Bridging the Gap Between Active Faulting and Deformation Across Normal-Fault Systems in the Central–Southern Apennines (Italy): Multi-Scale and Multi-Source Data Analysis
Abstract
1. Introduction
2. Geological and Structural Setting
- -
- Latium–Abruzzi and external Apulian units, consisting of Upper Triassic–Eocene platform-to-slope carbonates, which are disconformably overlain by Eocene–Middle Miocene carbonatic ramp- and slope-to-basin limestones (legend key 4a and 4c, in Figure 2A).
- -
- The Molise unit, made up of the following:
- A Lower Cretaceous–Miocene slope-to-basin carbonate succession that is detached and thrust over Oligocene–Middle Miocene ramp-to-basin clayey marls and calcarenites (4b);
- Upper Cretaceous–Early Miocene ‘inner’-derived basinal units, primarily consisting of argillites and varicoloured scaly clays (3 in Figure 2A).
- -
- Lower Messinian–Early Pliocene foredeep units and thrust-top deposits. These units overlie the deformed carbonatic thrust stack (2).
3. Seismotectonic Background
4. Materials and Methods
4.1. Relief Analysis
4.2. Topographic Derivatives
4.3. Morpho-Structural Analysis from Stereoscopic Imagery
4.4. Time-Series InSAR Analysis
5. Results
5.1. Clues of Topographic Disequilibrium Conditions from Relief Analysis
5.2. Spatial Distribution of Tectonic-Related Anomalies from Derivative Maps
5.3. Spatial Distribution of Tectonic-Related Lineaments and Slope Instability Clustering Derived from Stereoscopic Imagery
5.4. Time-Series InSAR Analysis Validation of Surface Deformation Processes
5.5. Bridging the Late Quaternary Extensional Tectonics Within the AMB Structural Gap
6. Discussion
6.1. Deformation Style of Active Tectonics Within the AMB and Tectonic Implications
6.2. Data Challenges Versus Lines of Evidence for the CaS-RS
7. Conclusions
Resources
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
36Cl | Chlorine 36 |
Ab | Abruzzo Region |
ACM | Aremogna–Cinque Miglia fault system |
AI | Aquae Iuliae fault |
Am | Aremogna Basin |
AMB | Abruzzo and Molise regional boundary |
Ba | Barrea fault system |
Bo | Bojano Basin |
BP | Before present |
CaS-RS | Castel di Sangro–Rionero Sannitico alignment |
CM | Cinque Miglia Basin |
CPTI | Italian Parametric Earthquake Catalogue |
CSS | (Composite) seismogenic source |
DEM | Digital elevation model |
DSGSD | Deep-seated gravitational slope movement |
DTM | Digital terrain model |
GNSS | Global Navigation Satellite System |
GPS | Global Positioning System |
InSAR | Interferometric Synthetic Aperture Radar |
Ka | Kilo annum |
KA1 | Key Area 1 |
KA2 | Key Area 2 |
KA3 | Key Area 3 |
KDE | Kernel density estimation |
LGM | Last Glacial Maximum |
Ma | Mt Marsicano fault |
MG | Mt Greco fault |
MGr | Montagna Grande fault |
Mo | Mt Morrone fault |
NMa | North Matese E-dipping fault system |
Pa | Palena fault |
Pi | Pizzalto fault |
Po | Porrara fault |
PSInSAR | Persistent Scatterer SAR Interferometry |
Ro | Rotella fault |
Rs | Rockslide |
Shmin | Minimum horizontal stress direction |
Sk | Sackung |
SMG | Scanno–Monte Greco fault |
SPM | StereoPhoto Maker Pro |
Ve | Venafro Basin |
References
- Wilson, J.P. Digital terrain modeling. Geomorphology 2012, 137, 107–121. [Google Scholar] [CrossRef]
- Pepe, A.; Calò, F. A Review of Interferometric Synthetic Aperture RADAR (InSAR) Multi-Track Approaches for the Retrieval of Earth’s Surface Displacements. Appl. Sci. 2017, 7, 1264. [Google Scholar] [CrossRef]
- Okyay, U.; Telling, J.; Glennie, C.L.; Dietrich, W.E. Airborne lidar change detection: An overview of Earth sciences applications. Earth-Sci. Rev. 2019, 198, 102929. [Google Scholar] [CrossRef]
- Del Soldato, M.; Confuorto, P.; Bianchini, S.; Sbarra, P.; Casagli, N. Review of Works Combining GNSS and InSAR in Europe. Remote Sens. 2021, 13, 1684. [Google Scholar] [CrossRef]
- Jin, S.; Wang, Q.; Dardanelli, G. A Review on Multi-GNSS for Earth Observation and Emerging Applications. Remote Sens. 2022, 14, 3930. [Google Scholar] [CrossRef]
