Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (658)

Search Parameters:
Keywords = alternative food practices

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 1695 KiB  
Review
Bee Brood as a Food for Human Consumption: An Integrative Review of Phytochemical and Nutritional Composition
by Raquel P. F. Guiné, Sofia G. Florença, Maria João Barroca and Cristina A. Costa
Insects 2025, 16(8), 796; https://doi.org/10.3390/insects16080796 (registering DOI) - 31 Jul 2025
Abstract
The utilisation of edible insects for human nutrition is a long-standing practice in many parts of the globe, and is being gradually introduced into countries without an entomophagic tradition as well. These unconventional sources of protein of animal origin have arisen as a [...] Read more.
The utilisation of edible insects for human nutrition is a long-standing practice in many parts of the globe, and is being gradually introduced into countries without an entomophagic tradition as well. These unconventional sources of protein of animal origin have arisen as a sustainable alternative to other animal protein sources, such as meat. This review intends to present the compilation of data in the scientific literature on the chemical composition and nutritional value of the bee brood of A. mellifera species and subspecies as edible foods. For this, a comprehensive search of the scientific literature was carried out using the databases ScienceDirect, Scopus, Pub-Med, BOn, and SciELO. Appropriate keywords were used for the search to reach the research works that addressed the topics of the review. The results showed that bee brood has considerable quantities of protein, fat and carbohydrates. The most abundant amino acids are leucine and lysine (these two being essential amino acids) and aspartic acid, glutamic acid, and proline (these three being non-essential amino acids). As for the fatty acids, bee broods contain approximately equal fractions of saturated and monounsaturated fatty acids, while the polyunsaturated fatty acids are negligible. The dietary minerals present in higher quantities are potassium, phosphorus, and magnesium, and the most abundant vitamins are vitamin C and niacin; choline is also present, although it is not a true vitamin. Although bee brood from A. mellifera has potential for human consumption as a nutrient-rich food, there are still many aspects that need to be further studied in the future, such as safety and hazards linked to possible regular consumption. Full article
(This article belongs to the Special Issue Insects: A Unique Bioresource for Agriculture and Humanity)
Show Figures

Figure 1

21 pages, 1652 KiB  
Article
Antimicrobial and Physicochemical Properties of Hemicellulose-Based Films Incorporating Carvacrol
by Syed Ammar Hussain, Brajendra K. Sharma, Phoebe X. Qi, Madhav P. Yadav and Tony Z. Jin
Polymers 2025, 17(15), 2073; https://doi.org/10.3390/polym17152073 - 29 Jul 2025
Viewed by 205
Abstract
Antimicrobial food packaging with natural antimicrobials and biodegradable polymers presents an innovative solution to mitigate microbial contamination, prolong freshness, reduce food waste, and alleviate environmental burden. This study developed antimicrobial hemicellulose-based films by incorporating carvacrol (1% and 2%) as a natural antimicrobial agent [...] Read more.
Antimicrobial food packaging with natural antimicrobials and biodegradable polymers presents an innovative solution to mitigate microbial contamination, prolong freshness, reduce food waste, and alleviate environmental burden. This study developed antimicrobial hemicellulose-based films by incorporating carvacrol (1% and 2%) as a natural antimicrobial agent through micro-emulsification produced by high-pressure homogenization (M-films). For comparison, films with the same formula were constructed using coarse emulsions (C-films) without high-pressure homogenization. These films were investigated for their antimicrobial efficacy, mechanical and barrier properties, and physicochemical attributes to explore their potential as sustainable antimicrobial packaging solutions. The M-films demonstrated superior antimicrobial activity, achieving reductions exceeding 4 Log CFU/mL against Listeria monocytogenes, Escherichia coli, and Salmonella enterica, compared to the C-films. High-pressure homogenization significantly reduced the emulsion’s particle size, from 11.59 to 2.55 μm, and considerably enhanced the M-film’s uniformity, hydrophobicity, and structural quality. Most importantly, the M-films exhibited lower oxygen transmission (35.14 cc/m2/day) and water vapor transmission rates (52.12 g/m2/day) than the C-films at 45.1 and 65.5 cc/m2/day, respectively, indicating superior protection against gas and moisture diffusion. Markedly improved mechanical properties, including foldability, toughness, and bubble-free surfaces, were also observed, making the M-films suitable for practical applications. This study highlights the potential of high-pressure homogenization as a method for enhancing the functional properties of hemicellulose-based films (i.e., M-films). The fabricated films offer a viable alternative to conventional plastic packaging, paving the way for safer and greener solutions tailored to modern industry needs. Full article
(This article belongs to the Special Issue Polymer-Based Coatings: Principles, Development and Applications)
Show Figures

