Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (557)

Search Parameters:
Keywords = aligner thickness

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 4347 KiB  
Article
Optimizing Passive Thermal Enhancement via Embedded Fins: A Multi-Parametric Study of Natural Convection in Square Cavities
by Saleh A. Bawazeer
Energies 2025, 18(15), 4098; https://doi.org/10.3390/en18154098 - 1 Aug 2025
Viewed by 123
Abstract
Internal fins are commonly utilized as a passive technique to enhance natural convection, but their efficiency depends on complex interplay between fin design, material properties, and convective strength. This study presents an extensive numerical analysis of buoyancy-driven flow in square cavities containing a [...] Read more.
Internal fins are commonly utilized as a passive technique to enhance natural convection, but their efficiency depends on complex interplay between fin design, material properties, and convective strength. This study presents an extensive numerical analysis of buoyancy-driven flow in square cavities containing a single horizontal fin on the hot wall. Over 9000 simulations were conducted, methodically varying the Rayleigh number (Ra = 10 to 105), Prandtl number (Pr = 0.1 to 10), and fin characteristics, such as length, vertical position, thickness, and the thermal conductivity ratio (up to 1000), to assess their overall impact on thermal efficiency. Thermal enhancements compared to scenarios without fins are quantified using local and average Nusselt numbers, as well as a Nusselt number ratio (NNR). The results reveal that, contrary to conventional beliefs, long fins positioned centrally can actually decrease heat transfer by up to 11.8% at high Ra and Pr due to the disruption of thermal plumes and diminished circulation. Conversely, shorter fins located near the cavity’s top and bottom wall edges can enhance the Nusselt numbers for the hot wall by up to 8.4%, thereby positively affecting the development of thermal boundary layers. A U-shaped Nusselt number distribution related to fin placement appears at Ra ≥ 103, where edge-aligned fins consistently outperform those positioned mid-height. The benefits of high-conductivity fins become increasingly nonlinear at larger Ra, with advantages limited to designs that minimally disrupt core convective patterns. These findings challenge established notions regarding passive thermal enhancement and provide a predictive thermogeometric framework for designing enclosures. The results can be directly applied to passive cooling systems in electronics, battery packs, solar thermal collectors, and energy-efficient buildings, where optimizing heat transfer is vital without employing active control methods. Full article
Show Figures

Figure 1

21 pages, 3864 KiB  
Article
Sub-MHz EMAR for Non-Contact Thickness Measurement: How Ultrasonic Wave Directivity Affects Accuracy
by Alexander Siegl, David Auer, Bernhard Schweighofer, Andre Hochfellner, Gerald Klösch and Hannes Wegleiter
Sensors 2025, 25(15), 4746; https://doi.org/10.3390/s25154746 - 1 Aug 2025
Viewed by 242
Abstract
Electromagnetic acoustic resonance (EMAR) is a well-established non-contact method for ultrasonic thickness measurement, typically operated at frequencies above 1 MHz using an electromagnetic acoustic transducer (EMAT). This study successfully extends EMAR into the sub-MHz range, allowing supply voltages below 60 V and thus [...] Read more.
Electromagnetic acoustic resonance (EMAR) is a well-established non-contact method for ultrasonic thickness measurement, typically operated at frequencies above 1 MHz using an electromagnetic acoustic transducer (EMAT). This study successfully extends EMAR into the sub-MHz range, allowing supply voltages below 60 V and thus offering safer and more cost-effective operation. Experiments were conducted on copper blocks approximately 20 mm thick, where a relative thickness accuracy of better than 0.2% is obtained. Regarding this result, the research identifies a critical design principle: Stable thickness resonances and subsequently accurate thickness measurement are achieved when the ratio of ultrasonic wavelength to EMAT track width (λ/w) falls below 1. This minimizes the excitation and interactions with structural eigenmodes, ensuring consistent measurement reliability. To support this, the study introduces a system-based model to simulate the EMAR method. The model provides detailed insights into how wave propagation affects the accuracy of EMAR measurements. Experimental results align well with the simulation outcome and confirm the feasibility of EMAR in the sub-MHz regime without compromising precision. These findings highlight the potential of low-voltage EMAR as a safer, cost-effective, and highly accurate approach for industrial ultrasonic thickness measurements. Full article
(This article belongs to the Special Issue Electromagnetic Sensing and Its Applications)
Show Figures

