Block Copolymer-Templated Synthesis of Fe–Ni–Co-Modified Nanoporous Alumina Films
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Polymer Sample Preparation
2.3. Chemical Infiltration: Swelling-Based Infiltration (SBI)
2.4. Vapor Phase Infiltration: Sequential Infiltration Synthesis (SIS)
2.5. Polymer Removal
2.6. Sample Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kowalczyk, A.; Rutkowska, M.; Gnyla, S.; Pacia, M.; Chmielarz, L. Synergistic Effect of Co and Ni Co-Existence on Catalytic Decomposition of Ammonia to Hydrogen—Effect of Catalytic Support and Mg-Al Oxide Matrix. ChemEngineering 2024, 8, 55. [Google Scholar] [CrossRef]
- Arizapana, K.; Schossig, J.; Wildy, M.; Weber, D.; Gandotra, A.; Jayaraman, S.; Wei, W.; Xu, K.; Yu, L.; Mugweru, A.M.; et al. Harnessing the Synergy of Fe and Co with Carbon Nanofibers for Enhanced CO2 Hydrogenation Performance. ACS Sustain. Chem. Eng. 2024, 12, 1868–1883. [Google Scholar] [CrossRef] [PubMed]
- Satrughna, J.A.K.; Kanwade, A.R.; Shirage, P.M. Synergistic effect of multi-transition metal co-substitution in high cycle life performance of NaxCo0.5Fe0.25Mn0.25O2 cathode for sodium-ion batteries. Sustain. Energy Fuels 2025, 9, 3354–3373. [Google Scholar] [CrossRef]
- Tang, Y.; Yang, X.; Zhang, Q.; Lv, D.; Zuo, S.; Li, J. Comprehensive Analysis of the Synergistic Effects of Bimetallic Oxides in CoM/γ-Al2O3 (M = Cu, Fe, or Ni) Catalysts for Enhancing Toluene Combustion Efficiency. Molecules 2025, 30, 1188. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Q.; Lin, Y.; Liu, J.; Pan, J.; Hu, J.; Xu, X. Boosting oxygen evolution reaction by FeNi hydroxide-organic framework electrocatalyst toward alkaline water electrolyzer. Nat. Commun. 2024, 15, 7278. [Google Scholar] [CrossRef]
- Lys, A.; Zabolotnii, V.; Čaplovičová, M.; Tepliakova, I.; Berzins, A.; Sahul, M.; Čaplovič, Ľ.; Pogrebnjak, A.; Iatsunskyi, I.; Viter, R. Core-shell nanofibers of ZnFe2O4/ZnO for enhanced visible-light photoelectrochemical performance. J. Alloys Compd. 2024, 984, 173885. [Google Scholar] [CrossRef]
- Lun, S.; Wang, H.; Deng, Y.; Cui, J.; Liang, P.; Wang, K.; Lv, L.; Wan, H.; Wang, H. FeNi decorated nitrogen-doped hollow carbon spheres as ultra-stable bifunctional oxygen electrocatalyst for rechargeable zinc–air battery with 2.7% decay after 300 hours cycling. RSC Adv. 2024, 14, 3857–3866. [Google Scholar] [CrossRef]
- Ahmed, M.A.; Mahmoud, S.A.; Mohamed, A.A. Interfacially engineered metal oxide nanocomposites for enhanced photocatalytic degradation of pollutants and energy applications. RSC Adv. 2025, 15, 15561–15603. [Google Scholar] [CrossRef]
- Ahmad, I.; Aftab, A.; Fatima, A.; Mekkey, S.D.; Melhi, S.; Ikram, S. A comprehensive review on the advancement of transition metals incorporated on functional magnetic nanocomposites for the catalytic reduction and photocatalytic degradation of organic pollutants. Coord. Chem. Rev. 2024, 514, 215904. [Google Scholar] [CrossRef]