Figure 1

13 pages, 596 KiB  
Review
Drug Repurposing of New Treatments for Neuroendocrine Tumors
by Stefania Bellino, Daniela Lucente and Anna La Salvia
Cancers 2025, 17(15), 2488; https://doi.org/10.3390/cancers17152488 - 28 Jul 2025
Viewed by 218
Abstract
Drug repurposing or drug repositioning is the process of identifying new therapeutic uses for approved or investigational drugs beyond the original treatment indication. The discovery of new drugs for cancer therapy needs this cost-effective and time-saving alternative strategy to traditional drug development for [...] Read more.
Drug repurposing or drug repositioning is the process of identifying new therapeutic uses for approved or investigational drugs beyond the original treatment indication. The discovery of new drugs for cancer therapy needs this cost-effective and time-saving alternative strategy to traditional drug development for a rapid clinical translation in Phase II/III studies, especially for unmet medical needs and rare diseases. Neuroendocrine tumors (NETs) are a heterogeneous group of rare neoplasms arising from cells of the neuroendocrine system that, though often indolent, can be aggressive and metastatic. In this context, drug repurposing has emerged as a promising strategy to improve treatment options due to the limited number of effective treatments and the heterogeneity of the disease. Indeed, a large number of non-oncology drugs have the potential to address more than one target that could be therapeutic for cancer patients. Although many repurposed drugs are used off-label, efficacy for the new use must be demonstrated in clinical trials. Within regulatory frameworks, both the Food and Drug Administration (FDA) and the European Medicines Agency (EMA) have procedures to reduce the need for extensive new studies and to expedite the review of drugs for serious conditions when preliminary evidence indicates substantial clinical improvement over available therapy. In spite of several advantages, including reduced development time, lower costs, known safety profiles, and faster regulatory approval, difficulty in obtaining new patents for old drugs with limited protection for intellectual property may reduce commercial returns and disincentivize investments. This review aims to provide comprehensive information on some marketed drugs currently under investigation to be repurposed or used in clinical practice for NETs and to discuss the major clinical challenges. Although drug repurposing is a useful strategy for early access to medicines, the monitoring of the clinical benefit of oncologic drugs during the post-marketing authorization is crucial to support the safety and effectiveness of treatments. Full article
(This article belongs to the Special Issue Advances in Drug Repurposing to Overcome Cancers)
Show Figures

Graphical abstract

20 pages, 7039 KiB  
Article
Development of a Rapid and Sensitive Visual Pesticide Detection Card Using Crosslinked and Surface-Decorated Electrospun Nanofiber Mat
by Yunshan Wei, Huange Zhou, Jingxuan Kang, Yongmei Wu and Kun Feng
Foods 2025, 14(15), 2628; https://doi.org/10.3390/foods14152628 - 26 Jul 2025
Viewed by 411
Abstract
Increased consumer awareness on food safety has spurred the development of detection techniques for pesticide residues. In this study, a rapid detection card on the basis of enzyme action was developed for the visual detection of pesticides, in which the thermally crosslinked and [...] Read more.
Increased consumer awareness on food safety has spurred the development of detection techniques for pesticide residues. In this study, a rapid detection card on the basis of enzyme action was developed for the visual detection of pesticides, in which the thermally crosslinked and surface-decorated polyvinyl alcohol/citric acid nanofiber mat (PCNM) was employed as a novel immobilization matrix for acetylcholinesterase (AChE). The PCNM, crosslinked at 130 °C for 50 min, exhibited appropriate microstructure and water stability, making it suitable for AChE immobilization. The activation of carboxyl groups by surface decoration resulted in a 2.5-fold increase in enzyme loading capacity. Through parameter optimization, the detection limits for phoxim and methomyl were determined to be 0.007 mg/L and 0.10 mg/L, respectively. The detection card exhibited superior sensitivity and a reduced detection time (11 min) when compared to a commercially available pesticide detection card. Furthermore, the detection results of pesticide residues in fruit and vegetable samples confirmed its feasibility and superiority over commercial alternatives, suggesting its great potential for practical application in the on-site detection of pesticide residues. Full article
(This article belongs to the Section Food Toxicology)
Show Figures