Figure 1

16 pages, 3418 KiB  
Article
Forces and Moments Generated by Direct Printed Aligners During Bodily Movement of a Maxillary Central Incisor
by Michael Lee, Gabriel Miranda, Julie McCray, Mitchell Levine and Ki Beom Kim
Appl. Sci. 2025, 15(15), 8554; https://doi.org/10.3390/app15158554 (registering DOI) - 1 Aug 2025
Viewed by 178
Abstract
The aim of this study was to compare the forces and moments exerted by thermoformed aligners (TFMs) and direct printed aligners (DPAs) on the maxillary left central incisor (21) and adjacent teeth (11, 22) during lingual bodily movement of tooth 21. Methods: An [...] Read more.
The aim of this study was to compare the forces and moments exerted by thermoformed aligners (TFMs) and direct printed aligners (DPAs) on the maxillary left central incisor (21) and adjacent teeth (11, 22) during lingual bodily movement of tooth 21. Methods: An in vitro setup was used to quantify forces and moments on three incisors, which were segmented and fixed onto multi-axis force/moment transducers. TFM were fabricated using 0.76 mm-thick single-layer PET-G foils (ATMOS; American Orthodontics, Sheboygan, WI, USA) and multi-layer TPU foils (Zendura FLX; Bay Materials LLC, Fremont, CA, USA). DPAs were fabricated using TC-85 photopolymer resin (Graphy Inc., Seoul, Republic of Korea). Tooth 21 was planned for bodily displacement by 0.25 mm and 0.50 mm, and six force and moment components were measured on it and the adjacent teeth. Results: TC-85 generated lower forces and moments with fewer unintended forces and moments on the three teeth. TC-85 exerted 0.99 N and 1.53 N of mean lingual force on tooth 21 for 0.25 mm and 0.50 mm activations, respectively; ATMOS produced 3.82 N and 7.70 N, and Zendura FLX produced 3.00 N and 8.23 N of mean lingual force for the same activations, respectively. Bodily movement could not be achieved. Conclusions: The force systems generated by clear aligners are complex and unpredictable. DPA using TC-85 produced lower, more physiological force levels with fewer side effects, which may increase the predictability of tooth movement and enhance treatment outcome. The force levels generated by TFM were considered excessive and not physiologically compatible. Full article
(This article belongs to the Special Issue Advances in Orthodontics and Dentofacial Orthopedics)
Show Figures

Figure 1

30 pages, 9289 KiB  
Article
Structure of the Secretory Compartments in Goblet Cells in the Colon and Small Intestine
by Alexander A. Mironov, Irina S. Sesorova, Pavel S. Vavilov, Roberto Longoni, Paola Briata, Roberto Gherzi and Galina V. Beznoussenko
Cells 2025, 14(15), 1185; https://doi.org/10.3390/cells14151185 - 31 Jul 2025
Viewed by 162
Abstract
The Golgi of goblet cells represents a specialized machine for mucin glycosylation. This process occurs in a specialized form of the secretory pathway, which remains poorly examined. Here, using high-resolution three-dimensional electron microscopy (EM), EM tomography, serial block face scanning EM (SBF-SEM) and [...] Read more.
The Golgi of goblet cells represents a specialized machine for mucin glycosylation. This process occurs in a specialized form of the secretory pathway, which remains poorly examined. Here, using high-resolution three-dimensional electron microscopy (EM), EM tomography, serial block face scanning EM (SBF-SEM) and immune EM we analyzed the secretory pathway in goblet cells and revealed that COPII-coated buds on the endoplasmic reticulum (ER) are extremely rare. The ERES vesicles with dimensions typical for the COPII-dependent vesicles were not found. The Golgi is formed by a single cisterna organized in a spiral with characteristics of the cycloid surface. This ribbon has a shape of a cup with irregular perforations. The Golgi cup is filled with secretory granules (SGs) containing glycosylated mucins. Their diameter is close to 1 µm. The cup is connected with ER exit sites (ERESs) with temporal bead-like connections, which are observed mostly near the craters observed at the externally located cis surface of the cup. The craters represent conus-like cavities formed by aligned holes of gradually decreasing diameters through the first three Golgi cisternae. These craters are localized directly opposite the ERES. Clusters of the 52 nm vesicles are visible between Golgi cisternae and between SGs. The accumulation of mucin, started in the fourth cisternal layer, induces distensions of the cisternal lumen. The thickness of these distensions gradually increases in size through the next cisternal layers. The spherical distensions are observed at the edges of the Golgi cup, where they fuse with SGs and detach from the cisternae. After the fusion of SGs located just below the apical plasma membrane (APM) with APM, mucus is secreted. The content of this SG becomes less osmiophilic and the excessive surface area of the APM is formed. This membrane is eliminated through the detachment of bubbles filled with another SG and surrounded with a double membrane or by collapse of the empty SG and transformation of the double membrane lacking a visible lumen into multilayered organelles, which move to the cell basis and are secreted into the intercellular space where the processes of dendritic cells are localized. These data are evaluated from the point of view of existing models of intracellular transport. Full article
Show Figures

