coating and multi-walled carbon nanotubes (MWCNTs) on aluminum metal substrate [...] Read more.
The demand for more efficient and sustainable electrical systems has driven research in the quest for innovative materials that enhance the properties of electrical conductors. This study investigated the influence of copper (Cu) coating and multi-walled carbon nanotubes (MWCNTs) on aluminum metal substrate through the pulsed electrodeposition technique. Parameters such as the concentration of chemical elements, current, voltage, temperature, time, and electrode spacing were optimized in search of improving the nanocomposite coating. The metallic substrate underwent anodization as surface preparation for coating. Characterization techniques employed included Field Emission Gun—Scanning Electron Microscopy (FEG-SEM) for analyzing coating morphology, Energy-Dispersive X-Ray Spectroscopy (EDS), Raman spectroscopy, and Kelvin probe for obtaining surface electrical conductivity values. Homogeneous dispersion of the Cu-MWCNTs film coating was achieved across the entire surface of the aluminum plate, creating a complex morphology. The doping effect was highlighted by changes in the vibrational characteristics of the nanocomposite, which affected the Raman spectrum dispersion bands. An increase in surface electrical conductivity by ≈52.33% compared to the control sample was obtained. Therefore, these results indicate that the improvement in the material’s electrical properties is intrinsically related to the complex morphology achieved with the adopted Cu-MWCNT nanocomposite coating process. Full article
Show Figures

Figure 1

19 pages, 1375 KiB  
Review
Aluminum Conductor Steel-Supported Conductors for the Sustainable Growth of Power Line Capacity: A Review and Discussion
by Milad Jalilian, Jordi-Roger Riba and Pooya Parvizi
Materials 2024, 17(18), 4536; https://doi.org/10.3390/ma17184536 - 15 Sep 2024
Cited by 7 | Viewed by 3197
Abstract
Industrial development and population growth have increased the need for higher-capacity power transmission lines. Aluminum conductor steel-supported (ACSS) conductors, a type of high-temperature low-sag (HTLS) conductor, are now widely used in new designs and reconductoring applications. ACSS conductors are preferred over traditional aluminum [...] Read more.
Industrial development and population growth have increased the need for higher-capacity power transmission lines. Aluminum conductor steel-supported (ACSS) conductors, a type of high-temperature low-sag (HTLS) conductor, are now widely used in new designs and reconductoring applications. ACSS conductors are preferred over traditional aluminum conductor steel-reinforced (ACSR) conductors due to their high strength, low sag, and excellent thermal stability. These attributes have garnered significant interest from researchers, engineers, and manufacturers. This paper provides a comprehensive review of the structure, properties, testing methods, and environmental behavior of ACSS conductors. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

16 pages, 4895 KiB  
Article
Optimal Design of High-Power Density Medium-Voltage Direct Current Bipolar Power Cables for Lunar Power Transmission
by Anoy Saha and Mona Ghassemi
Aerospace 2024, 11(8), 685; https://doi.org/10.3390/aerospace11080685 - 20 Aug 2024
Cited by 5 | Viewed by 1300
Abstract
Power systems on the lunar surface require power lines of varying lengths and capacities to connect generation, storage, and load facilities. These lines must be designed to perform efficiently in the harsh lunar environment, considering factors such as weight, volume, safety, cost-effectiveness, and [...] Read more.
Power systems on the lunar surface require power lines of varying lengths and capacities to connect generation, storage, and load facilities. These lines must be designed to perform efficiently in the harsh lunar environment, considering factors such as weight, volume, safety, cost-effectiveness, and reliability. Traditional power transmission methods face challenges in this environment due to temperature fluctuations, micrometeoroid impacts, and ionizing radiation. Underground deployment, although generally safer, faces challenges due to low soil thermal conductivity. At a depth of 30 cm, the lunar temperature of −23.15 °C can be advantageous for managing waste heat. This study presents a novel approach, developed using COMSOL Multiphysics, for designing bipolar MVDC cables for lunar subsurface power transmission. Kapton® MT+ is chosen as the insulating material for its exceptional properties, including high thermal conductivity and superior dielectric strength. The cables are designed for voltages of ±10 kV and ±5 kV and capacities of 200 kW (low power), 1 MW (medium power), and 2 MW (high power). Our findings indicate that aluminum conductors offer superior performance compared to copper at medium and high power levels. Additionally, elevated voltage levels (±10 kV) enhance cable design and power transfer efficiency. These specially designed cables are well-suited for efficient operation in the challenging lunar environment. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

Back to TopTop