- Yuan, C.; Wu, H.; Bin Xie, Y.; Lou, X.W. Mixed Transition-Metal Oxides: Design, Synthesis, and Energy-Related Applications. Angew. Chem. Int. Ed. 2014, 53, 1488–1504. [Google Scholar] [CrossRef]
- Low, W.H.; Khiew, P.S.; Lim, S.S.; Siong, C.W.; Ezeigwe, E.R. Recent development of mixed transition metal oxide and graphene/mixed transition metal oxide based hybrid nanostructures for advanced supercapacitors. J. Alloys Compd. 2019, 775, 1324–1356. [Google Scholar] [CrossRef]
- Li, S.; Li, E.; An, X.; Hao, X.; Jiang, Z.; Guan, G. Transition metal-based catalysts for electrochemical water splitting at high current density: Current status and perspectives. Nanoscale 2021, 13, 12788–12817. [Google Scholar] [CrossRef]
- Wan, H.; Liu, X.; Wang, H.; Ma, R.; Sasaki, T. Recent advances in developing high-performance nanostructured electrocatalysts based on 3d transition metal elements. Nanoscale Horiz. 2019, 4, 789–808. [Google Scholar] [CrossRef]
- Park, J.-Y.; Lee, Y.-J.; Khanna, P.K.; Jun, K.-W.; Bae, J.W.; Kim, Y.H. Alumina-supported iron oxide nanoparticles as Fischer–Tropsch catalysts: Effect of particle size of iron oxide. J. Mol. Catal. A Chem. 2010, 323, 84–90. [Google Scholar] [CrossRef]
- Tijani, M.M.; Aqsha, A.; Mahinpey, N. Synthesis and study of metal-based oxygen carriers (Cu, Co, Fe, Ni) and their interaction with supported metal oxides (Al2O3, CeO2, TiO2, ZrO2) in a chemical looping combustion system. Energy 2017, 138, 873–882. [Google Scholar] [CrossRef]
- Park, J.; Lee, S.; Kim, S. Recent advances in amorphous electrocatalysts for oxygen evolution reaction. Front. Chem. 2022, 10, 1030803. [Google Scholar] [CrossRef] [PubMed]
- Peng, P.; Lin, X.-M.; Liu, Y.; Filatov, A.S.; Li, D.; Stamenkovic, V.R.; Yang, D.; Prakapenka, V.B.; Lei, A.; Shevchenko, E.V. Binary Transition-Metal Oxide Hollow Nanoparticles for Oxygen Evolution Reaction. ACS Appl. Mater. Interfaces 2018, 10, 24715–24724. [Google Scholar] [CrossRef]
- Zhang, Y.; Fu, Q.; Song, B.; Xu, P. Regulation Strategy of Transition Metal Oxide-Based Electrocatalysts for Enhanced Oxygen Evolution Reaction. Acc. Mater. Res. 2022, 3, 1088–1100. [Google Scholar] [CrossRef]
- Zhu, Y.; Tang, Z.; Yuan, L.; Li, B.; Shao, Z.; Guo, W. Beyond conventional structures: Emerging complex metal oxides for efficient oxygen and hydrogen electrocatalysis. Chem. Soc. Rev. 2025, 54, 1027–1092. [Google Scholar] [CrossRef]
- Laušević, Z.; Apel, P.Y.; Krstić, J.B.; Blonskaya, I.V. Porous carbon thin films for electrochemical capacitors. Carbon 2013, 64, 456–463. [Google Scholar] [CrossRef]
- Sievers, B.; Granja, L.P.; Zelcer, A.; Juan, D.; Ferrari, V.; Passanante, S.; Lombardo, M.V.; Fuertes, M.C.; Fuentes, R.; Sacanell, J. Tuning Electrochemical Properties and Thermal Stability of YSZ Mesoporous Thin Films for SOFC Applications. ACS Appl. Energy Mater. 2025, 8, 894–902. [Google Scholar] [CrossRef]