Graphical abstract

25 pages, 7101 KiB  
Article
Study on the Influence of Ultrafast Laser Welding Parameters on Glass Bonding Performance
by Aowei Xing, Ziwei Li, Tianfeng Zhou, Zhiyuan Huang, Weijia Guo and Peng Liu
Micromachines 2025, 16(8), 888; https://doi.org/10.3390/mi16080888 - 30 Jul 2025
Viewed by 244
Abstract
Glass enjoys a wide range of applications thanks to its superior optical properties and chemical stability. Conventional glass bonding techniques suffer from low efficiency, limited precision, and high cost. Moreover, for multilayer glass bonding, repeated alignment is often required, further complicating the process. [...] Read more.
Glass enjoys a wide range of applications thanks to its superior optical properties and chemical stability. Conventional glass bonding techniques suffer from low efficiency, limited precision, and high cost. Moreover, for multilayer glass bonding, repeated alignment is often required, further complicating the process. These limitations have become major constraints on the advancement of microfluidic chip technologies. Laser bonding of microfluidic chips offers high precision and efficiency. This research first uses an ultrafast laser system to investigate how processing parameters affect weld morphology, identifying the optimal parameter range. Then, this paper proposes two methods for ultrafast-laser bonding of multilayer glass with different thicknesses and performs preliminary experiments to demonstrate their feasibility. The research in this paper could expand the fabrication method of microfluidic chips and lay a foundation for the wider application of microfluidic chips. Full article
(This article belongs to the Special Issue Ultra-Precision Micro Cutting and Micro Polishing)
Show Figures