- Pezzo, G.; Merryman Boncori, J.P.; Tolomei, C.; Salvi, S.; Atzori, S.; Antonioli, A.; Trasatti, E.; Novali, F.; Serpelloni, E.; Candela, L.; et al. Coseismic Deformation and Source Modeling of the May 2012 Emilia (Northern Italy) Earthquakes. Seismol. Res. Lett. 2013, 84, 645–655. [Google Scholar] [CrossRef]
- Bucci, F.; Mirabella, F.; Santangelo, M.; Cardinali, M.; Guzzetti, F. Photo-geology of the Montefalco Quaternary Basin, Umbria, Central Italy. J. Maps 2016, 12, 314–322. [Google Scholar] [CrossRef]
- Brozzetti, F.; Mondini, A.C.; Pauselli, C.; Mancinelli, P.; Cirillo, D.; Guzzetti, F.; Lavecchia, G. Mainshock Anticipated by Intra-Sequence Ground Deformations: Insights from Multiscale Field and SAR Interferometric Measurements. Geosciences 2020, 10, 186. [Google Scholar] [CrossRef]
- Civico, R.; Blumetti, A.M.; Chiarini, E.; Cinti, F.R.; La Posta, E.; Papasodaro, F.; Sapia, V.; Baldo, M.; Lollino, G.; Pantosti, D. Traces of the active Capitignano and San Giovanni faults (Abruzzi Apennines, Italy). J. Maps 2016, 12, 453–459. [Google Scholar] [CrossRef]
- Mirabella, F.; Bucci, F.; Santangelo, M.; Cardinali, M.; Caielli, G.; De Franco, R.; Guzzetti, F.; Barchi, M.R. Alluvial fan shifts and stream captures driven by extensional tectonics in central Italy. J. Geol. Soc. 2018, 175, 788–805. [Google Scholar] [CrossRef]
- Valerio, E.; Tizzani, P.; Carminati, E.; Doglioni, C.; Pepe, S.; Petricca, P.; De Luca, C.; Bignami, C.; Solaro, G.; Castaldo, R.; et al. Ground Deformation and Source Geometry of the 30 October 2016 Mw6.5 Norcia Earthquake (Central Italy) Investigated Through Seismological Data, DInSAR Measurements, and Numerical Modelling. Remote Sens. 2018, 10, 1901. [Google Scholar] [CrossRef]
- Bello, S.; Scott, C.P.; Ferrarini, F.; Brozzetti, F.; Scott, T.; Cirillo, D.; de Nardis, R.; Arrowsmith, J.R.; Lavecchia, G. High-resolution surface faulting from the 1983 Idaho Lost River Fault Mw6.9 earthquake and previous events. Sci. Data 2021, 8, 68. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, D.E.; Taymaz, T.; Reitman, N.G.; Hatem, A.E.; Yolsal-Çevikbilen, S.; Barnhart, W.D.; Irmak, T.S.; Wald, D.J.; Öcalan, T.; Yeck, W.L.; et al. Rapid Characterization of the February 2023 Kahramanmaraş, Türkiye, Earthquake Sequence. Seism. Rec. 2023, 3, 156–167. [Google Scholar] [CrossRef]
- Meletti, C.; Marzocchi, W.; D’Amico, V.; Lanzano, G.; Luzi, L.; Martinelli, F.; Pace, B.; Rovida, A.; Taroni, M.; Visini, F.; et al. The new Italian seismic hazard model (MPS19). Ann. Geophys. 2021, 64, SE112. [Google Scholar] [CrossRef]
- ISIDe-Working-Group. Italian Seismological Instrumental and Parametric Database (ISIDe) (Version 1); Istituto Nazionale di Geofisica e Vulcanologia (INGV): Rome, Italy, 2007. [Google Scholar] [CrossRef]
- Chiaraluce, L.; Valoroso, L.; Piccinini, D.; Di Stefano, R.; De Gori, P. The anatomy of the 2009 L’Aquila normal fault system (central Italy) imaged by high resolution foreshock and aftershock locations. J. Geophys. Res. 2011, 116, B12311. [Google Scholar] [CrossRef]
- Chiaraluce, L.; Di Stefano, R.; Tinti, E.; Scognamiglio, L.; Michele, M.; Casarotti, E.; Cattaneo, M.; De Gori, P.; Chiarabba, C.; Monachesi, G.; et al. The 2016 Central Italy Seismic Sequence: A First Look at the Mainshocks, Aftershocks, and Source Models. Seismol. Res. Lett. 2017, 88, 757–771. [Google Scholar] [CrossRef]
- DISS-Working-Group. Database of Individual Seismogenic Sources (DISS), Version 3.3.0: A Compilation of Potential Sources for Earthquakes Larger Than M 5.5 in Italy and Surrounding Areas; Istituto Nazionale di Geofisica e Vulcanologia (INGV): Rome, Italy, 2021. [Google Scholar] [CrossRef]
- Ferrarini, F.; Toké, N.A.; Carafa, M.M.C.; Arrowsmith, J.R. Editorial: Unveiling Active Faults: Multiscale Perspectives and Alternative Approaches Addressing the Seismic Hazard Challenge. Front. Earth Sci 2021, 9, 738164. [Google Scholar] [CrossRef]
- Kastelic, V.; Burrato, P.; Carafa, M.M.C.; Basili, R. Repeated surveys reveal nontectonic exposure of supposedly active normal faults in the central Apennines, Italy. J. Geophys. Res.-Earth 2017, 122, 114–129. [Google Scholar] [CrossRef]
