High-Entropy Alloys and Their Derived Compounds as Electrocatalysts: Understanding, Preparation and Application
Abstract
1. Introduction
2. Fundamental Principles of HEA Catalysts
2.1. Superior Catalytic Performance of HEAs
2.1.1. Outstanding Mechanical Properties
2.1.2. Ultra-High-Performance Stability
2.1.3. Optimizable Composition and Structure
2.2. Rational Design of HEA Catalysts
3. Preparation Methods of High-Entropy Alloys
3.1. Chemical Co-Reduction Method
3.2. Solution Combustion Synthesis
3.3. Mechanical Alloying Method
3.4. Sol–Gel Method
4. Applications of High-Entropy Alloys in Catalysis
4.1. Hydrogen Evolution Reaction (HER)
4.2. Oxygen Evolution Reaction (OER)
4.3. Oxygen Reduction Reaction (ORR)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ghosh, A.; Dhiman, S.; Gupta, A.; Jain, R. Process Evaluation of Scandium Production and Its Environmental Impact. Environments 2022, 10, 8. [Google Scholar] [CrossRef]
- Pachauri, N.; Ahn, C.; Choi, T. Biochar energy prediction from different biomass feedstocks for clean energy generation. Environ. Technol. Innov. 2025, 37, 104012. [Google Scholar] [CrossRef]
- Fu, X.; Zhang, J.; Kang, Y. Recent Advances and Challenges of Electrochemical Ammonia Synthesis. Chem Catal. 2022, 2, 2590–2613. [Google Scholar] [CrossRef]
- Hu, Q.; Wang, H.; Dai, C.; Lei, X.; Wang, B.; Liu, X. Research Advances in High-Entropy Alloy Catalysts for Water Electrolysis under Acidic Conditions. J. Electroanal. Chem. 2024, 964, 118313. [Google Scholar] [CrossRef]
- Kai, A.; Tomisaki, M.; Matsumoto, H. Sequential Generation of Hydrogen and Oxygen By Water Electrolysis Using Iodine Redox. Meet. Abstr. 2024, MA2024-02, 3517. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Y.; Xiong, Y.; Hao, F.; Liu, F.; Guo, L.; Meng, X.; Siu, C.-K.; Fan, Z. Tailored High-Entropy Alloy Nanomaterials for Electrocatalytic Applications. EnergyChem 2025, 7, 100155. [Google Scholar] [CrossRef]
- Cruz-Navarro, J.; Hernández-García, F.; Sánchez-Mora, A.; Moreno-Narváez, M.; Reyes-Márquez, V.; Colorado-Peralta, R.; Morales-Morales, D. Copper-Based Metal–Organic Frameworks Applied as Electrocatalysts for the Electroreduction of Carbon Dioxide (CO2ER) to Methane: A Review. Methane 2024, 3, 466–484. [Google Scholar] [CrossRef]
- Chen, J.; Gu, Y.; Zhu, Q. Automated Machine Learning of Interfacial Interaction Descriptors and Energies in Metal-Catalyzed N2 and CO2 Reduction Reactions. Langmuir 2025, 41, 3490–3502. [Google Scholar] [CrossRef]
- Cui, S.; Zhong, X.; Li, Z.; Zhu, P.; Hu, J.; Zhou, X.; Kidkhunthod, P.; Wang, X.; Mei, B.; Xu, B. Nanosecond Laser Synthesis of MXene-Derived TiO2/High-Entropy Alloys for Photo-Assisted Zinc–Air Batteries. Adv. Mater. 2025, 2504099. [Google Scholar] [CrossRef]
- Qin, Y.; Huang, H.; Yu, W.; Zhang, H.; Li, Z.; Wang, Z.; Lai, J.; Wang, L.; Feng, S. Porous PdWM (M = Nb, Mo and Ta) Trimetallene for High C1 Selectivity in Alkaline Ethanol Oxidation Reaction. Adv. Sci. 2021, 9, 2103722. [Google Scholar] [CrossRef]
- Hu, Y.; Guo, X.; Shen, T.; Zhu, Y.; Wang, D. Hollow Porous Carbon-Confined Atomically Ordered PtCo3 Intermetallics for an Efficient Oxygen Reduction Reaction. ACS Catal. 2022, 12, 5380–5387. [Google Scholar] [CrossRef]
- Liu, W.; Feng, H.; Yang, Y.; Niu, Y.; Wang, L.; Yin, P.; Hong, S.; Zhang, B.; Zhang, X.; Wei, M. Highly-efficient RuNi single-atom alloy catalysts toward chemoselective hydrogenation of nitroarenes. Nat. Commun. 2022, 13, 3188. [Google Scholar] [CrossRef]