Figure 1

27 pages, 18566 KiB  
Article
Geochemical Characteristics and Controlling Factors of Lower Cretaceous Lacustrine Hydrocarbon Source Rocks in the Erdengsumu Sag, Erlian Basin, NE China
by Juwen Yao, Zhanli Ren, Kai Qi, Jian Liu, Sasa Guo, Guangyuan Xing, Yanzhao Liu and Mingxing Jia
Processes 2025, 13(8), 2412; https://doi.org/10.3390/pr13082412 - 29 Jul 2025
Viewed by 201
Abstract
This study analyzes the lacustrine hydrocarbon source rocks of the Lower Cretaceous in the Erdengsumu sag of the Erlian Basin, evaluating their characteristics and identifying areas with oil resource potential, while also investigating the ancient lake environment, material source input, and controlling factors, [...] Read more.
This study analyzes the lacustrine hydrocarbon source rocks of the Lower Cretaceous in the Erdengsumu sag of the Erlian Basin, evaluating their characteristics and identifying areas with oil resource potential, while also investigating the ancient lake environment, material source input, and controlling factors, ultimately developing a sedimentary model for lacustrine hydrocarbon source rocks. The findings suggest the following: (1) The lower Tengger Member (K1bt1) and the Aershan Formation (K1ba) are the primary oil-producing strata, with an effective hydrocarbon source rock exhibiting a lower limit of total organic carbon (TOC) at 0.95%. The Ro value typically remains below 0.8%, indicating that high-maturity oil production has not yet been attained. (2) The oil generation threshold depths for the Dalestai and Sayinhutuge sub-sags are 1500 m and 1214 m, respectively. The thickness of the effective hydrocarbon source rock surpasses 200 m, covering areas of 42.48 km2 and 88.71 km2, respectively. The cumulative hydrocarbon generation intensity of wells Y1 and Y2 is 486 × 104 t/km2 and 26 × 104 t/km2, respectively, suggesting that the Dalestai sub-sag possesses considerable petroleum potential. The Aershan Formation in the Chagantala sub-sag has a maximum burial depth of merely 1800 m, insufficient to attain the oil generation threshold depth. (3) The research area’s productive hydrocarbon source rocks consist of organic matter types I and II1. The Pr/Ph range is extensive (0.33–2.07), signifying a reducing to slightly oxidizing sedimentary environment. This aligns with the attributes of small fault lake basins, characterized by shallow water and robust hydrodynamics. (4) The low ratio of ∑nC21−/∑nC22+ (0.36–0.81), high CPI values (>1.49), and high C29 sterane concentration suggest a substantial terrestrial contribution, with negligible input from aquatic algae–bacterial organic matter. Moreover, as sedimentation duration extends, the contribution from higher plants progressively increases. (5) The ratio of the width of the deep depression zone to the width of the depression in the Erdengsumu sag is less than 0.25. The boundary fault scale is small, its activity is low, and there is not much input from the ground. Most of the source rocks are in the reducing sedimentary environment of the near-lying gently sloping zone. Full article
(This article belongs to the Topic Petroleum and Gas Engineering, 2nd edition)
Show Figures

Figure 1

15 pages, 4409 KiB  
Article
Performance of Dual-Layer Flat-Panel Detectors
by Dong Sik Kim and Dayeon Lee
Diagnostics 2025, 15(15), 1889; https://doi.org/10.3390/diagnostics15151889 - 28 Jul 2025
Viewed by 246
Abstract
Background/Objectives: In digital radiography imaging, dual-layer flat-panel detectors (DFDs), in which two flat-panel detector layers are stacked with a minimal distance between the layers and appropriate alignment, are commonly used in material decompositions as dual-energy applications with a single x-ray exposure. DFDs also [...] Read more.
Background/Objectives: In digital radiography imaging, dual-layer flat-panel detectors (DFDs), in which two flat-panel detector layers are stacked with a minimal distance between the layers and appropriate alignment, are commonly used in material decompositions as dual-energy applications with a single x-ray exposure. DFDs also enable more efficient use of incident photons, resulting in x-ray images with improved noise power spectrum (NPS) and detection quantum efficiency (DQE) performances as single-energy applications. Purpose: Although the development of DFD systems for material decomposition applications is actively underway, there is a lack of research on whether single-energy applications of DFD can achieve better performance than the single-layer case. In this paper, we experimentally observe the DFD performance in terms of the modulation transfer function (MTF), NPS, and DQE with discussions. Methods: Using prototypes of DFD, we experimentally measure the MTF, NPS, and DQE of the convex combination of the images acquired from the upper and lower detector layers of DFD. To optimize DFD performance, a two-step image registration is performed, where subpixel registration based on the maximum amplitude response to the transform based on the Fourier shift theorem and an affine transformation using cubic interpolation are adopted. The DFD performance is analyzed and discussed through extensive experiments for various scintillator thicknesses, x-ray beam conditions, and incident doses. Results: Under the RQA 9 beam conditions of 2.7 μGy dose, the DFD with the upper and lower scintillator thicknesses of 0.5 mm could achieve a zero-frequency DQE of 75%, compared to 56% when using a single-layer detector. This implies that the DFD using 75 % of the incident dose of a single-layer detector can provide the same signal-to-noise ratio as a single-layer detector. Conclusions: In single-energy radiography imaging, DFD can provide better NPS and DQE performances than the case of the single-layer detector, especially at relatively high x-ray energies, which enables low-dose imaging. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

