Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (535)

Search Parameters:
Keywords = alloyed catalyst

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1362 KB  
Article
Synthesis of Glyceric Acid by Mixed-Metal Oxide-Supported AuPt Alloy Catalyst in Mild Conditions
by Zhiqing Wang, Jianchuan Jin, Aiqian Jin, Shiyu Li, Xinyue Chen, Tongjie Hu, Lingqin Shen and Hengbo Yin
Catalysts 2025, 15(10), 963; https://doi.org/10.3390/catal15100963 - 8 Oct 2025
Abstract
Thermal valorization of surplus biomass-derived feedstocks such as glycerol into high-value chemicals represents a sustainable strategy for biomass utilization and decarbonization of chemical manufacturing. However, conventional glycerol conversion processes are often restricted to low-value C1 products owing to rapid C–C bond cleavage during [...] Read more.
Thermal valorization of surplus biomass-derived feedstocks such as glycerol into high-value chemicals represents a sustainable strategy for biomass utilization and decarbonization of chemical manufacturing. However, conventional glycerol conversion processes are often restricted to low-value C1 products owing to rapid C–C bond cleavage during thermo-oxidation. Herein, we report highly efficient Au-Pt bimetallic alloy catalysts supported on mixed-oxide catalysts that enable the selective oxidation of glycerol under ambient conditions in the absence of a base. The synergistic interaction between Au and Pt promotes preferential oxidation of the terminal hydroxyl groups while preserving the C3 backbone, thereby affording the desirable C3 product, glyceric acid. The single-factor experiments and response surface analysis demonstrated that the Au-Pt bimetallic alloy catalysts supported on the mixed oxide MgO-Al2O3 exhibited a glycerol conversion of up to 82.0% and a glyceric acid selectivity of 62.1% under favorable reaction conditions. Kinetic studies further indicated that the activation energy of this catalyst in the reaction system is 32.7 kJ/mol. Full article
Show Figures

Figure 1

34 pages, 3062 KB  
Review
Catalyst Development for Dry Reforming of Methane and Ethanol into Syngas: Recent Advances and Perspectives
by Manshuk Mambetova, Moldir Anissova, Laura Myltykbayeva, Nursaya Makayeva, Kusman Dossumov and Gaukhar Yergaziyeva
Appl. Sci. 2025, 15(19), 10722; https://doi.org/10.3390/app151910722 - 5 Oct 2025
Viewed by 244
Abstract
Dry reforming of methane and ethanol is a promising catalytic process for the conversion of carbon dioxide and hydrocarbon feedstocks into synthesis gas (H2/CO), which serves as a key platform for the production of fuels and chemicals. Over the past decade, [...] Read more.
Dry reforming of methane and ethanol is a promising catalytic process for the conversion of carbon dioxide and hydrocarbon feedstocks into synthesis gas (H2/CO), which serves as a key platform for the production of fuels and chemicals. Over the past decade, substantial progress has been achieved in the design of catalysts with enhanced activity and stability under the demanding conditions of these strongly endothermic reactions. This review summarizes the latest developments in catalyst systems for DRM and EDR, including Ni-based catalysts, perovskite-type oxides, MOF-derived materials, and high-entropy alloys. Particular attention is given to strategies for suppressing carbon deposition and preventing metal sintering, such as oxygen vacancy engineering in oxide supports, rare earth and transition metal doping, strong metal–support interactions, and morphological control via core–shell and mesoporous architectures. These approaches have been shown to improve coke resistance, maintain metal dispersion, and extend catalyst lifetimes. The review also highlights emerging concepts such as multifunctional hybrid systems and innovative synthesis methods. By consolidating recent findings, this work provides a comprehensive overview of current progress and future perspectives in catalyst development for DRM and EDR, offering valuable guidelines for the rational design of advanced catalytic materials. Full article
Show Figures