Figure 1

11 pages, 248 KiB  
Article
Food Security Among South Asian Americans: The Role of Availability, Affordability, and Quality of Culturally Appropriate Food
by Monideepa B. Becerra, Farhan Danish and Valentina Chawdhury
Int. J. Environ. Res. Public Health 2025, 22(8), 1169; https://doi.org/10.3390/ijerph22081169 - 24 Jul 2025
Viewed by 238
Abstract
Background: South Asian Americans (SAA) are one of the fastest-growing immigrant groups in the U.S. and face significant health disparities, particularly regarding chronic diseases like diabetes, hypertension, and cardiovascular disease. Dietary patterns play a crucial role in these disparities, with acculturation to Western [...] Read more.
Background: South Asian Americans (SAA) are one of the fastest-growing immigrant groups in the U.S. and face significant health disparities, particularly regarding chronic diseases like diabetes, hypertension, and cardiovascular disease. Dietary patterns play a crucial role in these disparities, with acculturation to Western diets linked to poorer health outcomes. Despite this, the impact of food insecurity on dietary habits among SAAs remains underexplored. This study aims to examine the availability, cost, and quality of ethnic food items and how food insecurity influences dietary practices in Southern California’s SAA population. Methods: The study was conducted in San Bernardino County, California, with field data collection focused on five South Asian ethnicity-specific grocery stores and three Western grocery stores. We assessed the availability and cost of key ingredients for commonly prepared SAA dishes. Additionally, focus group interviews were held with South Asian immigrants to understand food insecurity challenges and dietary adaptations. Results: The study found significant disparities in food availability and cost between SAA-ethnic grocery stores and Western stores. SAA stores were less accessible and more widely dispersed, with an average distance of 10 miles between them. While ingredients like ginger paste and cumin powder were available in both types of stores, items such as ghee, fenugreek seeds, and black gram were harder to find in Western stores. Focus group participants noted that ethnic foods, especially vegetarian ingredients, were more expensive than Western alternatives, leading many to substitute traditional meals with cheaper, less nutritious options. Participants also raised concerns about the poor quality of items in ethnic stores, such as expired produce, which further limited their food choices. Conclusions: Food insecurity, driven by limited availability, high cost, and poor quality of ethnic foods, poses significant challenges to the SAA community’s diet and health. Addressing these barriers could improve food security and health outcomes among SAA immigrants. Full article
(This article belongs to the Special Issue Role of Social Determinants in Health of Vulnerable Groups)
18 pages, 549 KiB  
Article
Extension of Poultry Meat Shelf Life Using Cynara cardunculus L. Leaf Extracts as a Natural Preservative
by Cássia H. Barbosa, Mariana A. Andrade, Fernanda Vilarinho, Ana Sanches Silva and Ana Luísa Fernando
Foods 2025, 14(15), 2592; https://doi.org/10.3390/foods14152592 - 24 Jul 2025
Viewed by 242
Abstract
Food additives are used to prevent food spoilage and extend its shelf life. However, concerns regarding the potential health implications associated with some synthetic additives have prompted research efforts aimed at identifying natural alternatives, such as plant extracts. Cynara cardunculus L. (cardoon) is [...] Read more.
Food additives are used to prevent food spoilage and extend its shelf life. However, concerns regarding the potential health implications associated with some synthetic additives have prompted research efforts aimed at identifying natural alternatives, such as plant extracts. Cynara cardunculus L. (cardoon) is known for its antimicrobial and antioxidant properties. The aim of this study was to evaluate the capability of ethanolic food-grade extracts from cultivated cardoon and globe artichoke leaves to preserve poultry breast meat during refrigerated storage. A total of seven treatment groups were tested: one control group (no extract) and six active groups with 0.5%, 1%, and 2% (w/w) of either cultivated cardoon or globe artichoke leaf extracts. Lipid oxidation, moisture, colour, pH, acidity, and microbial growth were assessed in poultry meat samples over 15 days. Both extracts were effective in extending shelf life, up to 11 days, by delaying lipid oxidation and microbial growth. Cardoon extract (1% w/w) displayed superior antimicrobial efficacy, maintaining microbial counts below 5 Log CFU/g meat until day 15, compared to the control. Cultivated cardoon leaf extract proves promising as a natural antimicrobial and antioxidant, extending the shelf life of poultry meat. This presents an opportunity to maintain the quality of meat products, aligning with consumer preferences for natural ingredients and sustainable practices. Full article
(This article belongs to the Special Issue Preservation and Shelf Life Extension of Food Products)
Show Figures