16 pages, 5265 KiB  
Article
Crack Development in Compacted Loess Subjected to Wet–Dry Cycles: Experimental Observations and Numerical Modeling
by Yu Xi, Mingming Sun, Gang Li and Jinli Zhang
Buildings 2025, 15(15), 2625; https://doi.org/10.3390/buildings15152625 - 24 Jul 2025
Viewed by 401
Abstract
Loess, a typical soil widely distributed in China, exhibits engineering properties that are highly sensitive to environmental changes, leading to increased erosion and the development of surface cracks. This article examines the influence of initial moisture content, dry density, and thickness on crack [...] Read more.
Loess, a typical soil widely distributed in China, exhibits engineering properties that are highly sensitive to environmental changes, leading to increased erosion and the development of surface cracks. This article examines the influence of initial moisture content, dry density, and thickness on crack formation in compacted loess subjected to wet–dry cycles, using both laboratory experiments and numerical simulation analysis. It quantitatively analyzes the process of crack evolution using digital image processing technology. The experimental results indicate that wet–dry cycles can cause cumulative damage to the soil, significantly encouraging the initiation and expansion of secondary cracks. New cracks often branch out and extend along the existing crack network, demonstrating that the initial crack morphology has a controlling effect over the final crack distribution pattern. Numerical simulations based on MultiFracS software further revealed that soil samples with a thickness of 0.5 cm exhibited more pronounced surface cracking characteristics than those with a thickness of 2 cm, with thinner layers of soil tending to form a more complex network of cracks. The simulation results align closely with the indoor test data, confirming the reliability of the established model in predicting fracture dynamics. The study provides theoretical underpinnings and practical guidance for evaluating the stability of engineering slopes and for managing and mitigating fissure hazards in loess. Full article
(This article belongs to the Special Issue Research on Building Foundations and Underground Engineering)
Show Figures

Figure 1

16 pages, 4720 KiB  
Article
Optical Response Tailoring via Morphosynthesis of Ag@Au Nanoparticles
by David Oswaldo Romero-Quitl, Siva Kumar Krishnan, Martha Alicia Palomino-Ovando, Orlando Hernández-Cristobal, José Concepción Torres-Guzmán, Jesús Eduardo Lugo and Miller Toledo-Solano
Nanomaterials 2025, 15(14), 1125; https://doi.org/10.3390/nano15141125 - 19 Jul 2025
Viewed by 337
Abstract
We present a simple method for customizing the optical characteristics of gold-core, silver-shell (Au@Ag) nanoparticles through controlled morphosynthesis via a seed-mediated chemical reduction approach. By systematically adjusting the concentration of cetyltrimethylammonium chloride (CTAC), we obtained precise control over both the thickness of the [...] Read more.
We present a simple method for customizing the optical characteristics of gold-core, silver-shell (Au@Ag) nanoparticles through controlled morphosynthesis via a seed-mediated chemical reduction approach. By systematically adjusting the concentration of cetyltrimethylammonium chloride (CTAC), we obtained precise control over both the thickness of the Ag shell and the particle shape, transitioning from spherical nanoparticles to distinctly defined nanocubes. Bright field and high-angle annular dark-field scanning transmission electron microscopy (BF-STEM and HAADF-STEM), and energy-dispersive X-ray spectroscopy (EDS) were employed to validate the structural and compositional changes. To link morphology with optical behavior, we utilized the Mie and Maxwell–Garnett theoretical models to simulate the dielectric response of the core–shell nanostructures, showing trends that align with experimental UV-visible absorption spectra. This research presents an easy and adjustable method for modifying the plasmonic properties of Ag@Au nanoparticles by varying their shape and shell, offering opportunities for advanced applications in sensing, photonics, and nanophotonics. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