- Lavecchia, G.; de Nardis, R.; Ferrarini, F.; Cirillo, D.; Bello, S.; Brozzetti, F. Regional seismotectonic zonation of hydrocarbon fields in active thrust belts: A case study from Italy. In Building Knowledge for Geohazard Assessment and Management in the Caucasus and other Orogenic Regions; Bonali, F.L., Mariotto, F.P., Tsereteli, N., Eds.; Springer: Dordrecht, The Netherlands, 2021; pp. 89–128. [Google Scholar] [CrossRef]
- Carafa, M.M.C.; Galvani, A.; Di Naccio, D.; Kastelic, V.; Di Lorenzo, C.; Miccolis, S.; Sepe, V.; Pietrantonio, G.; Gizzi, C.; Massucci, A.; et al. Partitioning the Ongoing Extension of the Central Apennines (Italy): Fault Slip Rates and Bulk Deformation Rates From Geodetic and Stress Data. J. Geophys. Res. Solid Earth 2020, 125, e2019JB018956. [Google Scholar] [CrossRef]
- Ferrarini, F.; de Nardis, R.; Brozzetti, F.; Cirillo, D.; Arrowsmith, J.R.; Lavecchia, G. Multiple Lines of Evidence for a Potentially Seismogenic Fault Along the Central-Apennine (Italy) Active Extensional Belt—An Unexpected Outcome of the MW6.5 Norcia 2016 Earthquake. Front. Earth Sci. 2021, 9, 642243. [Google Scholar] [CrossRef]
- Pandolfi, C.; Taroni, M.; de Nardis, R.; Lavecchia, G.; Akinci, A. Advanced 3D seismic hazard analysis for active compression in the Adriatic Thrust Zone, Italy. Bull. Earthq. Eng. 2024, 22, 4221–4244. [Google Scholar] [CrossRef]
- Tibaldi, A.; de Nardis, R.; Torrese, P.; Bressan, S.; Pedicini, M.; Talone, D.; Bonali, F.L.; Corti, N.; Russo, E.; Lavecchia, G. A multi-scale approach to the recent activity of the Stradella thrust in the seismotectonic context of the Emilia Arc (northwestern Italy). Tectonophysics 2023, 857, 229853. [Google Scholar] [CrossRef]
- Lavecchia, G.; De Nardis, R.; Costa, G.; Tiberi, L.; Ferrarini, F.; Cirillo, D.; Brozzetti, F.; Suhadolc, P. Was the Mirandola thrust really involved in the Emilia 2012 seismic sequence (northern Italy)? Implications on the likelihood of triggered seismicity effects. Boll. Geofis. Teor. Appl. 2015, 56, 461–488. [Google Scholar] [CrossRef]
- Rovida, A.; Locati, M.; Camassi, R.; Lolli, B.; Gasperini, P.; Antonucci, A. Catalogo Parametrico dei Terremoti Italiani (CPTI15), Versione 4.0; Istituto Nazionale di Geofisica e Vulcanologia (INGV): Rome, Italy, 2022. [Google Scholar] [CrossRef]
- D’Agostino, N. Complete seismic release of tectonic strain and earthquake recurrence in the Apennines (Italy). Geophys. Res. Lett. 2014, 41, 1155–1162. [Google Scholar] [CrossRef]
- Carafa, M.M.C.; Bird, P. Improving deformation models by discounting transient signals in geodetic data: 2. Geodetic data, stress directions, and long-term strain rates in Italy. J. Geophys. Res.-Solid Earth 2016, 121, 5557–5575. [Google Scholar] [CrossRef]
- Serpelloni, E.; Cavaliere, A.; Martelli, L.; Pintori, F.; Anderlini, L.; Borghi, A.; Randazzo, D.; Bruni, S.; Devoti, R.; Perfetti, P.; et al. Surface Velocities and Strain-Rates in the Euro-Mediterranean Region From Massive GPS Data Processing. Front. Earth Sci. 2022, 10, 907897. [Google Scholar] [CrossRef]
- Discenza, M.E.; Esposito, C.; Di Luzio, E.; Delchiaro, M.; Di Martire, D.; Minnillo, M.; Rouhi, J.; Martino, S.; Della Seta, M.; Troiani, F.; et al. Deep-Seated Gravitational Slope Deformations in Molise region (Italy): Novel inventory and main geomorphological features. J. Maps 2023, 19, 2163198. [Google Scholar] [CrossRef]
- Faure Walker, J.P.; Roberts, G.P.; Sammonds, P.R.; Cowie, P. Comparison of earthquake strains over 102 and 104 year timescales: Insights into variability in the seismic cycle in the central Apennines, Italy. J. Geophys. Res. Solid Earth 2010, 115, B10418. [Google Scholar] [CrossRef]
- Faure Walker, J.; Boncio, P.; Pace, B.; Roberts, G.; Benedetti, L.; Scotti, O.; Visini, F.; Peruzza, L. Fault2SHA Central Apennines database and structuring active fault data for seismic hazard assessment. Sci. Data 2021, 8, 87. [Google Scholar] [CrossRef]