Figure 1

29 pages, 2969 KiB  
Review
Oleogels: Uses, Applications, and Potential in the Food Industry
by Abraham A. Abe, Iolinda Aiello, Cesare Oliviero Rossi and Paolino Caputo
Gels 2025, 11(7), 563; https://doi.org/10.3390/gels11070563 - 21 Jul 2025
Viewed by 313
Abstract
Oleogels are a subclass of organogels that present a healthier alternative to traditional saturated and trans solid fats in food products. The unique structure and composition that oleogels possess make them able to provide desirable sensory and textural features to a range of [...] Read more.
Oleogels are a subclass of organogels that present a healthier alternative to traditional saturated and trans solid fats in food products. The unique structure and composition that oleogels possess make them able to provide desirable sensory and textural features to a range of food products, such as baked goods, processed meats, dairy products, and confectionery, while also improving the nutritional profiles of these food products. The fact that oleogels have the potential to bring about healthier food products, thereby contributing to a better diet, makes interest in the subject ever-increasing, especially due to the global issue of obesity and related health issues. Research studies have demonstrated that oleogels can effectively replace conventional fats without compromising flavor or texture. The use of plant-based gelators brings about a reduction in saturated fat content, as well as aligns with consumer demands for clean-label and sustainable food options. Oleogels minimize oil migration in foods due to their high oil-binding capacity, which in turn enhances food product shelf life and stability. Although oleogels are highly advantageous, their adoption in the food industry presents challenges, such as oil stability, sensory acceptance, and the scalability of production processes. Concerns such as mixed consumer perceptions of taste and mouthfeel and oxidative stability during processing and storage evidence the need for further research to optimize oleogel formulations. Addressing these limitations is fundamental for amplifying the use of oleogels and fulfilling their promise as a sustainable and healthier fat alternative in food products. As the oleogel industry continues to evolve, future research directions will focus on enhancing understanding of their properties, improving sensory evaluations, addressing regulatory challenges, and promoting sustainable production practices. The present report summarizes and updates the state-of-the-art about the structure, the properties, and the applications of oleogels in the food industry to highlight their full potential. Full article
(This article belongs to the Special Issue Functionality of Oleogels and Bigels in Foods)
Show Figures