Figure 1

34 pages, 4202 KB  
Review
Progress and Challenges in the Electrocatalytic Reduction of Nitrate to Ammonia
by Shupeng Yin and Yinglong Wang
Molecules 2025, 30(19), 3910; https://doi.org/10.3390/molecules30193910 - 28 Sep 2025
Viewed by 294
Abstract
The escalating problem of nitrate pollution, coupled with the environmental burden of the Haber-Bosch process, has spurred intense interest in the electrocatalytic nitrate reduction reaction (eNO3RR) as a sustainable route for simultaneous wastewater treatment and ammonia production. However, the efficiency and [...] Read more.
The escalating problem of nitrate pollution, coupled with the environmental burden of the Haber-Bosch process, has spurred intense interest in the electrocatalytic nitrate reduction reaction (eNO3RR) as a sustainable route for simultaneous wastewater treatment and ammonia production. However, the efficiency and selectivity of eNO3RR are hampered by the multi-step proton-coupled electron transfer process and the competing hydrogen evolution reaction. This review provides a comprehensive and critical overview of recent advances in understanding and designing catalysts for eNO3RR. We begin by elucidating the fundamental mechanisms and key reaction pathways, followed by a discussion on how critical parameters (e.g., electrolyte microenvironment, applied potential, reactor design) dictate performance. Further discussion of recent advances in catalysts, including single-metal catalysts, alloy catalysts, transition metal compounds, single-atom catalysts, carbon-based non-metal catalysts, and composite catalysts, highlights their significant roles in enhancing both the efficiency and selectivity. A distinctive feature of this review is its consistent critical assessment of catalysts through the dual lenses of practicality and sustainable development. Finally, we outline prevailing challenges and propose future research directions aimed at developing scalable and commercially viable electrocatalytic systems for green nitrogen management. Full article
Show Figures

Figure 1

14 pages, 5010 KB  
Article
Block Copolymer-Templated Synthesis of Fe–Ni–Co-Modified Nanoporous Alumina Films
by Chinemerem Ozoude, Vasanta Gurung, Khalil D. Omotosho, Elena V. Shevchenko and Diana Berman
Appl. Sci. 2025, 15(19), 10473; https://doi.org/10.3390/app151910473 - 27 Sep 2025
Viewed by 294
Abstract
Despite intense interest in the catalytic potential of transition metal oxide heterostructures, originating from their large surface area and tunable chemistry, the fabrication of well-defined multicomponent oxide coatings with controlled architectures remains challenging. Here, we demonstrate a simple and effective swelling-assisted sequential infiltration [...] Read more.
Despite intense interest in the catalytic potential of transition metal oxide heterostructures, originating from their large surface area and tunable chemistry, the fabrication of well-defined multicomponent oxide coatings with controlled architectures remains challenging. Here, we demonstrate a simple and effective swelling-assisted sequential infiltration synthesis (SIS) strategy to fabricate hierarchically porous multicomponent metal-oxide electrocatalysts with tunable bimetallic composition. A combination of solution-based infiltration (SBI) of transition metals, iron (Fe), nickel (Ni), and cobalt (Co), into a block copolymer (PS73-b-P4VP28) template, followed by vapor-phase infiltration of alumina using sequential infiltration synthesis (SIS), was employed to synthesize porous, robust, conformal and transparent multicomponent metal-oxide coatings like Fe/AlOx, Fe+Ni/AlOx, and Fe+Co/AlOx. Electrochemical assessments for the oxygen evolution reaction (OER) in a 0.1 M KOH electrolyte demonstrated that the Fe+Ni/AlOx composite exhibited markedly superior catalytic activity, achieving an impressive onset potential of 1.41 V and a peak current density of 3.29 mA/cm2. This superior activity reflects the well-known synergistic effect of alloying transition metals with a trace of Fe, which facilitates OER kinetics. Overall, our approach offers a versatile and scalable path towards the design of stable and efficient catalysts with tunable nanostructures, opening new possibilities for a wide range of electrochemical energy applications. Full article
Show Figures