- Ali, A.; Shen, P.K. Nonprecious Metal’s Graphene-supported Electrocatalysts for Hydrogen Evolution Reaction: Fundamentals to Applications. Carbon Energy 2019, 2, 99–121. [Google Scholar] [CrossRef]
- Wang, H.; Cui, Y. Nanodiamonds for Energy. Carbon Energy 2019, 1, 13–18. [Google Scholar] [CrossRef]
- Yuan, Y.; Lu, J. Demanding Energy from Carbon. Carbon Energy 2019, 1, 8–12. [Google Scholar] [CrossRef]
- Abideen, Z.U.; Malik, M.; Liu, M.; Huang, T.; Hou, Q.; Wu, W.; Bibi, S.; Yang, Z.; Liu, H. Diminutive Tuning of Lattice Oxygen Controlled by Sulfur-Mediated Vacancies for Oxygen Evolution Reaction. J. Colloid Interface Sci. 2025, 699, 138284. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Xie, X.-Y.; Cao, C.-S.; Li, Y.-Q.; Khan, M.I.; Zhu, Q.-L. Self-Supported Mo and Zn Co-Doped CoP Nanosheet Array Electrode for Large-Current-Density Hydrogen Evolution. Rare Met. 2025, 44, 6258–6267. [Google Scholar] [CrossRef]
- Sun, X.; Liang, Y.; Jiang, H.; Li, Z.; Wu, S.; Gao, Z.; Cui, Z.; Fan, G.; Zhu, S.; Xu, W. Anodic Oxidation-Induced Interfacial Regulation of Nanoporous Co2P/CoOOH for Electrocatalytic Nitrate Reduction to Ammonia. ACS Appl. Mater. Interfaces 2025, 17, 28256–28266. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Xu, J.; Li, J.; Du, C.; Chen, K.; Xu, T.; Sun, Y.; Xiong, H. Enhancing CO2 Reduction Efficiency with Axial Oxygen Coordinated Ni-N4 Active Sites on Hierarchical Pore N-Doped Carbon. Chin. Chem. Lett. 2025, 36, 110340. [Google Scholar] [CrossRef]
- Chu, X.; Liu, S.; Luan, B.; Zhang, Y.; Xi, Y.; Shao, L.; Zhang, F.; Lan, Y. Crystal-Facet-Controlled Internal Electric Field in MOF/COF Heterojunction Towards Efficient Photocatalytic Overall Water Splitting. Angew. Chem. 2025, 137, e202422940. [Google Scholar] [CrossRef]
- Lu, J.; Liu, Y.; Zhang, S.; Nie, J.; Tang, B.; Guan, J.; Zhang, J. Coupling Dimethylglyoxime to Enhance Coordination Bonds of Pd Single-Atom Catalyst for Solving Stability and Activity Conflict. Inorg. Chem. 2025, 64, 11236–11245. [Google Scholar] [CrossRef]
- Yuan, G.; Ruiz Pestana, L. The Effect of Surface Oxygen Coverage on the Oxygen Evolution Reaction over a CoFeNiCr High-Entropy Alloy. Nanomaterials 2024, 14, 1058. [Google Scholar] [CrossRef]
- Yeh, J.-W.; Chen, S.-K.; Lin, S.-J.; Gan, J.-Y.; Chin, T.-S.; Shun, T.-T.; Tsau, C.-H.; Chang, S.-Y. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Ren, J.-T.; Chen, L.; Wang, H.-Y.; Yuan, Z.-Y. High-Entropy Alloys in Electrocatalysis: From Fundamentals to Applications. Chem. Soc. Rev. 2023, 52, 8319–8373. [Google Scholar] [CrossRef]
- Zhang, Q.; Lian, K.; Qi, G.; Zhang, S.; Liu, Q.; Luo, Y.; Luo, J.; Liu, X. High-entropy alloys in water electrolysis: Recent advances, fundamentals, and Challenges. Sci. China Mater. 2023, 66, 1681–1701. [Google Scholar] [CrossRef]
- Yu, Y.; Xia, F.; Wang, C.; Wu, J.; Fu, X.; Ma, D.; Lin, B.; Wang, J.; Yue, Q.; Kang, Y. High-Entropy Alloy Nanoparticles as a Promising Electrocatalyst to Enhance Activity and Durability for Oxygen Reduction. Nano Res. 2022, 15, 7868–7876. [Google Scholar] [CrossRef]
- Li, L.; Wang, P.; Shao, Q.; Huang, X. Metallic Nanostructures with Low Dimensionality for Electrochemical Water Splitting. Chem. Soc. Rev. 2020, 49, 3072–3106. [Google Scholar] [CrossRef]