- Luo, J.; Cao, M.; Naresh, N.; Borah, J.; Li, S.; Wang, T.; Sarma, B.K.; Yao, J.; Parkin, I.P.; Boruah, B.D. Chemically Processed Porous V2O5 Thin-Film Cathodes for High-Performance Thin-Film Zn-Ion Batteries. Adv. Funct. Mater. 2025, 35, 2417607. [Google Scholar] [CrossRef]
- Bose, R.; Goud, G.S.; Helal, M.I.; Barsoum, I.; Cho, S.O.; Alfantazi, A. Self-Ordered Anodic Porous Oxide Layers as a High Performance Electrocatalyst for Water Oxidation. ACS Appl. Energy Mater. 2024, 7, 4402–4411. [Google Scholar] [CrossRef]
- Sakthinathan, S.; Meenakshi, G.A.; Vinothini, S.; Yu, C.-L.; Chen, C.-L.; Chiu, T.-W.; Vittayakorn, N. A Review of Thin-Film Growth, Properties, Applications, and Future Prospects. Processes 2025, 13, 587. [Google Scholar] [CrossRef]
- Pan, Z.; Yang, J.; Kong, J.; Loh, X.J.; Wang, J.; Liu, Z. “Porous and Yet Dense” Electrodes for High-Volumetric-Performance Electrochemical Capacitors: Principles, Advances, and Challenges. Adv. Sci. 2022, 9, 2103953. [Google Scholar] [CrossRef]
- de Nooijer, N.; Plazaola, A.A.; Rey, J.M.; Fernandez, E.; Tanaka, D.A.P.; Annaland, M.v.S.; Gallucci, F. Long-Term Stability of Thin-Film Pd-Based Supported Membranes. Processes 2019, 7, 106. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, S.; Yu, M.; Li, P.; Zhang, X.; Wang, H.; Guo, T.; Liu, C. Fabrication and application of porous organic single-crystal films in highly sensitive gas sensors. Nano Res. 2025, 18, 94907299. [Google Scholar] [CrossRef]
- Omotosho, K.D.; Lyon, Z.; Shevchenko, E.V.; Berman, D. Accessibility and Mechanical Stability of Nanoporous Zinc Oxide and Aluminum Oxide Coatings Synthesized via Infiltration of Polymer Templates. Polymers 2023, 15, 4088. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Liu, H.; Feng, L. A Review on Advanced FeNi-Based Catalysts for Water Splitting Reaction. Energy Fuels 2020, 34, 13491–13522. [Google Scholar] [CrossRef]
- Gu, X.; Liu, Z.; Li, M.; Tian, J.; Feng, L. Surface structure regulation and evaluation of FeNi-based nanoparticles for oxygen evolution reaction. Appl. Catal. B 2021, 297, 120462. [Google Scholar] [CrossRef]
- Akbari, N.; Nandy, S.; Chae, K.H.; Najafpour, M.M. Dynamic Changes of an Anodized FeNi Alloy during the Oxygen Evolution Reaction under Alkaline Conditions. Langmuir 2023, 39, 11807–11818. [Google Scholar] [CrossRef] [PubMed]
- Morales-Guio, C.G.; Liardet, L.; Hu, X. Oxidatively Electrodeposited Thin-Film Transition Metal (Oxy)hydroxides as Oxygen Evolution Catalysts. J. Am. Chem. Soc. 2016, 138, 8946–8957. [Google Scholar] [CrossRef]
- Ha, M.-A.; Alia, S.M.; Norman, A.G.; Miller, E.M. Fe-Doped Ni-Based Catalysts Surpass Ir-Baselines for Oxygen Evolution Due to Optimal Charge-Transfer Characteristics. ACS Catal. 2024, 14, 17347–17359. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; An, N.; Kang, Z.; Menezes, P.W.; Chen, Z. Understanding Advanced Transition Metal-Based Two Electron Oxygen Reduction Electrocatalysts from the Perspective of Phase Engineering. Adv. Mater. 2024, 36, e2400140. [Google Scholar] [CrossRef]