19 pages, 2560 KiB  
Article
Numerical Simulation Study of Heat Transfer Fluid Boiling Effects on Phase Change Material in Latent Heat Thermal Energy Storage Units
by Minghao Yu, Xun Zheng, Jing Liu, Dong Niu, Huaqiang Liu and Hongtao Gao
Energies 2025, 18(14), 3836; https://doi.org/10.3390/en18143836 - 18 Jul 2025
Viewed by 231
Abstract
The innovation in thermal storage systems for solar thermal power generation is crucial for achieving efficient utilization of new energy sources. Molten salt has been extensively studied as a phase change material (PCM) for latent heat thermal energy storage systems. In this study, [...] Read more.
The innovation in thermal storage systems for solar thermal power generation is crucial for achieving efficient utilization of new energy sources. Molten salt has been extensively studied as a phase change material (PCM) for latent heat thermal energy storage systems. In this study, a two-dimensional model of a vertical shell-and-tube heat exchanger is developed, utilizing water-steam as the heat transfer fluid (HTF) and phase change material for heat transfer analysis. Through numerical simulations, we explore the interplay between PCM solidification and HTF boiling. The transient results show that tube length affects water boiling duration and PCM solidification thickness. Higher heat transfer fluid flow rates lower solidified PCM temperatures, while lower heat transfer fluid inlet temperatures delay boiling and shorten durations, forming thicker PCM solidification layers. Adding fins to the tube wall boosts heat transfer efficiency by increasing contact area with the phase change material. This extension of boiling time facilitates greater PCM solidification, although it may not always optimize the alignment of bundles within the thermal energy storage system. Full article
(This article belongs to the Special Issue New Advances in Heat Transfer, Energy Conversion and Storage)
Show Figures

Figure 1

35 pages, 12716 KiB  
Article
Bridging the Gap Between Active Faulting and Deformation Across Normal-Fault Systems in the Central–Southern Apennines (Italy): Multi-Scale and Multi-Source Data Analysis
by Marco Battistelli, Federica Ferrarini, Francesco Bucci, Michele Santangelo, Mauro Cardinali, John P. Merryman Boncori, Daniele Cirillo, Michele M. C. Carafa and Francesco Brozzetti
Remote Sens. 2025, 17(14), 2491; https://doi.org/10.3390/rs17142491 - 17 Jul 2025
Viewed by 418
Abstract
We inspected a sector of the Apennines (central–southern Italy) in geographic and structural continuity with the Quaternary-active extensional belt but where clear geomorphic and seismological signatures of normal faulting are unexpectedly missing. The evidence of active tectonics in this area, between Abruzzo and [...] Read more.
We inspected a sector of the Apennines (central–southern Italy) in geographic and structural continuity with the Quaternary-active extensional belt but where clear geomorphic and seismological signatures of normal faulting are unexpectedly missing. The evidence of active tectonics in this area, between Abruzzo and Molise, does not align with geodetic deformation data and the seismotectonic setting of the central Apennines. To investigate the apparent disconnection between active deformation and the absence of surface faulting in a sector where high lithologic erodibility and landslide susceptibility may hide its structural evidence, we combined multi-scale and multi-source data analyses encompassing morphometric analysis and remote sensing techniques. We utilised high-resolution topographic data to analyse the topographic pattern and investigate potential imbalances between tectonics and erosion. Additionally, we employed aerial-photo interpretation to examine the spatial distribution of morphological features and slope instabilities which are often linked to active faulting. To discern potential biases arising from non-tectonic (slope-related) signals, we analysed InSAR data in key sectors across the study area, including carbonate ridges and foredeep-derived Molise Units for comparison. The topographic analysis highlighted topographic disequilibrium conditions across the study area, and aerial-image interpretation revealed morphologic features offset by structural lineaments. The interferometric analysis confirmed a significant role of gravitational movements in denudating some fault planes while highlighting a clustered spatial pattern of hillslope instabilities. In this context, these instabilities can be considered a proxy for the control exerted by tectonic structures. All findings converge on the identification of an ~20 km long corridor, the Castel di Sangro–Rionero Sannitico alignment (CaS-RS), which exhibits varied evidence of deformation attributable to active normal faulting. The latter manifests through subtle and diffuse deformation controlled by a thick tectonic nappe made up of poorly cohesive lithologies. Overall, our findings suggest that the CaS-RS bridges the structural gap between the Mt Porrara–Mt Pizzalto–Mt Rotella and North Matese fault systems, potentially accounting for some of the deformation recorded in the sector. Our approach contributes to bridging the information gap in this complex sector of the Apennines, offering original insights for future investigations and seismic hazard assessment in the region. Full article
Show Figures