Figure 1

29 pages, 8599 KB  
Review
Strategic Design of Ethanol Oxidation Catalysts: From Active Metal Selection to Mechanistic Insights and Performance Engineering
by Di Liu, Qingqing Lv, Dahai Zheng, Chenhui Zhou, Shuchang Chen, Kaiyang Zhang, Suqin Han, Hui-Zi Huang, Yufeng Zhang and Liwei Chen
Nanomaterials 2025, 15(19), 1477; https://doi.org/10.3390/nano15191477 - 26 Sep 2025
Viewed by 458
Abstract
The ethanol oxidation reaction (EOR) is a key process for direct ethanol fuel cells (DEFCs), offering a high-energy-density and carbon-neutral pathway for sustainable energy conversion. However, the practical implementation of DEFCs is significantly hindered by the EOR due to its sluggish kinetics, complex [...] Read more.
The ethanol oxidation reaction (EOR) is a key process for direct ethanol fuel cells (DEFCs), offering a high-energy-density and carbon-neutral pathway for sustainable energy conversion. However, the practical implementation of DEFCs is significantly hindered by the EOR due to its sluggish kinetics, complex multi-electron transfer pathways, and severe catalyst poisoning by carbonaceous intermediates. This review provides a comprehensive and mechanistically grounded overview of recent advances in EOR electrocatalysts, with a particular emphasis on the structure–activity relationships of noble metals (Pt, Pd, Rh, Au) and non-noble metals. The effects of catalyst composition, surface structure, and electronic configuration on C–C bond cleavage efficiency, product selectivity (C1 vs. C2), and CO tolerance are critically evaluated. Special attention is given to the mechanistic distinctions among different metal systems, highlighting how these factors influence reaction pathways and catalytic behavior. Key performance-enhancing strategies—including alloying, nanostructuring, surface defect engineering, and support interactions—are systematically discussed, with mechanistic insights supported by in situ characterization and theoretical modeling. Finally, this review identifies major challenges and emerging opportunities, outlining rational design principles for next-generation EOR catalysts that integrate high activity, durability, and scalability for real-world DEFC applications. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Graphical abstract

18 pages, 13450 KB  
Article
Formation of η-Carbides by Mechanical Alloying of Co25Mo25C50 and Their Performance in Hydrodesulfurization
by Brenda Edith García Caudillo, Ignacio Carvajal-Mariscal, Adriana Isabel Reyes de la Torre, Jesús Noé Rivera Olvera, Vicente Garibay Febles, Leonardo González Reyes and Lucía Graciela Díaz Barriga Arceo
Processes 2025, 13(10), 3080; https://doi.org/10.3390/pr13103080 - 26 Sep 2025
Viewed by 302
Abstract
Cobalt–molybdenum η-carbides are attractive hydrodesulfurization (HDS) catalysts, yet controlling their phase composition and nanostructure remains challenging. Here, a Co25Mo25C50 powder was prepared by mechanical alloying in a horizontal mill, with and without superimposed vertical vibration. Phase composition [...] Read more.
Cobalt–molybdenum η-carbides are attractive hydrodesulfurization (HDS) catalysts, yet controlling their phase composition and nanostructure remains challenging. Here, a Co25Mo25C50 powder was prepared by mechanical alloying in a horizontal mill, with and without superimposed vertical vibration. Phase composition was determined by X-ray diffraction using the reference-intensity-ratio method, and the nanostructure was examined by SEM and HRTEM. Aquathermolysis of a heavy crude was monitored by ATR-FTIR in the window characteristic of S–S and C–S vibrations. Both milling routes produced the η-carbides Co3Mo3C and Co6Mo6C, as well as Co2Mo3, Co7Mo6, and Co3C; vibration-assisted milling increased the Co6Mo6C fraction and generated thin lamellae exhibiting Moiré contrast. In FTIR, the Co6Mo6C-rich powder showed strong attenuation of the disulfide and thioether bands, whereas the Co3Mo3C-rich powder behaved similarly to the water-only baseline under mild conditions (100 °C, 4 h). These results indicate that mechanical alloying with superposed vibration enables control over phase and nanostructure, and that a higher Co6Mo6C fraction correlates with a stronger HDS response under aquathermolysis. The approach offers a scalable route to Co–Mo carbides that are active for desulfurization at 100 °C in water without added H2. Full article
Show Figures