Figure 1

15 pages, 993 KiB  
Review
Energy Footprint of Cheese: A Critical Review of the Environmental Impact and Opportunities for Sustainability
by Karina S. Silvério, Daniela Freitas and João M. Dias
Appl. Sci. 2025, 15(14), 8072; https://doi.org/10.3390/app15148072 - 20 Jul 2025
Viewed by 472
Abstract
Cheese production is an ancient practice that is associated with the food and cultural identity of different peoples. There are over 500 cheese types globally, including 207 with protected denomination of origin (PDO) and 70 with protected geographical indication (PGI) status in the [...] Read more.
Cheese production is an ancient practice that is associated with the food and cultural identity of different peoples. There are over 500 cheese types globally, including 207 with protected denomination of origin (PDO) and 70 with protected geographical indication (PGI) status in the European Union (EU). Each cheese has various biochemical compositions, production methods, and maturation environments. This study has provided a critical review of the environmental impacts of cheese production, focusing on energy consumption, greenhouse gas (GHG) emissions, and the integration of renewable energy sources as sustainable strategies for this sector. Based on case studies and life cycle assessment (LCA) methodologies, the analysis revealed significant variability in energy use (3.0 to 70.2 MJ/kg) and GHG emissions (up to 22.13 kg CO2 eq/kg), influenced by factors such as the cheese type, production complexity, system boundaries, and the technological or geographical context. Particular attention was given to heat treatment, refrigeration, and maturation processes, which contribute substantially to the overall energy footprint. The paper also discusses the methodological challenges in LCA studies, including the role of co-product allocation and database limitations. Finally, strategic renewable energy options, such as biogas recovery and solar thermal integration, are discussed as sustainable alternatives to reduce the environmental footprint of the dairy sector and support its sustainability. Full article
(This article belongs to the Section Food Science and Technology)
Show Figures

Figure 1

18 pages, 2450 KiB  
Article
Development of Hot Trub and Coffee Silverskin Phytoextracts for Sustainable Aerosol Disinfectant Application
by James Ziemah, Matthias S. Ullrich and Nikolai Kuhnert
Foods 2025, 14(14), 2496; https://doi.org/10.3390/foods14142496 - 16 Jul 2025
Viewed by 350
Abstract
Chemical products, including cleaning agents, disinfectants, stain removers, and cosmetics, release harmful chemicals that pose a risk to human health and the environment, necessitating alternative sources. The objective of this research was to identify the most effective phytoextract from food production waste for [...] Read more.
Chemical products, including cleaning agents, disinfectants, stain removers, and cosmetics, release harmful chemicals that pose a risk to human health and the environment, necessitating alternative sources. The objective of this research was to identify the most effective phytoextract from food production waste for use in sustainable aerosol hygiene technology as an electrostatic bio-disinfectant. The investigation was performed through wipe tests and airborne microbial collection techniques. The upgraded coffee silverskin phytoextract demonstrated superior disinfection potential for various surfaces and airborne microbes compared to the hot trub phytoextract, with an industrial disinfectant serving as the control. Log reduction analyses revealed a more significant killing efficacy (p ≤ 0.05, using the ANOVA test) against Gram-positive organisms (Bacillus subtilis and Listeria monocytogenes) than against Gram-negative organisms (Escherichia coli and Vibrio parahaemolyticus), with the log reductions ranging from 3.08 to 5.56 and 3.72 to 5.81, respectively. Chemical characterization by LC-ESI-QTOF-MS, 1H NMR, and FTIR showed that CGAs and chalcones are the most bioactive compounds in CSS and HT, respectively. The innovation in this work involves an integrated approach that combines waste-derived phytoextracts, advanced chemical profiling, and scalable aerosol disinfection. Furthermore, this research offers a greener, cost-effective, and industrially relevant alternative to synthetic chemical disinfectants. The interdisciplinary approach contributes to the development of bio-based disinfectants for use in the food industry, hospitals, and public health settings. This investigation supports a paradigm shift toward sustainable disinfection practices, thereby improving food and environmental safety. Full article
Show Figures