- Scheingross, J.S.; Minchew, B.M.; Mackey, B.H.; Simons, M.; Lamb, M.P.; Hensley, S. Fault-zone controls on the spatial distribution of slow-moving landslides. Geol. Soc. Am. Bull. 2013, 125, 473–489. [Google Scholar] [CrossRef]
- Bucci, F.; Santangelo, M.; Cardinali, M.; Fiorucci, F.; Guzzetti, F. Landslide distribution and size in response to Quaternary fault activity: The Peloritani Range, NE Sicily, Italy. Earth Surf. Process. Landf. 2016, 41, 711–720. [Google Scholar] [CrossRef]
- Galadini, F. Quaternary tectonics and large-scale gravitational deformations with evidence of rock-slide displacements in the Central Apennines (central Italy). Geomorphology 2006, 82, 201–228. [Google Scholar] [CrossRef]
- Improta, L.; Ferranti, L.; De Martini, P.M.; Piscitelli, S.; Bruno, P.P.; Burrato, P.; Civico, R.; Giocoli, A.; Iorio, M.; D’Addezio, G.; et al. Detecting young, slow-slipping active faults by geologic and multidisciplinary high-resolution geophysical investigations: A case study from the Apennine seismic belt, Italy. J. Geophys. Res. 2010, 115, B11307. [Google Scholar] [CrossRef]
- Discenza, M.E.; Esposito, C.; Martino, S.; Petitta, M.; Prestininzi, A.; Scarascia Mugnozza, G. The gravitational slope deformation of Mt. Rocchetta ridge (central Apennines, Italy): Geological-evolutionary model and numerical analysis. Bull. Eng. Geol. Environ. 2011, 70, 559–575. [Google Scholar] [CrossRef]
- Bianchi Fasani, G.; Di Luzio, E.; Esposito, C.; Evans, S.G.; Scarascia Mugnozza, G. Quaternary, catastrophic rock avalanches in the Central Apennines (Italy): Relationships with inherited tectonic features, gravity-driven deformations and the geodynamic frame. Geomorphology 2014, 211, 22–42. [Google Scholar] [CrossRef]
- Gori, S.; Falcucci, E.; Dramis, F.; Galadini, F.; Galli, P.; Giaccio, B.; Messina, P.; Pizzi, A.; Sposato, A.; Cosentino, D. Deep-seated gravitational slope deformation, large-scale rock failure, and active normal faulting along Mt. Morrone (Sulmona basin, Central Italy): Geomorphological and paleoseismological analyses. Geomorphology 2014, 208, 88–101. [Google Scholar] [CrossRef]
- Conforti, M.; Ietto, F. Influence of Tectonics and Morphometric Features on the Landslide Distribution: A Case Study from the Mesima Basin (Calabria, South Italy). J. Earth Sci. 2020, 31, 393–409. [Google Scholar] [CrossRef]
- Silverman, B.W. (Ed.) Density Estimation for Statistics and Data Analysis; Chapman & Hall: London, UK, 1986. [Google Scholar]
- Lavecchia, G.; Castaldo, R.; Nardis, R.; De Novellis, V.; Ferrarini, F.; Pepe, S.; Brozzetti, F.; Solaro, G.; Cirillo, D.; Bonano, M.; et al. Ground deformation and source geometry of the 24 August 2016 Amatrice earthquake (Central Italy) investigated through analytical and numerical modeling of DInSAR measurements and structural-geological data. Geophys. Res. Lett. 2016, 43, 12389–12398. [Google Scholar] [CrossRef]
- Taghipour, K.; Khatib, M.M.; Heyhat, M.; Shabanian, E.; Vaezihir, A. Evidence for distributed active strike-slip faulting in NW Iran: The Maragheh and Salmas fault zones. Tectonophysics 2018, 742–743, 15–33. [Google Scholar] [CrossRef]
- Bucci, F.; Santangelo, M.; Fiorucci, F.; Ardizzone, F.; Giordan, D.; Cignetti, M.; Notti, D.; Allasia, P.; Godone, D.; Lagomarsino, D.; et al. Geomorphologic landslide inventory by air photo interpretation of the High Agri Valley (Southern Italy). J. Maps 2021, 17, 376–388. [Google Scholar] [CrossRef]
- Ferrarini, F.; Arrowsmith, J.R.; Brozzetti, F.; de Nardis, R.; Cirillo, D.; Whipple, K.X.; Lavecchia, G.; Cheng, F. Late Quaternary Tectonics along the Peri-Adriatic Sector of the Apenninic Chain (Central-Southern Italy): Inspecting Active Shortening through Topographic Relief and Fluvial Network Analyses. Lithosphere 2021, 2021, 7866617. [Google Scholar] [CrossRef]
- Stahl, T.A.; Niemi, N.A.; Delano, J.E.; Wolfe, F.D.; Bunds, M.P.; Howell, A. Diffuse Tectonic Deformation in the Drum Mountains Fault Zone, Utah, USA: Testing the Utility of Legacy Aerial Photograph-Derived Topography. Front. Earth Sci. 2021, 8, 600729. [Google Scholar] [CrossRef]