Figure 1

33 pages, 19356 KiB  
Article
Hoffman–Lauritzen Analysis of Crystallization of Hydrolyzed Poly(Butylene Succinate-Co-Adipate)
by Anna Svarcova and Petr Svoboda
Crystals 2025, 15(7), 645; https://doi.org/10.3390/cryst15070645 - 14 Jul 2025
Viewed by 344
Abstract
This study systematically investigates the impact of hydrolytic degradation on the crystallization kinetics and morphology of poly(butylene succinate-co-adipate) (PBSA). Gel Permeation Chromatography (GPC) confirmed extensive chain scission, significantly reducing the polymer’s weight-average molecular weight (Mw from ~103,000 to ~16,000 g/mol) and broadening [...] Read more.
This study systematically investigates the impact of hydrolytic degradation on the crystallization kinetics and morphology of poly(butylene succinate-co-adipate) (PBSA). Gel Permeation Chromatography (GPC) confirmed extensive chain scission, significantly reducing the polymer’s weight-average molecular weight (Mw from ~103,000 to ~16,000 g/mol) and broadening its polydispersity index (PDI from ~2 to 7 after 64 days). Differential scanning calorimetry (DSC) analysis revealed that hydrolytic degradation dramatically accelerated crystallization rates, reducing crystallization time roughly 10-fold (e.g., from ~3000 s to ~300 s), and crystallinity increased from 34% to 63%. Multiple melting peaks suggested the presence of lamellae with varying thicknesses, consistent with the Gibbs–Thomson equation. Isothermal crystallization kinetics were evaluated using the Avrami equation (with n ≈ 3), reciprocal half-time of crystallization, and a novel inflection point slope method, all confirming accelerated crystallization; for instance, the slope increased from 0.00517 to 0.05203. Polarized optical microscopy (POM) revealed evolving spherulite morphologies, including hexagonal and flower-like dendritic spherulites with diamond-shape ends, while wide-angle X-ray diffraction (WAXD) showed a crystallization range shift to higher temperatures (e.g., from 72–61 °C to 82–71 °C) and a 14% increase in crystallite diameter, aligning with increased melting point and lamellar thickness and overall increased crystallinity. Full article
Show Figures

Figure 1

20 pages, 3212 KiB  
Article
Computationally Efficient Impact Estimation of Coil Misalignment for Magnet-Free Cochlear Implants
by Samuelle Boeckx, Pieterjan Polfliet, Lieven De Strycker and Liesbet Van der Perre
Sensors 2025, 25(14), 4379; https://doi.org/10.3390/s25144379 - 13 Jul 2025
Viewed by 285
Abstract
A cochlear implant (CI) system holds two spiral coils, one external and one implanted. These coils are used to transmit both data and power. A magnet at the center of the coils ensures proper alignment to assure the highest coupling. However, when the [...] Read more.
A cochlear implant (CI) system holds two spiral coils, one external and one implanted. These coils are used to transmit both data and power. A magnet at the center of the coils ensures proper alignment to assure the highest coupling. However, when the recipient needs a magnetic resonance imaging (MRI) scan, this magnet can cause problems due to the high magnetic field of such a scan. Therefore, a new type of implant without magnets would be beneficial and even supersede the current state of the art of hearing implants. To examine the feasibility of magnet-free cochlear implants, this research studies the impact of coil misalignment on the inductive coupling between the coils and thus the power and data transfer. Rather than using time-consuming finite element analysis (FEA), MATLAB is used to examine the impact of lateral, vertical and angular misalignment on the coupling coefficient using derivations of Neumann’s equation. The MATLAB model is verified with FEA software with a median 8% relative error on the coupling coefficient for various misalignments, ensuring that it can be used to study the feasibility of various magnet-free implants and wireless power and data transmission systems in general. In the case of cochlear implants, the results show that by taking patient and technology constraints like skinflap thickness and mechanical design dimensions into account, the mean error can even be reduced to below 5% and magnet-free cochlear implants can be feasible. Full article
Show Figures