- Wang, Y.; Lv, H.; Sun, L.; Jia, F.; Liu, B. Ordered Mesoporous Intermetallic Trimetals for Efficient and pH-Universal Hydrogen Evolution Electrocatalysis. Adv. Energy Mater. 2022, 12, 2201478. [Google Scholar] [CrossRef]
- Hao, J.; Zhuang, Z.; Cao, K.; Gao, G.; Wang, C.; Lai, F.; Lu, S.; Ma, P.; Dong, W.; Liu, T.; et al. Unraveling the Electronegativity-Dominated Intermediate Adsorption on High-Entropy Alloy Electrocatalysts. Nat. Commun. 2022, 13, 2662. [Google Scholar] [CrossRef]
- Zhu, G.; Jiang, Y.; Yang, H.; Wang, H.; Fang, Y.; Wang, L.; Xie, M.; Qiu, P.; Luo, W. Constructing Structurally Ordered High-Entropy Alloy Nanoparticles on Nitrogen-Rich Mesoporous Carbon Nanosheets for High-Performance Oxygen Reduction. Adv. Mater. 2022, 34, 2110128. [Google Scholar] [CrossRef]
- Sun, Y.; Yu, L.; Xu, S.; Xie, S.; Jiang, L.; Duan, J.; Zhu, J.; Chen, S. Battery-Driven N2 Electrolysis Enabled by High-Entropy Catalysts: From Theoretical Prediction to Prototype Model. Small 2022, 18, 2106358. [Google Scholar] [CrossRef]
- Zhang, D.; Zhao, H.; Wu, X.; Deng, Y.; Wang, Z.; Han, Y.; Li, H.; Shi, Y.; Chen, X.; Li, S.; et al. Multi-Site Electrocatalysts Boost pH-Universal Nitrogen Reduction by High-Entropy Alloys. Adv. Funct. Mater. 2020, 31, 2006939. [Google Scholar] [CrossRef]
- Wang, D.; Chen, Z.; Huang, Y.-C.; Li, W.; Wang, J.; Lu, Z.; Gu, K.; Wang, T.; Wu, Y.; Chen, C.; et al. Tailoring Lattice Strain in Ultra-Fine High-Entropy Alloys for Active and Stable Methanol Oxidation. Sci. China Mater. 2021, 64, 2454–2466. [Google Scholar] [CrossRef]
- Li, H.; Sun, M.; Pan, Y.; Xiong, J.; Du, H.; Yu, Y.; Feng, S.; Li, Z.; Lai, J.; Huang, B.; et al. The Self-Complementary Effect through Strong Orbital Coupling in Ultrathin High-Entropy Alloy Nanowires Boosting pH-Universal Multifunctional Electrocatalysis. Appl. Catal. B Environ. 2022, 312, 121431. [Google Scholar] [CrossRef]
- Fan, L.; Ji, Y.; Wang, G.; Chen, J.; Chen, K.; Liu, X.; Wen, Z. High Entropy Alloy Electrocatalytic Electrode toward Alkaline Glycerol Valorization Coupling with Acidic Hydrogen Production. J. Am. Chem. Soc. 2022, 144, 7224–7235. [Google Scholar] [CrossRef]
- Gludovatz, B.; Hohenwarter, A.; Catoor, D.; Chang, E.H.; George, E.P.; Ritchie, R.O. A Fracture-Resistant High-Entropy Alloy for Cryogenic Applications. Science 2014, 345, 1153–1158. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, B.; He, M.; Zhai, Z.; Yin, K.; Kong, F.; Zhang, Z. Eutectic-Derived High-Entropy Nanoporous Nanowires for Efficient and Stable Water-to-Hydrogen Conversion. Nano Res. 2021, 15, 4820–4826. [Google Scholar] [CrossRef]
- Sheng, Y.; Wang, K.; Gao, P.; Cui, T. Research status and prospects of corrosion resistance of high entropy alloys. Mater. Prot. 2024, 57, 53–66. [Google Scholar] [CrossRef]
- Li, W.; Guo, W.; Zhang, H.; Xu, H.; Chen, L.; Zeng, J.; Liu, B.; Ding, Z. Influence of Mo on the Microstructure and Corrosion Behavior of Laser Cladding FeCoCrNi High-Entropy Alloy Coatings. Entropy 2022, 24, 539. [Google Scholar] [CrossRef]
- Han, F.; Zhang, L.; Jin, Q. High Rate and Long-Cycle Life of Lithium–Sulfur Battery Enabled by High d-Band Center of High-Entropy Alloys. ACS Nano 2025, 19, 9182–9195. [Google Scholar] [CrossRef]