Figure 1

18 pages, 7370 KiB  
Article
Sustainable Extraction of Bioactive Phenolics from Rose Hips for Functional Food Applications: Evaluation of Green Solvents and Extraction Techniques
by Hanna Kaczkowska, Marharyta Pestriakova, Jolanta Wółkiewicz, Aneta Krakowska-Sieprawska, Paweł Fijałkowski, Zbigniew Rafiński, Paweł Pomastowski, Justyna Walczak-Skierska and Katarzyna Rafińska
Foods 2025, 14(14), 2448; https://doi.org/10.3390/foods14142448 - 11 Jul 2025
Viewed by 358
Abstract
Growing interest in sustainable functional food ingredients has accelerated the search for green extraction methods for bioactive compounds. This study systematically evaluates the use of three emerging green solvents, namely γ-valerolactone (GVL), Cyrene™, and ethyl lactate (EL), as alternatives to conventional solvents for [...] Read more.
Growing interest in sustainable functional food ingredients has accelerated the search for green extraction methods for bioactive compounds. This study systematically evaluates the use of three emerging green solvents, namely γ-valerolactone (GVL), Cyrene™, and ethyl lactate (EL), as alternatives to conventional solvents for extracting phenolic antioxidants from rose hip (Rosa canina L.) fruit. Using maceration, ultrasound-assisted extraction (UAE), and microwave-assisted extraction (MAE), we compared extraction efficiency, total phenolic content, and antioxidant activity across various solvent systems and techniques. Our results demonstrate that MAE consistently provided the highest extraction yields and phenolic recovery, particularly when using ethanol or ethanol/green solvent mixtures. While pure green solvents showed lower extraction efficiency than ethanol, certain binary mixtures, especially GVL with ethanol, delivered promising results both in phenolic yield and antioxidant activity, without significant interference in standard assays. Additionally, while Cyrene™ consistently yielded low extraction efficiencies and low levels of phenolic compounds, its extracts were unique in exhibiting selectivity and stimulated fibroblast migration in vitro, suggesting additional functional benefits for health applications. Overall, our findings support the practical use of selected green solvents in sustainable extraction protocols for food, nutraceutical, and cosmetic industries. Full article
Show Figures

Figure 1

17 pages, 2302 KiB  
Article
Experimental Evaluation of Pet Food Waste as Biomass Fuel: Corrosion, Emissions, and Energy Potential
by Harald Puratich-Fernández, Joaquin Aburto-Hole, Joaquin Díaz, Francisca Angerstein, Fernanda de Groote, Héctor Quinteros-Lama, Johan González and Diógenes Hernández
Appl. Sci. 2025, 15(14), 7792; https://doi.org/10.3390/app15147792 - 11 Jul 2025
Viewed by 367
Abstract
The pet food industry faces significant sustainability challenges, including reducing energy consumption, lowering emissions, and adopting circular economy practices. This study aimed to assess and propose energy efficiency measures to enhance sustainability within the sector. The research evaluated the use of unapproved food [...] Read more.
The pet food industry faces significant sustainability challenges, including reducing energy consumption, lowering emissions, and adopting circular economy practices. This study aimed to assess and propose energy efficiency measures to enhance sustainability within the sector. The research evaluated the use of unapproved food as biomass for boiler combustion. It analyzed its chemical composition, energy impact, and emissions of volatile organic compounds (VOCs) through TD-GC/MS, as well as the corrosion effects on boiler metals. An energy assessment of the production process and a combustion characterization of the waste were conducted to identify opportunities for improving energy efficiency and sustainability. The results demonstrated that the chemical composition of the waste and other biomass-related parameters were within acceptable economic and environmental ranges. A reduction of 0.015 Mg of CO2eq per Mg of produced pet food was achieved. Regarding VOCs, their environmental impact was minimal due to the molecular structure of the compounds. Additionally, the corrosion rate caused by waste incineration was comparable to that of domestic gas in the case of cat food, with a rate of 214.74 mpy, while the dog food yielded 55.42 mpy, which is near that of other types of biomass, such as wood chips and pellets. The use of residual biomass in pet food production is a viable alternative for reducing carbon footprint, promoting a circular economy, and improving the industry’s sustainability. Full article
Show Figures