- Liu, C.; Li, Q.; Kang, W.; Lei, W.; Wang, X.; Lu, C.; Naebe, M. Structural design and mechanism analysis of hierarchical porous carbon fibers for advanced energy and environmental applications. J. Mater. Chem. A Mater. 2022, 10, 10–49. [Google Scholar] [CrossRef]
- Yan, W.; Liu, Y.; Bai, Y.; Chen, Y.; Zhou, H.; Ahmad, W. Intelligent MEMS Sensor Based on an Oxidized Medium-Entropy Alloy (FeCoNi) for H2 and CO Recognition. ACS Appl. Mater. Interfaces 2024, 16, 49474–49483. [Google Scholar] [CrossRef]
- Qi, Y.; Zou, M.; Ajarem, J.S.; Allam, A.A.; Wang, Z.; Qu, R.; Zhu, F.; Huo, Z. Catalytic degradation of pharmaceutical and personal care products in aqueous solution by persulfate activated with nanoscale FeCoNi-ternary mixed metal oxides. Sep. Purif. Technol. 2023, 314, 123585. [Google Scholar] [CrossRef]
- Tugrul, D.; Doganay, D.; Unalan, H.E.; Imer, B. ALD grown undoped ZnO and Al-doped-ZnO thin-film heaters. Vacuum 2025, 233, 113942. [Google Scholar] [CrossRef]
- Ghazy, A.; Zanders, D.; Devi, A.; Karppinen, M. Atomic and Molecular Layer Deposition of Functional Thin Films Based on Rare Earth Elements. Adv. Mater. Interfaces 2025, 12, 2400274. [Google Scholar] [CrossRef]
- Fang, M.; Ho, J.C. Area-Selective Atomic Layer Deposition: Conformal Coating, Subnanometer Thickness Control, and Smart Positioning. ACS Nano 2015, 9, 8651–8654. [Google Scholar] [CrossRef] [PubMed]
- Leskelä, M.; Ritala, M. Atomic Layer Deposition Chemistry: Recent Developments and Future Challenges. Angew. Chem. Int. Ed. 2003, 42, 5548–5554. [Google Scholar] [CrossRef]
- Johnson, R.W.; Hultqvist, A.; Bent, S.F. A brief review of atomic layer deposition: From fundamentals to applications. Mater. Today 2014, 17, 236–246. [Google Scholar] [CrossRef]
- Berman, D.; Shevchenko, E. Design of functional composite and all-inorganic nanostructured materials via infiltration of polymer templates with inorganic precursors. J. Mater. Chem. C Mater. 2020, 8, 10604–10627. [Google Scholar] [CrossRef]
- Clavijo, R.F.; Riba-Moliner, M.; González-Campo, A.; Sort, J.; Pellicer, E.; Eiler, K. PS-b-P4VP block copolymer micelles as a soft template to grow openly porous nickel films for alkaline hydrogen evolution. Catal. Today 2023, 423, 113916. [Google Scholar] [CrossRef]
- Kumar, L.; Singh, S.; Horechyy, A.; Fery, A.; Nandan, B. Block Copolymer Template-Directed Catalytic Systems: Recent Progress and Perspectives. Membranes 2021, 11, 318. [Google Scholar] [CrossRef] [PubMed]
- Pleshek, D.; Tran, J.; Li, Y.; Shirani, A.; Shevchenko, E.V.; Berman, D. Swelling-Assisted Sequential Infiltration Synthesis of Nanoporous ZnO Films with Highly Accessible Pores and Their Sensing Potential for Ethanol. ACS Appl. Mater. Interfaces 2021, 13, 35941–35948. [Google Scholar] [CrossRef]