- Tian, J.; Rao, Y.; Shi, W.; Yang, J.; Ning, W.; Li, H.; Yao, Y.; Zhou, H.; Guo, S. Sabatier Relations in Electrocatalysts Based on High-entropy Alloys with Wide-distributed D-band Centers for Li-O2 Batteries. Angew. Chem. Int. Ed. 2023, 62, e202310894. [Google Scholar] [CrossRef]
- Zhu, G.; Bao, W.; Xie, M.; Qi, C.; Xu, F.; Jiang, Y.; Chen, B.; Fan, Y.; Liu, B.; Wang, L.; et al. Accelerating Tandem Electroreduction of Nitrate to Ammonia via Multi-Site Synergy in Mesoporous Carbon-Supported High-Entropy Intermetallics. Adv. Mater. 2024, 37, 2413560. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Diesen, E.; He, T.; Reuter, K.; Margraf, J.T. Discovering High Entropy Alloy Electrocatalysts in Vast Composition Spaces with Multiobjective Optimization. J. Am. Chem. Soc. 2024, 146, 7698–7707. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Sun, S.; Hao, J.; Zhuang, Z.; Zhang, S.; Wang, T.; Kang, Q.; Lu, S.; Wang, X.; Lai, F.; et al. A High-Entropy Atomic Environment Converts Inactive to Active Sites for Electrocatalysis. Energy Environ. Sci. 2023, 16, 619–628. [Google Scholar] [CrossRef]
- Feng, G.; Ning, F.; Song, J.; Shang, H.; Zhang, K.; Ding, Z.; Gao, P.; Chu, W.; Xia, D. Sub-2 Nm Ultrasmall High-Entropy Alloy Nanoparticles for Extremely Superior Electrocatalytic Hydrogen Evolution. J. Am. Chem. Soc. 2021, 143, 17117–17127. [Google Scholar] [CrossRef]
- Zhou, Y.; Shen, X.; Wang, M.; Zhang, L.; Qian, T.; Yan, C.; Lu, J. The Understanding, Rational Design, and Application of High-Entropy Alloys as Excellent Electrocatalysts: A Review. Sci. China Mater. 2023, 66, 2527–2544. [Google Scholar] [CrossRef]
- Zhan, C.; Xu, Y.; Bu, L.; Zhu, H.; Feng, Y.; Yang, T.; Zhang, Y.; Yang, Z.; Huang, B.; Shao, Q.; et al. Subnanometer High-Entropy Alloy Nanowires Enable Remarkable Hydrogen Oxidation Catalysis. Nat. Commun. 2021, 12, 6261. [Google Scholar] [CrossRef]
- Meng, F.; Zhang, Y.; Yang, J. Research progress on catalytic performance of high-entropy alloys. Trans. Mater. Heat Treat. 2023, 44, 20–27. [Google Scholar] [CrossRef]
- Yao, Y.; Dong, Q.; Brozena, A.; Luo, J.; Miao, J.; Chi, M.; Wang, C.; Kevrekidis, I.G.; Ren, Z.J.; Greeley, J.; et al. High-Entropy Nanoparticles: Synthesis-Structure-Property Relationships and Data-Driven Discovery. Science 2022, 376, eabn3103. [Google Scholar] [CrossRef]
- Zheng, H.; Luo, G.; Zhang, A.; Lu, X.; He, L. The Synthesis and Catalytic Applications of Nanosized High-Entropy Alloys. ChemCatChem 2020, 13, 806–817. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, D.; Wang, S. High-Entropy Alloys for Electrocatalysis: Design, Characterization, and Applications. Small 2021, 18, 2104339. [Google Scholar] [CrossRef] [PubMed]
- Hafner, J.; Wolverton, C.; Ceder, G. Toward Computational Materials Design: The Impact of Density Functional Theory on Materials Research. MRS Bull. 2006, 31, 659–668. [Google Scholar] [CrossRef]
- Qiu, J.; Xu, Z.; Song, J.; Hu, C.; Miao, L.; He, X. Molecular Dynamics Simulation of a New Inhomogeneous Concentration Distribution Model Based on Frictional Behavior of FeNiCrCoCu High-Entropy Alloy. Mater. Today Commun. 2023, 35, 106337. [Google Scholar] [CrossRef]
- Moura, A.D.; Esteves, A. Simulation of the nucleation of the precipitate Al3Sc in an aluminum scandium alloy using the kinetic monte carlo method. In Proceedings of the 2013 13th IEEE International Conference on Nanotechnology (IEEE-NANO 2013), Beijing, China, 5–8 August 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 438–441. [Google Scholar] [CrossRef]