Figure 1

15 pages, 1842 KB  
Article
PtBiCoAgSn Multi-Component Alloy Electrocatalysts Enhancing the Oxidation of Ethylene Glycol to Value-Added C2 Products
by Si-Tong Chen, Lin Wang, Hai-En Hou, Kang-Shuo Wang, Zhou Lan, Yao-Yue Yang and Wen-Bin Cai
Molecules 2025, 30(19), 3872; https://doi.org/10.3390/molecules30193872 - 24 Sep 2025
Viewed by 321
Abstract
Ethylene glycol oxidation (EGOR) transforms waste plastic-derived chemicals into high-value products, representing an upcycling strategy that enhances resource efficiency. Pt-based electrocatalysts have shown promise for oxidizing ethylene glycol (EG) to high-value glycolic acid (GA), but they still suffer from high Pt usage, limited [...] Read more.
Ethylene glycol oxidation (EGOR) transforms waste plastic-derived chemicals into high-value products, representing an upcycling strategy that enhances resource efficiency. Pt-based electrocatalysts have shown promise for oxidizing ethylene glycol (EG) to high-value glycolic acid (GA), but they still suffer from high Pt usage, limited activity and stability, and poor low-potential selectivity. In this work, we report a highly dispersed PtBiCoAgSn multi-component alloy (MCA) electrocatalyst (denoted as MCA-PtBiCoAgSn) with outstanding catalytic activity and deactivation resistance, demonstrating a remarkable EGOR mass activity of 16.65 A mgPt1 at 0.76 V vs. RHE, which is 8-fold higher than that of commercial Pt/C (2.03 A mgPt1). Also, it can maintain an EGOR current density of 4.89 A mgPt1 after an extended long-term stability test. Additionally, it shows superior Faradaic efficiency (FE) for C2 products compared to Pt/C across the potential window of 0.5~0.9 V vs. RHE, with the FE of GA being up to 91% at a very low potential of 0.5 V vs. RHE. Moreover, in situ electrochemical infrared spectroscopy in a thin-layer configuration confirmed that EGOR proceeds via the C2 pathway on MCA-PtBiCoAgSn surfaces. This work may provide new insights into the design of high-efficiency and low-cost EGOR catalysts. Full article
(This article belongs to the Section Electrochemistry)
Show Figures

Graphical abstract

32 pages, 8677 KB  
Review
Advances in Dealloying of Ti and Ti-Based Alloys for Biomedical Applications
by Kirti Tiwari, Deepti Raj, Paola Rizzi and Federico Scaglione
Materials 2025, 18(18), 4424; https://doi.org/10.3390/ma18184424 - 22 Sep 2025
Viewed by 245
Abstract
Dealloying technique has been used for centuries as an attractive method for producing porous surfaces by removing one or more undesirable elements from the surface. Since early 2000s, the technique has been further developed for understanding the dealloying mechanism and tailoring it to [...] Read more.
Dealloying technique has been used for centuries as an attractive method for producing porous surfaces by removing one or more undesirable elements from the surface. Since early 2000s, the technique has been further developed for understanding the dealloying mechanism and tailoring it to produce chemically homogeneous materials with nanoporous (np) morphology. Dealloying has found numerous applications such as sensors, catalysts, as well as in the biomedical field, which is fairly recent and has attracted great attention on this topic. This review investigates the dealloying technique for preparing nanoporous materials and nanoporous surfaces by using different modification routes on various types of Ti-based alloys for biomedical implant application. There has been significant growth in studying dealloying of crystalline, amorphous, shape memory, and composites-based Ti alloys. This review aims to summarise the findings from literature and discuss the scope of this technique and challenges involved for future aspects. Full article
(This article belongs to the Special Issue Advances in Implant Materials and Biocompatibility)
Show Figures

Figure 1

11 pages, 1607 KB  
Article
Iron-Doped NiSe2 and Its Enhanced Oxygen Evolution Reaction Activity
by Lijie Sun, Yaqun Mi and Bo Li
Catalysts 2025, 15(9), 876; https://doi.org/10.3390/catal15090876 - 12 Sep 2025
Viewed by 377
Abstract
Doping a third element or external functional components into binary alloy nanostructured catalysts typically significantly enhances their electrocatalytic performance. This study demonstrates that doping nickel selenide (NiSe2) with approximately 10 at% iron (Fe) is an effective strategy for [...] Read more.
Doping a third element or external functional components into binary alloy nanostructured catalysts typically significantly enhances their electrocatalytic performance. This study demonstrates that doping nickel selenide (NiSe2) with approximately 10 at% iron (Fe) is an effective strategy for improving its oxygen evolution reaction (OER) catalytic activity. The resulting Ni0.9Fe0.1Se2 undergoes a structural transformation from its original nanodendritic morphology and exhibits outstanding OER catalytic performance in alkaline media. It achieves a low overpotential of 231 mV at a current density of 10 mA cm2, which is approximately 30% lower than that of NiSe2 (301 mV). The Tafel slope of Ni0.9Fe0.1Se2 is 116 mV dec1. However, degradation observed after 5 h of stability testing suggests that the doping process requires further optimization. Full article
(This article belongs to the Section Electrocatalysis)
Show Figures