- Omotosho, K.D.; Gurung, V.; Banerjee, P.; Shevchenko, E.V.; Berman, D. Self-Cleaning Highly Porous TiO2 Coating Designed by Swelling-Assisted Sequential Infiltration Synthesis (SIS) of a Block Copolymer Template. Polymers 2024, 16, 308. [Google Scholar] [CrossRef]
- Ji, C.; Zhang, Z.; Omotosho, K.D.; Berman, D.; Lee, B.; Divan, R.; Guha, S.; Shevchenko, E.V. Porous but Mechanically Robust All-Inorganic Antireflective Coatings Synthesized using Polymers of Intrinsic Microporosity. ACS Nano 2022, 16, 14754–14764. [Google Scholar] [CrossRef]
- Peng, Q.; Tseng, Y.; Darling, S.B.; Elam, J.W. Nanoscopic Patterned Materials with Tunable Dimensions via Atomic Layer Deposition on Block Copolymers. Adv. Mater. 2010, 22, 5129–5133. [Google Scholar] [CrossRef]
- Chen, Y.; Xiong, S. Directed self-assembly of block copolymers for sub-10 nm fabrication. Int. J. Extrem. Manuf. 2020, 2, 032006. [Google Scholar] [CrossRef]
- Yang, G.G.; Choi, H.J.; Han, K.H.; Kim, J.H.; Lee, C.W.; Jung, E.I.; Jin, H.M.; Kim, S.O. Block Copolymer Nanopatterning for Nonsemiconductor Device Applications. ACS Appl. Mater. Interfaces 2022, 14, 12011–12037. [Google Scholar] [CrossRef] [PubMed]
- Cara, E.; Murataj, I.; Milano, G.; De Leo, N.; Boarino, L.; Lupi, F.F. Recent Advances in Sequential Infiltration Synthesis (SIS) of Block Copolymers (BCPs). Nanomaterials 2021, 11, 994. [Google Scholar] [CrossRef] [PubMed]
- Berman, D.; Sha, Y.; Shevchenko, E.V. Effect of Polymer Removal on the Morphology and Phase of the Nanoparticles in All-Inorganic Heterostructures Synthesized via Two-Step Polymer Infiltration. Molecules 2021, 26, 679. [Google Scholar] [CrossRef]
- Ghoshal, T.; O’COnnell, J.; Sinturel, C.; Andreazza, P.; Holmes, J.D.; Morris, M.A. Solvent mediated inclusion of metal oxide into block copolymer nanopatterns: Mechanism of oxide formation under UV-Ozone treatment. Polymer 2019, 173, 197–204. [Google Scholar] [CrossRef]
- Yi, D.H.; Nam, C.-Y.; Doerk, G.; Black, C.T.; Grubbs, R.B. Infiltration Synthesis of Diverse Metal Oxide Nanostructures from Epoxidized Diene–Styrene Block Copolymer Templates. ACS Appl. Polym. Mater. 2019, 1, 672–683. [Google Scholar] [CrossRef]
- Singh, S.; Vasquez, J.F.B.; Perova, T.S.; Morris, M.A. Fabrication of metal-oxide arrays: Mechanism of solvent-mediated metal infiltration into block copolymer nanopatterns. Clean. Technol. Environ. Policy 2023, 25, 1361–1369. [Google Scholar] [CrossRef]
- Berman, D.; Guha, S.; Lee, B.; Elam, J.W.; Darling, S.B.; Shevchenko, E.V. Sequential Infiltration Synthesis for the Design of Low Refractive Index Surface Coatings with Controllable Thickness. ACS Nano 2017, 11, 2521–2530. [Google Scholar] [CrossRef]
- Omotosho, K.; Tran, J.; Shevchenko, E.V.; Berman, D. Polymer infiltration synthesis of inorganic nanoporous coatings: Does polymer template affect their properties? Surf. Coat Technol. 2023, 452, 129107. [Google Scholar] [CrossRef]