- Liu, Y.; Tian, X.; Han, Y.-C.; Chen, Y.; Hu, W. High-Temperature Shock Synthesis of High-Entropy-Alloy Nanoparticles for Catalysis. Chin. J. Catal. 2023, 48, 66–89. [Google Scholar] [CrossRef]
- Fan, X.; Chen, L.; Huang, D.; Tian, Y.; Zhang, X.; Jiao, M.; Zhou, Z. From Single Metals to High-Entropy Alloys: How Machine Learning Accelerates the Development of Metal Electrocatalysts. Adv. Funct. Mater. 2024, 34, 2401887. [Google Scholar] [CrossRef]
- Pedersen, J.; Batchelor, T.; Bagger, A.; Rossmeisl, J. High-Entropy Alloys as Catalysts for the CO2 and CO Reduction Reactions. ACS Catal. 2020, 10, 2169–2176. [Google Scholar] [CrossRef]
- Zhang, R.; Li, J.-Q.; Wang, A.-J.; Song, P.; Liu, W.; Feng, J.-J.; Cheang, T.Y. Uniform PtCoRuRhFe High-Entropy Alloy Nanoflowers: Multi-Site Synergistic Signal Amplification for Colorimetric Assay of Captopril. Microchim. Acta 2024, 191, 717. [Google Scholar] [CrossRef]
- Zhang, Z.; Yu, P.; Liu, Z.; Liu, K.; Mu, Z.; Wen, Z.; She, J.; Bai, Y.; Zhang, Q.; Cheng, T.; et al. Off-Equilibrium Hydrothermal Synthesis of High-Entropy Alloy Nanoparticles. J. Am. Chem. Soc. 2025, 147, 9640–9652. [Google Scholar] [CrossRef]
- Tang, C.; Lv, C.-L.; Chen, P.; Wang, A.-J.; Feng, J.-J.; Yun Cheang, T.; Xia, H. Dendritic Quinary PtRhMoCoFe High-Entropy Alloy as a Robust Immunosensing Nanoplatform for Ultrasensitive Detection of Biomarker. Bioelectrochemistry 2024, 157, 108639. [Google Scholar] [CrossRef]
- Zhou, J.; Sun, P.; Wang, X. A Nanoscale High-Entropy Alloy Thin Film Fabricated by Electrochemical Deposition and Its Physicochemical Properties. J. Adv. Phys. Chem. 2023, 12, 140–146. [Google Scholar] [CrossRef]
- Cheng, W.; Sun, C.; Liu, W.; Wang, Z. High-Entropy Alloy PtCuNiCoMn Nanoparticles on rGO for Electrooxidation of Methanol and Formic Acid. Langmuir 2024, 40, 2343–2351. [Google Scholar] [CrossRef]
- Nie, N.; Zhang, Y.; Gu, Y.; Du, H.; Yuan, Y.; Yang, Y.; Li, H.; Yang, B.; Lai, J.; Wang, L. Chelating Co-Reduction Strategy for the Synthesis of High-Entropy Alloy Aerogels. Inorg. Chem. 2023, 62, 12337–12344. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, Y.; Guo, F.; Kang, J.; Liu, Z.; Zhang, L.; Cao, H.; Yu, L.; He, X.; Zheng, G. Low Temperature CaH2-Assisted Molten Salt Synthesis of Ultrafine High Entropy Alloy Powders for CO Catalytic Oxidation. J. Alloys Compd. 2025, 1032, 181131. [Google Scholar] [CrossRef]
- Guo, F.; Zhang, Y.; Shen, B.; Wan, L.; Hou, G.; Cao, H.; Zheng, G.; Zhao, Y.; Zhang, H. Multi-Site Synergistic Hydrogen Evolution Reactions on Porous Homogeneous FeCoNiCu High-Entropy Alloys Fabricated by Solution Combustion Synthesis and Hydrogen Reduction. J. Alloys Compd. 2024, 1002, 175356. [Google Scholar] [CrossRef]
- Li, H.; Han, Y.; Zhao, H.; Qi, W.; Zhang, D.; Yu, Y.; Cai, W.; Li, S.; Lai, J.; Huang, B.; et al. Fast Site-to-Site Electron Transfer of High-Entropy Alloy Nanocatalyst Driving Redox Electrocatalysis. Nat. Commun. 2020, 11, 5437. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Lin, F.; Zhang, S.; Zhao, R.; Tao, L.; Li, L.; Li, J.; Zeng, L.; Luo, M.; Guo, S. High-Entropy Alloy Electrocatalysts Go to (Sub-)Nanoscale. Sci. Adv. 2024, 10, eadn2877. [Google Scholar] [CrossRef]