- Ardizzone, F.; Bucci, F.; Cardinali, M.; Fiorucci, F.; Pisano, L.; Santangelo, M.; Zumpano, V. Geomorphological landslide inventory map of the Daunia Apennines, southernItaly. Earth Syst. Sci. Data 2023, 15, 753–767. [Google Scholar] [CrossRef]
- Henriquet, M.; Peyret, M.; Dominguez, S.; Barreca, G.; Monaco, C.; Mazzotti, S. Present-Day Surface Deformation of Sicily Derived From Sentinel-1 InSAR Time-Series. J. Geophys. Res. Solid Earth 2022, 127, e2021JB023071. [Google Scholar] [CrossRef]
- Areggi, G.; Pezzo, G.; Boncori, J.P.M.; Anderlini, L.; Rossi, G.; Serpelloni, E.; Zuliani, D.; Bonini, L. Present-Day Surface Deformation in North-East Italy Using InSAR and GNSS Data. Remote Sens. 2023, 15, 1704. [Google Scholar] [CrossRef]
- Boccaletti, M.; Ciaranfi, N.; Cosentino, D.; Deiana, G.; Gelati, R.; Lentini, F.; Massari, F.; Moratti, G.; Pescatore, T.; Lucchi, F.R.; et al. Palinspastic Restoration and Paleogeographic Reconstruction of the Peri-Tyrrhenian Area during the Neogene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1990, 77, 41-IN13. [Google Scholar] [CrossRef]
- Patacca, E.; Scandone, P. Geology of the Southern Apennines. Boll. Soc. Geol. Ital. Vol. Spec. 2007, 7, 75–119. [Google Scholar]
- Cosentino, D.; Cipollari, P.; Marsili, P.; Scrocca, D. Geology of the central Apennines: A regional review. J. Virtual Explor. 2010, 36, 1–37. [Google Scholar] [CrossRef]
- Patacca, E.; Scandone, P.; Di Luzio, E.; Cavinato, G.P.; Parotto, M. Structural architecture of the central Apennines: Interpretation of the CROP 11 seismic profile from the Adriatic coast to the orographic divide. Tectonics 2008, 27, TC3006. [Google Scholar] [CrossRef]
- Vezzani, L.; Ghisetti, F. Carta Geologica dell’Abruzzo, 1: 100000; SELCA: Firenze, Italy, 1998. [Google Scholar]
- Festa, A.; Ghisetti, F.; Vezzani, L. Carta Geologica del Molise (Scala 1:100.000); SELCA: Firenze, Italy, 2004. [Google Scholar]
- Malinverno, A.; Ryan, W.B.F. Extension in the Tyrrhenian Sea and shortening in the Apennines as result of arc migration driven by sinking of the lithosphere. Tectonics 1986, 5, 227–245. [Google Scholar] [CrossRef]
- Lavecchia, G. The Tyrrhenian-Apennines system; structural setting and seismotectonogenesis. Tectonophysics 1988, 147, 263–296. [Google Scholar] [CrossRef]
- Carminati, E.; Wortel, M.J.R.; Spakman, W.; Sabadini, R. The role of slab detachment processes in the opening of the western–central Mediterranean basins: Some geological and geophysical evidence. Earth Planet. Sci. Lett. 1998, 160, 651–665. [Google Scholar] [CrossRef]
- Doglioni, C. A proposal of kinematic modelling for W-dipping subductions—Possible applications to the Tyrrhenian-Apennines system. Terra Nova 1991, 3, 423–434. [Google Scholar] [CrossRef]
- Finetti, I.R.; Boccaletti, M.; Bonini, M.; Del Ben, A.; Geletti, R.; Pipan, M.; Sani, F. Crustal section based on CROP seismic data across the North Tyrrhenian-Northern Apennines-Adriatic Sea. Tectonophysics 2001, 343, 135–163. [Google Scholar] [CrossRef]
- Lavecchia, G.; Brozzetti, F.; Barchi, M.; Menichetti, M.; Keller, J.V.A. Seismotectonic zoning in east-central Italy deduced from an analysis of the Neogene to present deformations and related stress fields. Geol. Soc. Am. Bull. 1994, 106, 1107–1120. [Google Scholar] [CrossRef]
- Cavinato, G.P.; Celles, P.G.D. Extensional basins in the tectonically bimodal central Apennines fold-thrust belt, Italy: Response to corner flow above a subducting slab in retrograde motion. Geology 1999, 27, 955. [Google Scholar] [CrossRef]
- Boncio, P.; Lavecchia, G. A structural model for active extension in Central Italy. J. Geodyn. 2000, 29, 233–244. [Google Scholar] [CrossRef]
- Cirillo, D.; Totaro, C.; Lavecchia, G.; Orecchio, B.; de Nardis, R.; Presti, D.; Ferrarini, F.; Bello, S.; Brozzetti, F. Structural complexities and tectonic barriers controlling recent seismic activity in the Pollino area (Calabria–Lucania, southern Italy)—Constraints from stress inversion and 3D fault model building. Solid Earth 2022, 13, 205–228. [Google Scholar] [CrossRef]