- She, Y.; Goodman, E.D.; Lee, J.; Diroll, B.T.; Cargnello, M.; Shevchenko, E.V.; Berman, D. Block-Co-polymer-Assisted Synthesis of All Inorganic Highly Porous Heterostructures with Highly Accessible Thermally Stable Functional Centers. ACS Appl. Mater. Interfaces 2019, 11, 30154–30162. [Google Scholar] [CrossRef]
- She, Y.; Lee, J.; Diroll, B.T.; Lee, B.; Aouadi, S.; Shevchenko, E.V.; Berman, D. Rapid Synthesis of Nanoporous Conformal Coatings via Plasma-Enhanced Sequential Infiltration of a Polymer Template. ACS Omega 2017, 2, 7812–7819. [Google Scholar] [CrossRef]
- Gurung, V.; Omotosho, K.D.; Obe, O.; Shevchenko, E.; Berman, D. Fabrication of nanoporous doped metal oxide coatings via selective infiltration of a block copolymer template: The case of Al-doped zinc oxide. Surf. Coat. Technol. 2025, 512, 132418. [Google Scholar] [CrossRef]
- Kazakova, M.A.; Morales, D.M.; Andronescu, C.; Elumeeva, K.; Selyutin, A.G.; Ishchenko, A.V.; Golubtsov, G.V.; Dieckhöfer, S.; Schuhmann, W.; Masa, J. Fe/Co/Ni mixed oxide nanoparticles supported on oxidized multi-walled carbon nanotubes as electrocatalysts for the oxygen reduction and the oxygen evolution reactions in alkaline media. Catal. Today 2020, 357, 259–268. [Google Scholar] [CrossRef]
- Yao, L.; Zhang, H.; Humayun, M.; Fu, Y.; Xu, X.; Feng, C.; Wang, C. Constructing nanoporous crystalline/amorphous NiFe2O4/NiO electrocatalyst for high efficiency OER/UOR. J. Alloys Compd. 2023, 936, 168206. [Google Scholar] [CrossRef]
- Li, X.; Wang, M.; Fu, J.; Lu, F.; Li, Z.; Wang, G. Sulfurized NiFe2O4 Electrocatalyst with In Situ Formed Fe-NiOOH Nanoparticles to Realize Industrial-Level Oxygen Evolution. Small 2024, 20, e2310040. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Xie, J.; Sun, Y.; Liu, J.; Liu, B.; Wang, R.; Ma, F.; Liu, M.; Zou, J. Fe2O3/spinel NiFe2O4 heterojunctions in-situ wrapped by one-dimensional porous carbon nanofibers for boosting oxygen evolution/reduction reactions. Int. J. Hydrogen Energy 2022, 47, 21329–21343. [Google Scholar] [CrossRef]
- Biesinger, M.C.; Payne, B.P.; Lau, L.W.M.; Gerson, A.; Smart, R.S.C. X-ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems. Surf. Interface Anal. 2009, 41, 324–332. [Google Scholar] [CrossRef]
- Jiang, Q.; Wang, S.; Zhang, C.; Sheng, Z.; Zhang, H.; Feng, R.; Ni, Y.; Tang, X.; Gu, Y.; Zhou, X.; et al. Active oxygen species mediate the iron-promoting electrocatalysis of oxygen evolution reaction on metal oxyhydroxides. Nat. Commun. 2023, 14, 6826. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.-X.; Mao, Y.; Zhou, Y.; Wang, Z.; Wei, S.; Cowie, B.C.; Marshall, A.T.; Wang, Z.; Waterhouse, G.I. Divalent site doping of NiFe-layered double hydroxide anode catalysts for enhanced anion-exchange membrane water electrolysis. Chem. Eng. J. 2025, 508, 160753. [Google Scholar] [CrossRef]