- Sangeetha, A.; Chikkahanumantharayappa; Nagabhushana, B.M. Comparative Study of Photoluminescence of Single and Mixed Phase ZrTiO4 Prepared by Solution Combustion and Polymeric Precursor Method. J. Mol. Struct. 2019, 1179, 126–131. [Google Scholar] [CrossRef]
- Mararakin, M.D.; Vartanyan, M.A.; Makarov, N.A.; Sazhin, I.V. Sol-Gel Synthesis by Means Of Eutectic Additives for Silicon Carbide Based Ceramic. Glass Ceram 2018, 74, 326–328. [Google Scholar] [CrossRef]
- Chang, Z.; Chen, Z.; Wu, F. Comparison of the performance of spherical LiNi1/3Mn1/3Co1/3O2 prepared from precursors with different valence states of metal ions. Rare Met. Mater. Eng. 2009, 38, 500–505. [Google Scholar] [CrossRef]
- Cai, B.; Liu, H.; Han, W. Solution Combustion Synthesis of Fe2O3-Based Catalyst for Ammonia Synthesis. Catalysts 2020, 10, 1027. [Google Scholar] [CrossRef]
- Jin, X.; Ye, W.; Feng, Z.; Qi, Q.; Yan-bin, C. Preparation of Ultrafine A-Al2o3 Powder by Homogenous Precipitation. Zhongguo Youse Jinshu Xuebao 2007, 5, 783–788. [Google Scholar] [CrossRef]
- Liu, S.; Jia, B.; Wang, Y.; Zhao, Y.; Liu, L.; Fan, F.; Qin, Y.; Liu, J.; Jiang, Y.; Liu, H.; et al. Topological Synthesis of 2D High-Entropy Multimetallic (Oxy)Hydroxide for Enhanced Lattice Oxygen Oxidation Mechanism. Adv. Mater. 2024, 36, 2409530. [Google Scholar] [CrossRef]
- Lu, T.; Zhang, Y.; Ding, L.; Zheng, H.; Pan, Y. Solution Combustion Synthesis of High-Entropy Metal Spinel Oxide as Oxygen Evolution Reaction Catalyst. China Foundry 2022, 19, 551–558. [Google Scholar] [CrossRef]
- Xie, L.; Dun, Y.; Wang, Q.; Xu, J.; Li, S.; Chen, R.; Du, C.; Shan, B. Pt Decorated (CoMnFeCrNi)3O4 High-Entropy Oxide for Low-Temperature Combustion of C3H8. Fuel 2025, 394, 135090. [Google Scholar] [CrossRef]
- Jimenez-Arevalo, V.M.; Martin, P.; Pio, E.; Pavez, J.; Aguilar, C.C.; Suryanarayana, C.; Páez, M. Energy Transfer by Mechanical Alloying and Electrocatalytic Performance of the As-Sintered Self-Supported High-Entropy Alloy FeNiCoCuMo. Adv. Eng. Mater. 2024, 27, 2400807. [Google Scholar] [CrossRef]
- Kumar, A.; Mucalo, M.; Bolzoni, L.; Li, Y.; Qu, Y.; Yang, F. Facile Synthesis of a NiMnFeCrCu High Entropy Alloy for Electrocatalytic Oxygen Evolution Reactions. Mater. Today Sustain. 2023, 22, 100360. [Google Scholar] [CrossRef]
- Pan, Y.; Zhong, X.; Zhu, Y. Preparation and Electrocatalytic Oxygen Evolution Performance of High-Entropy Alloy FeCoNiCrP. Mater. Rep. 2022, 36, 33–37. [Google Scholar] [CrossRef]
- Wu, C.; Zhang, X.; Zhang, Y.; Ma, W.; Zhao, D.; Ren, B.; Zhang, Z.; Wang, Y. Mechanical Alloyed FeCoNiMoM (M=Cr, Cu) High-Entropy Alloy Powders as Electrocatalysts for Oxygen Evolution Reaction. J. Mater. 2025, 11, 101046. [Google Scholar] [CrossRef]
- Dashtizad, S.; Alizadeh, P.; Yourdkhani, A. Improving Piezoelectric Properties of PVDF Fibers by Compositing with BaTiO3-Ag Particles Prepared by Sol-Gel Method and Photochemical Reaction. J. Alloys Compd. 2021, 883, 160810. [Google Scholar] [CrossRef]
- Sanchez Mendez, M.; Jia, Z.; Traore, M.; Ben Amar, M.; Nikravech, M.; Kanaev, A. Nucleation and Growth of Mixed Vanadium-Titanium Oxo-Alkoxy Nanoparticles in Sol-Gel Synthesis. Colloids Surf. A Physicochem. Eng. Asp. 2021, 610, 125636. [Google Scholar] [CrossRef]