Figure 1

28 pages, 2387 KB  
Article
Synthesis and Catalytic Activity of Cu-Co/CeO2 Catalysts in the Hydrogenation of Furfural to Pentanediols
by Rocío Maderuelo-Solera, Juan Antonio Cecilia-Buenestado, Francisco Vila, Rafael Mariscal, Pedro Jesús Maireles-Torres and Ramón Moreno-Tost
Catalysts 2025, 15(9), 872; https://doi.org/10.3390/catal15090872 - 11 Sep 2025
Viewed by 538
Abstract
This study presents a comprehensive characterization of monometallic (Co or Cu) and bimetallic (Co-Cu) catalysts supported on cerium oxide (CeO2). XRD and TEM analyses revealed that crystallinity decreases after reduction and that metal dispersion is highly dependent on composition, with cobalt [...] Read more.
This study presents a comprehensive characterization of monometallic (Co or Cu) and bimetallic (Co-Cu) catalysts supported on cerium oxide (CeO2). XRD and TEM analyses revealed that crystallinity decreases after reduction and that metal dispersion is highly dependent on composition, with cobalt exhibiting greater dispersion than copper. The results confirmed a strong interaction between the metals and CeO2, which alters the ceria structure and facilitates the reduction of the metal oxides. H2-TPR and XPS data indicated that monometallic and the bimetallic 15Cu15Co catalysts achieved nearly complete reduction, whereas other bimetallic catalysts did not. Furthermore, CO chemisorption and H2-TPD demonstrated that the hydrogen activation capacity correlates with the degree of catalyst reduction. Notably, bimetallic catalysts did not show enhanced hydrogen activation compared to their monometallic counterparts. This suggests that the dispersion and metal–support interaction are more critical factors for catalytic activity in this system than the formation of metal alloys. Although the furfural conversion was complete, the selectivity depended greatly on the catalyst composition. The 30Co_R catalyst was most selective for 1,5-pentanediol (38.4%), the 30Cu_R catalyst for 1,2-pentanediol (22.1%), and the bimetallic catalysts for THFA. Reutilising the 30Co_R catalyst after five catalytic cycles resulted in a gradual reduction in the selectivity of 1,5-pentanediol. Full article
Show Figures

Graphical abstract

23 pages, 1637 KB  
Article
Techno-Economic Evaluation of Scalable and Sustainable Hydrogen Production Using an Innovative Molten-Phase Reactor
by Conor McIvor, Sumit Roy, Neal Morgan, Bill Maxwell and Andrew Smallbone
Hydrogen 2025, 6(3), 66; https://doi.org/10.3390/hydrogen6030066 - 5 Sep 2025
Cited by 1 | Viewed by 838
Abstract
The transition to low-carbon energy systems requires efficient hydrogen production methods that minimise CO2 emissions. This study presents a techno-economic assessment of hydrogen production via methane pyrolysis, utilising a novel liquid metal bubble column reactor (LMBCR) designed for CO2-free hydrogen [...] Read more.
The transition to low-carbon energy systems requires efficient hydrogen production methods that minimise CO2 emissions. This study presents a techno-economic assessment of hydrogen production via methane pyrolysis, utilising a novel liquid metal bubble column reactor (LMBCR) designed for CO2-free hydrogen and solid carbon outputs. Operating at 20 bar and 1100 °C, the reactor employs a molten nickel-bismuth alloy as both catalyst and heat transfer medium, alongside a sodium bromide layer to enhance carbon purity and facilitate separation. Four operational scenarios were modelled, comparing various heating and recycling configurations to optimise hydrogen yield and process economics. Results indicate that the levelised cost of hydrogen (LCOH) is highly sensitive to methane and electricity prices, CO2 taxation, and the value of carbon by-products. Two reactor configurations demonstrate competitive LCOHs of 1.29 $/kgH2 and 1.53 $/kgH2, highlighting methane pyrolysis as a viable low-carbon alternative to steam methane reforming (SMR) with carbon capture and storage (CCS). This analysis underscores the potential of methane pyrolysis for scalable, economically viable hydrogen production under specificmarket conditions. Full article
Show Figures