- Ferrarini, F.; Lavecchia, G.; de Nardis, R.; Brozzetti, F. Fault Geometry and Active Stress from Earthquakes and Field Geology Data Analysis: The Colfiorito 1997 and L’Aquila 2009 Cases (Central Italy). Pure Appl. Geophys. 2015, 172, 1079–1103. [Google Scholar] [CrossRef]
- Miccadei, E. Geologia del’area Alto Sagittario-Alto Sangro (Abruzzo, Appennino centrale). Geol. Romana 1993, 29, 463–481. [Google Scholar]
- Pace, B.; Di Matteo, P.; Boncio, P.; Lavecchia, G. Considerazioni sull’evoluzione geologica della Marsica Sud-Orientale (Abruzzo, Appennino Centrale) sulla base di un’analisi integrata di dati stratigrafici e strutturali. Boll. Soc. Geol. Ital. 2001, 120, 139–150. [Google Scholar]
- Galadini, F.; Galli, P. Active Tectonics in the Central Apennines (Italy)—Input Data for Seismic Hazard Assessment. Nat. Hazards 2000, 22, 225–270. [Google Scholar] [CrossRef]
- Boncio, P.; Lavecchia, G.; Pace, B. Defining a model of 3D seismogenic sources for Seismic Hazard Assessment applications: The case of central Apennines (Italy). J. Seismol. 2004, 8, 407–425. [Google Scholar] [CrossRef]
- Roberts, G.P.; Michetti, A.M. Spatial and temporal variations in growth rates along active normal fault systems: An example from The Lazio–Abruzzo Apennines, central Italy. J. Struct. Geol. 2004, 26, 339–376. [Google Scholar] [CrossRef]
- Lavecchia, G.; Boncio, P.; Brozzetti, F.; de Nardis, R.; di Naccio, D.; Ferrarini, F.; Pizzi, A.; Pomposo, G. The April 2009 L’aquila (Central Italy) Seismic Sequence (M 6.3): A Preliminary Seismotectonic Picture. In Recent Progress on Earthquake Geology; Guarnieri, P.P., Ed.; Nova Science Publisher, Inc.: Hauppauge, NY, USA, 2011; pp. 1–17. [Google Scholar]
- Carafa, M.M.C.; Barba, S. The stress field in Europe: Optimal orientations with confidence limits. Geophys. J. Int. 2013, 193, 531–548. [Google Scholar] [CrossRef]
- Mariucci, M.T.; Montone, P. Database of Italian present-day stress indicators, IPSI 1.4. Sci. Data 2020, 7, 298. [Google Scholar] [CrossRef]
- de Nardis, R.; Vuan, A.; Carbone, L.; Talone, D.; Romano, M.A.; Lavecchia, G. Interplay of tectonic and dynamic processes shaping multilayer extensional system in southern-central Apennines. Sci. Rep. 2024, 14, 18375. [Google Scholar] [CrossRef]
- Carafa, M.M.C.; Di Naccio, D.; Di Lorenzo, C.; Kastelic, V.; Bird, P. A Meta-Analysis of Fault Slip Rates Across the Central Apennines. J. Geophys. Res. Solid Earth 2022, 127, e2021JB023252. [Google Scholar] [CrossRef]
- Puliti, I.; Benedetti, L.; Pizzi, A.; Fleury, J.; Francescone, M.; Guillou, V.; Team, A. Evidence for a Constant Slip Rate Over the Last ∼40 ka Along the Mt. Morrone Fault System in Central Apennines. Tectonics 2024, 43, e2023TC007871. [Google Scholar] [CrossRef]
- Gori, S.; Giaccio, B.; Galadini, F.; Falcucci, E.; Messina, P.; Sposato, A.; Dramis, F. Active normal faulting along the Mt. Morrone south-western slopes (central Apennines, Italy). Int. J. Earth Sci. 2011, 100, 157–171. [Google Scholar] [CrossRef]
- Galli, P.; Giaccio, B.; Peronace, E.; Messina, P. Holocene Paleoearthquakes and Early–Late Pleistocene Slip Rate on the Sulmona Fault (Central Apeninnes, Italy). Bull. Seismol. Soc. Am. 2015, 105, 1–13. [Google Scholar] [CrossRef]
- Pizzi, A.; Falcucci, E.; Gori, S.; Galadini, F.; Messina, P.; Di Vicenzo, M.; Esestime, P.; Giaccio, B.; Pomposo, G.; Sposato, A. Active faulting in the Maiella Massif (central Apennines, Italy). GeoActa Spec. Publ. 2010, 3, 57–73. [Google Scholar]
- Coltorti, M.; Dramis, F. The significance of stratified slope-waste deposits in the Quaternary of Umbra-Marche Apennines, Central Italy. Z. Geùomorph. N.F. 1988, 71, 59–70. Available online: https://www.researchgate.net/profile/Mauro-Coltorti/publication/291961966_The_significance_of_stratified_slope-waste_deposits_in_the_Quaternary_of_Umbria-Marche_Apennines_central_Italy/links/59907485458515b87b4ac063/The-significance-of-stratified-slope-waste-deposits-in-the-Quaternary-of-Umbria-Marche-Apennines-central-Italy.pdf (accessed on 13 July 2025).