- Tang, L.; Yang, Y.; Guo, H.; Wang, Y.; Wang, M.; Liu, Z.; Yang, G.; Fu, X.; Luo, Y.; Jiang, C.; et al. High Configuration Entropy Activated Lattice Oxygen for O2 Formation on Perovskite Electrocatalyst. Adv. Funct. Mater. 2022, 32, 2112157. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, S.; Qin, Y.; Zhao, Y.; Liu, L.; Zhang, D.; Liu, J.; Liu, Y.; Chu, A.; Wu, H.; et al. Chromium Promotes Phase Transformation to Active Oxyhydroxide for Efficient Oxygen Evolution. ACS Catal. 2024, 14, 13759–13767. [Google Scholar] [CrossRef]
- Zhao, G.; Lu, K.; Li, Y. An efficient and stable high-entropy alloy electrocatalyst for hydrogen evolution reaction. Chin. J. Catal. 2024, 62, 10. [Google Scholar] [CrossRef]
- Jia, M.; Jiang, J.; Tian, J.; Wang, X.; Yang, L.; Wu, Q.; Hu, Z. Ultrasmall High-Entropy Alloy Nanoparticles on Hierarchical N-Doped Carbon Nanocages for Tremendous Electrocatalytic Hydrogen Evolution. Nano Res. 2024, 17, 9518–9524. [Google Scholar] [CrossRef]
- Ma, P.; Zhang, S.; Zhang, M. Hydroxylated high-entropy alloy as highly efficient catalyst for electrochemical oxygen evolution reaction. Sci. China Mater. 2020, 63, 2613–2619. [Google Scholar] [CrossRef]
- Qiu, H.-J.; Fang, G.; Gao, J.; Wen, Y.; Lv, J.; Li, H.; Xie, G.; Liu, X.; Sun, S. Noble Metal-Free Nanoporous High-Entropy Alloys as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction. ACS Mater. Lett. 2019, 1, 526–533. [Google Scholar] [CrossRef]
- Zhao, K.; Li, X.; Su, D. High-Entropy Alloy Nanocatalysts for Electrocatalysis. Acta Phys.-Chim. Sin. 2021, 37, 2009077. [Google Scholar] [CrossRef]
- Zhang, Q.; Zheng, D.; Liu, X. Research progress on high-performance hydrogen evolution reaction electrocatalysts under high current density. Low-Carbon Chem. Chem. Eng. 2024, 49, 96–104. [Google Scholar] [CrossRef]
- Zhou, P.; Wong, P.K.; Niu, P.; Chen, M.; Kwok, C.T.; Tang, Y.; Li, R.; Wang, S.; Pan, H. Anodized AlCoCrFeNi High-Entropy Alloy for Alkaline Water Electrolysis with Ultra-High Performance. Sci. China Mater. 2022, 66, 1033–1041. [Google Scholar] [CrossRef]
- Lee, S.A.; Bu, J.; Lee, J.; Jang, H.W. High-Entropy Nanomaterials for Advanced Electrocatalysis. Small Sci. 2023, 3, 2200109. [Google Scholar] [CrossRef]
Reaction Type | Catalyst Examples | Target Function | Reference |
---|---|---|---|
Water Electrolysis for H2 Production | Pt, MoS2, Ni-Mo Alloy | Efficient H2 Production, Lower Overpotential | [10] |
CO2 Reduction | Cu Nanowires, Ag Nanoparticles | Selective Generation of CO, CH4, or C2+ Products | |
Oxygen Reduction Reaction | Pt-Co Alloy, Fe-N-C Materials | Enhance Fuel Cell Efficiency, Reduce Precious Metal Usage | [11] |
Oxygen Evolution Reaction | IrO2, NiFe-LDH | Accelerate Water Splitting, Extend Electrolyzer Lifespan | |
Nitrogen Reduction for Ammonia Synthesis | Ru-Based Materials, Bi Nanosheets | Activate N2 to Generate NH3 at Ambient Temperature and Pressure | [12] |
Catalyst Type | Advantages | Disadvantages | Typical Applications |
---|---|---|---|
Precious Metal-Based | Ultra-high Activity, Good Stability High | Cost, Resource Scarcity | Fuel Cells, Water Electrolysis |
Transition Metal-Based | Low Cost, High Tunability | Lower Activity, Poor Stability | Alkaline Water Electrolysis, CO2RR |
MOFs/COFs | High Specific Surface Area, Designable Structure | Poor Conductivity, Insufficient Stability | CO2RR, OER |
Carbon-Based Materials | Good Conductivity, Environmentally Friendly | Dependence on Doping, Structure Prone to Collapse | ORR, Metal–Air Batteries |
Single-Atom Catalysts | High Atom Utilization, Excellent Selectivity | Complex Synthesis, Easy Deactivation | High-Selectivity Reactions (e.g., NRR) |