- Guo, Z.; Wang, X.; Yang, F.; Liu, Z. Synergistic effect of Co and Fe bimetallic oxides/hydroxides composite structure as a bifunctional electrocatalyst for enhancing overall water splitting performance. J. Alloys. Compd. 2022, 895, 162614. [Google Scholar] [CrossRef]
- Laïk, B.; Richet, M.; Emery, N.; Bach, S.; Perrière, L.; Cotrebil, Y.; Russier, V.; Guillot, I.; Dubot, P. XPS Investigation of Co–Ni Oxidized Compounds Surface Using Peak-On-Satellite Ratio. Application to Co20Ni80 Passive Layer Structure and Composition. ACS Omega 2024, 9, 40707–40722. [Google Scholar] [CrossRef]
- Chen, Q.; Su, K.; Zhang, M.; Ma, Q. Fe3O4/Co3O4 core-shell nanocomposites modified structure and properties of heavy metal oxide diamagnetic glasses. J. Non Cryst. Solids 2019, 509, 10–22. [Google Scholar] [CrossRef]
- Baker, J.G.; Schneider, J.R.; Torres, J.A.G.; Singh, J.A.; Mackus, A.J.M.; Bajdich, M.; Bent, S.F. The Role of Aluminum in Promoting Ni–Fe–OOH Electrocatalysts for the Oxygen Evolution Reaction. ACS Appl. Energy Mater. 2019, 2, 3488–3499. [Google Scholar] [CrossRef]
- Sherwood, P.M.A. Introduction to Studies of Aluminum and its Compounds by XPS. Surf. Sci. Spectra 1998, 5, 1–3. [Google Scholar] [CrossRef]
- Fukumizu, H.; Sekine, M.; Hori, M.; McIntyre, P.C. Initial growth analysis of ALD Al2O3 film on hydrogen-terminated Si substrate via in situ XPS. Jpn. J. Appl. Phys. 2020, 59, 016504. [Google Scholar] [CrossRef]
- Omotosho, K.D.; Ozoude, C.; Gurung, V.; Banerjee, P.; Filatov, A.; Shevchenko, E.; Berman, D. Synthesis of multicomponent oxygen evolution reaction coatings via block copolymer templating with vapor- and solution-phase precursors. J. Colloid Interf. Sci. 2025, 703, 139078. [Google Scholar] [CrossRef]
- Haham, H.; Grinblat, J.; Sougrati, M.-T.; Stievano, L.; Margel, S. Engineering of Iron-Based Magnetic Activated Carbon Fabrics for Environmental Remediation. Materials 2015, 8, 4593–4607. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozoude, C.; Gurung, V.; Omotosho, K.D.; Shevchenko, E.V.; Berman, D. Block Copolymer-Templated Synthesis of Fe–Ni–Co-Modified Nanoporous Alumina Films. Appl. Sci. 2025, 15, 10473. https://doi.org/10.3390/app151910473
Ozoude C, Gurung V, Omotosho KD, Shevchenko EV, Berman D. Block Copolymer-Templated Synthesis of Fe–Ni–Co-Modified Nanoporous Alumina Films. Applied Sciences. 2025; 15(19):10473. https://doi.org/10.3390/app151910473
Chicago/Turabian StyleOzoude, Chinemerem, Vasanta Gurung, Khalil D. Omotosho, Elena V. Shevchenko, and Diana Berman. 2025. "Block Copolymer-Templated Synthesis of Fe–Ni–Co-Modified Nanoporous Alumina Films" Applied Sciences 15, no. 19: 10473. https://doi.org/10.3390/app151910473
APA StyleOzoude, C., Gurung, V., Omotosho, K. D., Shevchenko, E. V., & Berman, D. (2025). Block Copolymer-Templated Synthesis of Fe–Ni–Co-Modified Nanoporous Alumina Films. Applied Sciences, 15(19), 10473. https://doi.org/10.3390/app151910473