- Giraudi, C. Datazione con metodi geologici delle scarpate di faglia post-glaciali di Ovindoli, Piano di Pezza (Abruzzo, Italia centrale); implicazioni. In Morfogenesi e Stratigrafia dell’Olocene: Convegno; Societa Geologica Italiana: Rome, Italy, 1989; Volume 42, pp. 29–39. [Google Scholar]
- Frezzotti, M.; Giraudi, C. Evoluzione geologica tardo-pleistocenica el olocenica del Piano di Aremogna (Roccaraso-Abruzzo): Implicazioni climatiche e tettoniche. In Morfogenesi e Stratigrafia dell’Olocene: Convegno; Societa Geologica Italiana: Rome, Italy, 1989; Volume 42, pp. 5–19. [Google Scholar]
- Calderoni, G.; Lorenzoni, P.; Ortolani, F.; Pagliuca, S.; Serva, L. Paleoseismological evidence at Rivisondoli, Central Apennines, Italy. Rend. Soc. Geol. It. 1990, 13, 27–32. [Google Scholar]
- D’addezio, G.; Masana, E.; Pantosti, D. The holocene paleoseismicity of the Aremogna-Cinque Miglia Fault (Central Italy). J. Seismol. 2001, 5, 181–205. [Google Scholar] [CrossRef]
- Di Domenica, A.; Pizzi, A. Defining a mid-Holocene earthquake through speleoseismological and independent data: Implications for the outer Central Apennines (Italy) seismotectonic framework. Solid Earth 2017, 8, 161–176. [Google Scholar] [CrossRef]
- Tesson, J.; Pace, B.; Benedetti, L.; Visini, F.; Delli Rocioli, M.; Arnold, M.; Aumaître, G.; Bourlès, D.L.; Keddadouche, K. Seismic slip history of the Pizzalto fault (central Apennines, Italy) using in situ-produced36Cl cosmic ray exposure dating and rare earth element concentrations. J. Geophys. Res. Solid Earth 2016, 121, 1983–2003. [Google Scholar] [CrossRef]
- Faure Walker, J.P.; Visini, F.; Roberts, G.; Galasso, C.; McCaffrey, K.; Mildon, Z. Variable Fault Geometry Suggests Detailed Fault-Slip-Rate Profiles and Geometries Are Needed for Fault-Based Probabilistic Seismic Hazard Assessment (PSHA). Bull. Seismol. Soc. Am. 2019, 109, 110–123. [Google Scholar] [CrossRef]
- Della Seta, M.; Esposito, C.; Marmoni, G.M.; Martino, S.; Mugnozza, G.S.; Troiani, F. Morpho-structural evolution of the valley-slope systems and related implications on slope-scale gravitational processes: New results from the Mt. Genzana case history (Central Apennines, Italy). Geomorphology 2017, 289, 60–77. [Google Scholar] [CrossRef]
- Lavecchia, G.; Bello, S.; Andrenacci, C.; Cirillo, D.; Ferrarini, F.; Vicentini, N.; de Nardis, R.; Roberts, G.; Brozzetti, F. QUaternary fault strain INdicators database—QUIN 1.0—first release from the Apennines of central Italy. Sci. Data 2022, 9, 204. [Google Scholar] [CrossRef]
- Galadini, F.; Messina, P. Characterization of the recent tectonics of the upper Sangro River valley (Abruzzi Apennine, central Italy). Ann. Geofis. 1993, 36, 277–285. [Google Scholar]
- Galadini, F.; Giraudi, C.; Messina, P. Nuovi dati sulla tettonica tardo pleistocenica dell’alta valle del Sangro (Appennino Centrale): Implicazioni sismotettoniche. Ital. J. Quat. Sci. 1998, 11, 347–356. [Google Scholar]
- Galadini, F.; Galli, P. The Holocene paleoearthquakes on the 1915 Avezzano earthquake faults (central Italy): Implications for active tectonics in the central Apennines. Tectonophysics 1999, 308, 143–170. [Google Scholar] [CrossRef]
- Barchi, M.; Galadini, F.; Lavecchia, G.; Messina, P.; Michetti, A.M.; Peruzza, L.; Pizzi, A.; Tondi, E.; Vittori, E. Sintesi delle Conoscenze Sulle Faglie Attive in Italia Centrale: Parametrizzazione ai Fini della Caratterizzazione della Pericolosità Sismica; GNDT-Monografie; CNR-Gruppo Nazionale per la Difesa dai Terremoti: Roma, Italy, 2000; p. 62. [Google Scholar]
- Ferrarini, F.; Boncio, P.; de Nardis, R.; Pappone, G.; Cesarano, M.; Aucelli, P.P.C.; Lavecchia, G. Segmentation pattern and structural complexities in seismogenic extensional settings: The North Matese Fault System (Central Italy). J. Struct. Geol. 2017, 95, 93–112. [Google Scholar] [CrossRef]
- Galli, P.; Giaccio, B.; Messina, P.; Peronace, E.; Amato, V.; Naso, G.; Nomade, S.; Pereira, A.; Piscitelli, S.; Bellanova, J.; et al. Middle to Late Pleistocene activity of the northern Matese fault system (southern Apennines, Italy). Tectonophysics 2017, 699, 61–81. [Google Scholar] [CrossRef]