Figure 1

18 pages, 2322 KiB  
Article
Identifying Food Deserts in Mississauga: A Comparative Analysis of Socioeconomic Indicators
by Taif Huda, Amanda Wang, Hefan Zhang, Lewei Gao, Yuhong He and Tingting Zhu
Urban Sci. 2025, 9(7), 265; https://doi.org/10.3390/urbansci9070265 - 9 Jul 2025
Viewed by 323
Abstract
A lack of access to healthy food has been a problem for low-income residents in many developed urban areas. Due to travel time and additional transportation costs, these residents often opt for unhealthy food rather than nutritious alternatives. This study examines the spatial [...] Read more.
A lack of access to healthy food has been a problem for low-income residents in many developed urban areas. Due to travel time and additional transportation costs, these residents often opt for unhealthy food rather than nutritious alternatives. This study examines the spatial distribution of food deserts in Mississauga—one of Canada’s most populous cities and a city with one of the highest diabetes rates in the Province of Ontario. Network analysis was employed to map the geographic inaccessibility to essential nutritious food, defined as residential areas that are beyond a 15-min walking distance from grocery stores. Socioeconomic indicators were integrated to identify and compare the regions that are socioeconomically disadvantaged and, therefore, most affected by food inaccessibility. The results reveal the presence of several food deserts spatially dispersed in Mississauga. The implications of these findings are discussed, with a focus on the relationship between food desert locations and the socioeconomic conditions of the affected residents. This study provides a practical, replicable approach for identifying food deserts that can be easily applied in other regions. The model developed offers valuable tools for policymakers and urban planners to address food desert issues, improving access to healthy food and positively impacting the health and well-being of affected populations. Full article
Show Figures

Figure 1

11 pages, 3294 KiB  
Article
Toward a User-Accessible Spectroscopic Sensing Platform for Beverage Recognition Through K-Nearest Neighbors Algorithm
by Luca Montaina, Elena Palmieri, Ivano Lucarini, Luca Maiolo and Francesco Maita
Sensors 2025, 25(14), 4264; https://doi.org/10.3390/s25144264 - 9 Jul 2025
Viewed by 280
Abstract
Proper nutrition is a fundamental aspect to maintaining overall health and well-being, influencing both physical and social aspects of human life; an unbalanced or inadequate diet can lead to various nutritional deficiencies and chronic health conditions. In today’s fast-paced world, monitoring nutritional intake [...] Read more.
Proper nutrition is a fundamental aspect to maintaining overall health and well-being, influencing both physical and social aspects of human life; an unbalanced or inadequate diet can lead to various nutritional deficiencies and chronic health conditions. In today’s fast-paced world, monitoring nutritional intake has become increasingly important, particularly for those with specific dietary needs. While smartphone-based applications using image recognition have simplified food tracking, they still rely heavily on user interaction and raise concerns about practicality and privacy. To address these limitations, this paper proposes a novel, compact spectroscopic sensing platform for automatic beverage recognition. The system utilizes the AS7265x commercial sensor to capture the spectral signature of beverages, combined with a K-Nearest Neighbors (KNN) machine learning algorithm for classification. The approach is designed for integration into everyday objects, such as smart glasses or cups, offering a noninvasive and user-friendly alternative to manual tracking. Through optimization of both the sensor configuration and KNN parameters, we identified a reduced set of four wavelengths that achieves over 96% classification accuracy across a diverse range of common beverages. This demonstrates the potential for embedding accurate, low-power, and cost-efficient sensors into Internet of Things (IoT) devices for real-time nutritional monitoring, reducing the need for user input while enhancing accessibility and usability. Full article
Show Figures