Figure 1

24 pages, 7707 KiB  
Article
Improving Building Acoustics with Coir Fiber Composites: Towards Sustainable Construction Systems
by Luis Bravo-Moncayo, Virginia Puyana-Romero, Miguel Chávez and Giuseppe Ciaburro
Sustainability 2025, 17(14), 6306; https://doi.org/10.3390/su17146306 - 9 Jul 2025
Viewed by 470
Abstract
Studies underscore the significance of coir fibers as a sustainable building material. Based on these insights, this research aims to evaluate coir fiber composite panels of various thicknesses as eco-friendly sound absorbing alternatives to synthetic construction materials like rockwool and fiberglass, aligning its [...] Read more.
Studies underscore the significance of coir fibers as a sustainable building material. Based on these insights, this research aims to evaluate coir fiber composite panels of various thicknesses as eco-friendly sound absorbing alternatives to synthetic construction materials like rockwool and fiberglass, aligning its use with the United Nations Sustainable Development Goals. Acoustic absorption was quantified with an impedance tube, and subsequent simulations compared the performance of coir composite panels with that of conventional materials, which constitutes an underexplored evaluation. Using 10 receiver points, the simulations reproduced the acoustic conditions of a multipurpose auditorium before and after the coir covering of parts of the rear and posterior walls. The results indicate that when coir coverings account for approximately 10% of the auditorium surface, reverberation times at 250, 500, 2000, and 4000 Hz are reduced by roughly 1 s. Furthermore, the outcomes reveal that early reflections occur more rapidly in the coir-enhanced model, while the values of the early decay time parameter decrease across all receiver points. Although the original configuration had poor speech clarity, the modified model achieved optimal values at all the measurement locations. These findings underscore the potential of coir fiber panels in enhancing acoustic performance while fostering sustainable construction practices. Full article
(This article belongs to the Special Issue Sustainable Architecture: Energy Efficiency in Buildings)
Show Figures

Figure 1

24 pages, 462 KiB  
Review
In Vitro Flexural Testing of Clear Aligner Materials: A Scoping Review of Methods, Results, and Clinical Relevance
by Gavin Nugent, Alvaro Munoz, Chris Louca and Alessandro Vichi
Appl. Sci. 2025, 15(13), 7516; https://doi.org/10.3390/app15137516 - 4 Jul 2025
Viewed by 352
Abstract
Background: Clear aligner therapy (CAT) has become increasingly popular for treating mild to moderate malocclusions. However, discrepancies between predicted and achieved tooth movement remain a concern, partly due to the limited understanding of aligner material behavior under clinical conditions. Since these materials must [...] Read more.
Background: Clear aligner therapy (CAT) has become increasingly popular for treating mild to moderate malocclusions. However, discrepancies between predicted and achieved tooth movement remain a concern, partly due to the limited understanding of aligner material behavior under clinical conditions. Since these materials must deliver controlled and sustained forces, their flexural properties are critical for treatment efficacy. Objective: To identify and analyze in vitro studies investigating the flexural properties of thermoplastic clear aligner materials, summarize their testing methodologies, and examine the factors that may influence their clinical performance. Methods: A scoping review was conducted following the PRISMA-ScR guidelines. Three electronic databases (PubMed, Scopus, and Web of Science) were systematically searched. Studies were screened based on predefined eligibility criteria, and data extraction included testing methods, materials, and clinically relevant variables. Risk of bias was assessed using the QUIN tool. Results: Seventeen studies published between 2008 and 2024 were included. All studies used three-point bending to assess mechanical properties. Common influencing factors included thermoforming, liquid absorption, temperature changes, loading conditions, and material thickness. Most studies reported that these factors negatively affected force delivery. The most frequently tested material was Duran (PET-G). Polyurethane-based materials, such as Zendura, showed comparatively better stress relaxation properties. Conclusions: Thermoforming, intraoral temperature changes, liquid exposure, and prolonged or repeated loading can compromise the mechanical properties and force delivery capacity of aligner materials. Standardized testing methods and further investigation of newer materials are essential to enhance the predictability and performance of clear aligner therapy. Full article
(This article belongs to the Special Issue New Materials and Techniques in Restorative Dentistry)
Show Figures

Figure 1

Back to TopTop