Figure 1

28 pages, 3081 KB  
Review
Low-Carbon and Recycled Mineral Composite Materials for Sustainable Infrastructure: A Comprehensive Review
by Rong Zhang, Yihe Zhang, Guoxing Sun and Hongqiang Wei
Sustainability 2025, 17(17), 7908; https://doi.org/10.3390/su17177908 - 2 Sep 2025
Viewed by 1068
Abstract
Infrastructure construction is a major contributor to carbon emissions, primarily due to the extensive use of mineral materials such as cement and aggregates, which release significant amounts of carbon dioxide during production and use. While existing research has predominantly centered on the applications [...] Read more.
Infrastructure construction is a major contributor to carbon emissions, primarily due to the extensive use of mineral materials such as cement and aggregates, which release significant amounts of carbon dioxide during production and use. While existing research has predominantly centered on the applications of concrete, the present study extends the investigation to encompass inorganic–organic composites, alloy materials, and wastewater treatment systems, with particular attention to bridging the gap between theoretical potential and practical implementation. This study identifies China, the USA, and India as leaders in this field, attributing their progress to abundant material resources and sustained policy support. Key findings reveal that while geopolymers can fully replace cement, substitution rates of less than 50% are optimal for high-performance concrete to maintain structural integrity and decarbonization benefits. Aggregate replacements using materials such as air-cooled blast furnace slag show 50–100% feasibility. This review further highlights the multifunctional potential of red mud, rice husk ash, fly ash, and blast furnace slag as cement replacements, aggregates, reinforcers, catalysts, adsorbents, and composite fillers. However, challenges such as unstable raw material supply, lack of standardization, and insufficient international collaboration persist; these issues have often been overlooked in prior research and viable solutions have not been proposed. To address these barriers, a triple-objective framework is introduced in this study, integrating sustainable infrastructure, resource recycling, and environmental remediation, supported by optimized production processes and policy models from leading nations. Future research directions emphasize comprehensive life cycle assessments and enhanced global cooperation to bridge the divide between resource-rich and resource-scarce regions. By synthesizing cross-disciplinary applications and actionable solutions, this work advances the transition toward sustainable infrastructure systems. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

27 pages, 5240 KB  
Review
High-Entropy Alloys and Their Derived Compounds as Electrocatalysts: Understanding, Preparation and Application
by Xianjie Yuan, Xiangdi Yin, Yirui Zhang and Yuanpan Chen
Materials 2025, 18(17), 4021; https://doi.org/10.3390/ma18174021 - 27 Aug 2025
Viewed by 781
Abstract
High-entropy alloy (HEA) catalysts have attracted significant attention from researchers. In many cases, HEAs exhibit high activity and selectivity for catalytic reactions due to four “core effects”: high entropy effect, lattice distortion effect, slow diffusion effect, and mixing effect. However, a systematic summary [...] Read more.
High-entropy alloy (HEA) catalysts have attracted significant attention from researchers. In many cases, HEAs exhibit high activity and selectivity for catalytic reactions due to four “core effects”: high entropy effect, lattice distortion effect, slow diffusion effect, and mixing effect. However, a systematic summary of HEA catalyst design and understanding is lacking. In this review, the reasons for the outstanding performance of HEA catalysts are first discussed from multiple perspectives, such as excellent mechanical properties, ultra-high-performance stability, and the potential for compositional optimization. Furthermore, to deepen our understanding of HEA catalysts, the rational design of HEA catalysts is introduced, covering design principles, element selection, and the use of algorithms for prediction. Next, several common preparation methods for HEAs are introduced, including chemical co-reduction, solution combustion, mechanical alloying, and sol–gel methods. Finally, the research progress of HEA catalysts in hydrogen evolution reactions, oxygen evolution reactions, and oxygen reduction reactions is presented. Unlike existing reviews, this work establishes a unified framework connecting HEA fundamentals (entropy effects), computational design, scalable synthesis, and application-specific performance, while identifying underexplored pathways like lattice-oxygen-mediated mechanisms (LOM) for future research. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