Non-Metallic Catalysts | Metal-Free, Corrosion Resistant | Low Activity, Narrow Applicability | Photo/Electrocatalytic Water Splitting |
Application | Composition | Preparation Method | Reference |
---|---|---|---|
HER | NiCoFePtRh | Chemical Co-reduction | [45] |
Methanol/Formic Acid Electrooxidation | PtCuNiCoMn | Chemical Co-reduction | [62] |
HER | FeCoNiCu | Solution Combustion Synthesis | [65] |
OER | FeCoNiCrP | Mechanical Alloying | [78] |
HER | CoFeCuMnZn | Solution Combustion Synthesis | [73] |
OER | FeCoNiMoCr | Mechanical Alloying | [79] |
OER | MgMnFeCoNi | Sol–Gel | [82] |
OER | FeCoNiCr | Sol–Gel | [83] |
HER | PtPdRhRuCu | Solution Combustion Synthesis | [84] |
HER | PtRuCoNiCu | Low-Temperature Thermal Reduction | [85] |
OER | CoCrFeNiAl | Hydroxylation via HF treatment | [86] |
ORR | AlCuNiPtMn | Dealloying | [87] |
ORR | AlNiCuPtPdAu | Dealloying | [88] |
CO2RR | AuAgPtPdCu | Low-Temperature Method | [57] |
NRR, OER | Ni, Fe, Co, Mn, V | Solution Combustion Synthesis | [31] |
HOR | PtRuNiCoFeMo | Solution Combustion Synthesis | [47] |
Propane Combustion | CoMnFeCrNi | Solution Combustion Synthesis | [75] |
Method | Advantages | Limitations | Suitability for Electrocatalysis |
---|---|---|---|
Chemical Co-reduction | Uniform nanoparticles (1–3 nm); Precise composition control | Toxic reagents; Scalability challenges | High (e.g., HER/ORR nanocatalysts) |
Solution Combustion | Rapid; Porous structures; Scalable | Residual carbon/impurities; Composition drift | Moderate (e.g., OER oxides) |
Mechanical Alloying | Solvent-free; Bulk production | Elemental segregation (Figure 10c); Contamination risk | Low (requires post-annealing for homogeneity) |
Sol–Gel | Homogeneous doping; Thin-film compatibility | Long processing; High cost | High (e.g., perovskite OER catalysts) |
Reaction | HEA Composition | Overpotential (η) | Tafel Slope | Stability | Conditions | Reference |
---|---|---|---|---|---|---|
HER | NiCoFePtRh/C | 28 mV @ 10 mA cm−2 | 30.1 s−1 TOF | >99% (10k cycles) | 0.5 M H2SO4, 25 °C | [45] |
OER | FeCoNiCrP | 286 mV @ 10 mA cm−2 | 27.6 mV dec−1 | >24 h @ 100 mA cm−2 | 1 M KOH, 25 °C | [78] |
ORR | np-AlCuNiPtMn | E1/2 = 0.945 V | Unclear | 92.5% (100 cycles) | 0.1 M HClO4, 25 °C | [89] |
HER | FeCoNiCu | 71 mV @ 10 mA cm−2 | 45 mV dec−1 | >50 h @ 50 mA cm−2 | 1 M KOH, 25 °C | [65] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, X.; Yin, X.; Zhang, Y.; Chen, Y. High-Entropy Alloys and Their Derived Compounds as Electrocatalysts: Understanding, Preparation and Application. Materials 2025, 18, 4021. https://doi.org/10.3390/ma18174021
Yuan X, Yin X, Zhang Y, Chen Y. High-Entropy Alloys and Their Derived Compounds as Electrocatalysts: Understanding, Preparation and Application. Materials. 2025; 18(17):4021. https://doi.org/10.3390/ma18174021
Chicago/Turabian StyleYuan, Xianjie, Xiangdi Yin, Yirui Zhang, and Yuanpan Chen. 2025. "High-Entropy Alloys and Their Derived Compounds as Electrocatalysts: Understanding, Preparation and Application" Materials 18, no. 17: 4021. https://doi.org/10.3390/ma18174021
APA StyleYuan, X., Yin, X., Zhang, Y., & Chen, Y. (2025). High-Entropy Alloys and Their Derived Compounds as Electrocatalysts: Understanding, Preparation and Application. Materials, 18(17), 4021. https://doi.org/10.3390/ma18174021