Graphical abstract

13 pages, 2237 KiB  
Article
Intercropping of Cereals with Lentil: A New Strategy for Producing High-Quality Animal and Human Food
by Theodoros Gkalitsas, Fokion Papathanasiou and Theano Lazaridou
Agronomy 2025, 15(7), 1658; https://doi.org/10.3390/agronomy15071658 - 8 Jul 2025
Viewed by 908
Abstract
Intercropping is an eco-friendly agricultural practice that can lead to increased productivity and improved resource efficiency. This two-year field study (2022–2023 and 2023–2024) aimed to evaluate the yield and quality (protein content) of lentil when intercropping with bread wheat (Yekora) and oat (Kassandra) [...] Read more.
Intercropping is an eco-friendly agricultural practice that can lead to increased productivity and improved resource efficiency. This two-year field study (2022–2023 and 2023–2024) aimed to evaluate the yield and quality (protein content) of lentil when intercropping with bread wheat (Yekora) and oat (Kassandra) under two spatial arrangements (1:1 alternate rows and mixed rows at a 50:50 seeding ratio) in northwestern Greece. A completely randomized design was applied with three replications. Differences were found between treatments regarding yield as well as protein content. Results showed that the highest total grain yield (2478.6 kg/ha) and land equivalent ratio (LER = 2.50) were recorded in the Yekora + Thessalia combination (alternate rows). Legume protein content remained consistently high (27–31%), while cereal protein content varied with genotype. Intercropping in alternate rows generally outperformed mixed sowing, indicating the importance of spatial arrangement in optimizing resource use. These findings suggest that properly designed cereal–lentil intercropping systems can enhance yield and quality while supporting sustainable agricultural practices. Intercropping of Yekora with lentil was superior compared to lentil and bread wheat monocultures and can be recommended as an alternative method for the production of human and animal food. Full article
Show Figures

Figure 1

29 pages, 1254 KiB  
Review
Microbial Food Safety and Antimicrobial Resistance in Foods: A Dual Threat to Public Health
by Ayman Elbehiry, Eman Marzouk, Adil Abalkhail, Husam M. Edrees, Abousree T. Ellethy, Abdulaziz M. Almuzaini, Mai Ibrahem, Abdulrahman Almujaidel, Feras Alzaben, Abdullah Alqrni and Akram Abu-Okail
Microorganisms 2025, 13(7), 1592; https://doi.org/10.3390/microorganisms13071592 - 6 Jul 2025
Viewed by 937
Abstract
The intersection of microbial food safety and antimicrobial resistance (AMR) represents a mounting global threat with profound implications for public health, food safety, and sustainable development. This review explores the complex pathways through which foodborne pathogens—such as Salmonella spp., Escherichia coli (E. [...] Read more.
The intersection of microbial food safety and antimicrobial resistance (AMR) represents a mounting global threat with profound implications for public health, food safety, and sustainable development. This review explores the complex pathways through which foodborne pathogens—such as Salmonella spp., Escherichia coli (E. coli), Listeria monocytogenes (L. monocytogenes), and Campylobacter spp.—acquire and disseminate resistance within human, animal, and environmental ecosystems. Emphasizing a One Health framework, we examine the drivers of AMR across sectors, including the misuse of antibiotics in agriculture, aquaculture, and clinical settings, and assess the role of environmental reservoirs in sustaining and amplifying resistance genes. We further discuss the evolution of surveillance systems, regulatory policies, and antimicrobial stewardship programs (ASPs) designed to mitigate resistance across the food chain. Innovations in next-generation sequencing, metagenomics, and targeted therapeutics such as bacteriophage therapy, antimicrobial peptides (AMPs), and CRISPR-based interventions offer promising alternatives to conventional antibiotics. However, the translation of these advances into practice remains uneven, particularly in low- and middle-income countries (LMICs) facing significant barriers to diagnostic access, laboratory capacity, and equitable treatment availability. Our analysis underscores the urgent need for integrated, cross-sectoral action—anchored in science, policy, and education—to curb the global spread of AMR. Strengthening surveillance, investing in research, promoting responsible antimicrobial use, and fostering global collaboration are essential to preserving the efficacy of existing treatments and ensuring the microbiological safety of food systems worldwide. Full article
(This article belongs to the Special Issue Microbial Safety and Beneficial Microorganisms in Foods)
Show Figures

Figure 1

Back to TopTop