16 pages, 3804 KB  
Article
Design and Optimization of Trimetallic NiCoFe Catalysts for Efficient Dry Reforming of Methane
by Ghazaleh Khoshroo, Anastasiia Efremova, Haythem S. Basheer, Imre Szenti, Masoud Shirzadi Ahou Dashti, Ákos Szamosvölgyi, András Erdőhelyi, András Sápi, Ákos Kukovecz and Zoltán Kónya
Catalysts 2025, 15(8), 797; https://doi.org/10.3390/catal15080797 - 21 Aug 2025
Viewed by 695
Abstract
Dry reforming of methane is an advantageous technique to produce syngas by using greenhouse gases like CO2 and CH4. This study investigated the stability, catalytic effectiveness, and physicochemical characteristics of mono- and trimetallic catalysts based on Ni and supported on [...] Read more.
Dry reforming of methane is an advantageous technique to produce syngas by using greenhouse gases like CO2 and CH4. This study investigated the stability, catalytic effectiveness, and physicochemical characteristics of mono- and trimetallic catalysts based on Ni and supported on γ-Al2O3. Adding Co and Fe has been found to modify the structure and surface through the characterizations, including XRD, SEM, TEM, BET, H2-TPR, and XPS methods. Compared to the monometallic Ni catalyst, the trimetallic catalysts exhibited improved alloy formation, reduced particle size, increased metal dispersion, and enhanced surface area and pore structures. The 10% Ni, 2.5% Co, and 2.5% Fe-Al2O3 catalyst exhibits higher CH4 conversion, surpassing 75%, and also CO2 conversion around 85% at 700 °C, compared to 15% Ni-Al2O3, which showed CH4 conversion of about 65% and CO2 conversion of 70%. It also showed comparatively good stability in 24 h testing performed at 700 °C. According to the findings of the research on trimetallic catalysts, their capacity to improve dry reforming of methane (DRM) performance may be attributed to increased stability, which is a crucial challenge in the production of sustainable syngas, as well as higher activity and lower deactivation. Full article
(This article belongs to the Section Catalysis for Sustainable Energy)
Show Figures

Graphical abstract

15 pages, 1687 KB  
Article
Catalytic Role of Nickel in Hydrogen Storage and Release Using Dibenzyltoluene as a Liquid Organic Hydrogen Carrier
by Jesús Rodríguez Ruiz, Nuria García-Mancha, Roberto Campana and Carlos Tardío
Energies 2025, 18(16), 4429; https://doi.org/10.3390/en18164429 - 20 Aug 2025
Viewed by 903
Abstract
Liquid Organic Hydrogen Carriers (LOHCs) represent a promising technology for the safe storage and transport of hydrogen. Its technical development largely depends on the catalysts used in the hydrogenation and dehydrogenation processes. Typically, noble metal-based monometallic catalysts are employed, although they present limitations [...] Read more.
Liquid Organic Hydrogen Carriers (LOHCs) represent a promising technology for the safe storage and transport of hydrogen. Its technical development largely depends on the catalysts used in the hydrogenation and dehydrogenation processes. Typically, noble metal-based monometallic catalysts are employed, although they present limitations in terms of cost and availability. This study uses the DBT system to explore the potential of nickel (Ni) as a catalytic alternative. In dehydrogenation, its role as an additive in low-loaded Pt-based catalysts (0.25 wt%) was evaluated, showing a significant increase in activity, with dehydrogenation levels exceeding 95%, compared to 82% obtained with monometallic Pt catalysts. This improvement is attributed to the formation of Pt-Ni alloys. On the other hand, although the bimetallic systems were not effective in hydrogenation, a commercial Ni/Al2O3-SiO2 catalyst was tested, achieving hydrogenation degrees of 80% in just 40 min, after pressure and catalyst loading optimization. These results position Ni as a key component in LOHC catalysis, either as an effective additive in Pt-based systems or as an active metal itself, due to its excellent performance and low cost. This paves the way for economically viable and efficient catalytic solutions for hydrogen storage applications, bridging the gap between performance and practicality. Full article
(This article belongs to the Special Issue Advanced Energy Storage Technologies)
Show Figures

Figure 1

Back to TopTop