- Amato, V.; Aucelli, P.P.C.; Cesarano, M.; Rosskopf, C.M.; Cifelli, F.; Mattei, M. A 900 m-deep borehole from Boiano intermontane basin (southern Apennines, Italy): Age constraints and palaeoenvironmental features of the Quaternary infilling. Geol. J. 2021, 56, 2148–2166. [Google Scholar] [CrossRef]
- Ceccaroni, E.; Ameri, G.; Gómez Capera, A.A.; Galadini, F. The 2nd century AD earthquake in central Italy: Archaeoseismological data and seismotectonic implications. Nat. Hazards 2009, 50, 335–359. [Google Scholar] [CrossRef]
- Volatili, T.; Gironelli, V.; Luzi, L.; Galli, P.; Carafa, M.M.C.; Tondi, E. Elusive seismogenic sources of historical earthquakes: Insights from the Mw6.8, 1706 Maiella earthquake (central Italy). Bull. Earthq. Eng. 2025, 23, 1279–1296. [Google Scholar] [CrossRef]
- Lavecchia, G.; Boncio, P.; Creati, N. A lithospheric-scale seismogenic thrust in central Italy. J. Geodyn. 2003, 36, 79–94. [Google Scholar] [CrossRef]
- de Nardis, R.; Pandolfi, C.; Cattaneo, M.; Monachesi, G.; Cirillo, D.; Ferrarini, F.; Bello, S.; Brozzetti, F.; Lavecchia, G. Lithospheric double shear zone unveiled by microseismicity in a region of slow deformation. Sci. Rep. 2022, 12, 21066. [Google Scholar] [CrossRef]
- Bucci, F.; Santangelo, M.; Fongo, L.; Alvioli, M.; Cardinali, M.; Melelli, L.; Marchesini, I. A new digital Lithological Map of Italy at 1:100.000 scale for geomechanical modelling. Earth Sci. Data 2022, 14, 4129–4151. [Google Scholar] [CrossRef]
- Boncio, P.; Tinari, D.P.; Lavecchia, G.; Visini, F.; Milana, G. The instrumental seismicity of the Abruzzo Region in Central Italy (1981–2003): Seismotectonic Implications. Boll. Soc. Geol. Ital. 2009, 128, 367–380. [Google Scholar]
- Pondrelli, S.; Salimbeni, S. Italian CMT Dataset; Istituto Nazionale di Geofisica e Vulcanologia (INGV): Rome, Italy, 2006. [Google Scholar] [CrossRef]
- Galli, P.; Galderisi, A.; Messina, P.; Peronace, E. The Gran Sasso fault system: Paleoseismological constraints on the catastrophic 1349 earthquake in Central Italy. Tectonophysics 2022, 822, 229156. [Google Scholar] [CrossRef]
- Porfido, S.; Esposito, E.; Vittori, E.; Tranfaglia, G.; Michetti, A.M.; Blumetti, M.; Ferreli, L.; Guerrieri, L.; Serva, L. Areal distribution of ground effects induced by strong earthquakes in the southern Apennines (Italy). Surv. Geophys. 2002, 23, 529–562. [Google Scholar] [CrossRef]
- Cucci, L. Insights into the geometry and faulting style of the causative faults of the M6.7 1805 and M6.7 1930 earthquakes in the Southern Apennines (Italy) from coseismic hydrological changes. Tectonophysics 2019, 751, 192–211. [Google Scholar] [CrossRef]
- Romano, M.A.; de Nardis, R.; Garbin, M.; Peruzza, L.; Priolo, E.; Lavecchia, G.; Romanelli, M. Temporary seismic monitoring of the Sulmona area (Abruzzo, Italy): A quality study of microearthquake locations. Nat. Hazards Earth Syst. Sci. 2013, 13, 2727–2744. [Google Scholar] [CrossRef]
- Di Giulio, G.; de Nardis, R.; Boncio, P.; Milana, G.; Rosatelli, G.; Stoppa, F.; Lavecchia, G. Seismic response of a deep continental basin including velocity inversion: The Sulmona intramontane basin (Central Apennines, Italy). Geophys. J. Int. 2016, 204, 418–439. [Google Scholar] [CrossRef]
- Talone, D.; De Siena, L.; Lavecchia, G.; de Nardis, R. The Attenuation and Scattering Signature of Fluid Reservoirs and Tectonic Interactions in the Central-Southern Apennines (Italy). Geophys. Res. Lett. 2023, 50, e2023GL106074. [Google Scholar] [CrossRef]
- Pace, B.; Boncio, P.; Lavecchia, G. The 1984 Abruzzo earthquake (Italy): An example of seismogenic process controlled by interaction between differently oriented synkinematic faults. Tectonophysics 2002, 350, 237–254. [Google Scholar] [CrossRef]
- Scognamiglio, L.; Tinti, E.; Quintiliani, M. Time Domain Moment Tensor [Data Set]; Istituto Nazionale di Geofisica e Vulcanologia (INGV): Rome, Italy, 2006. [Google Scholar] [CrossRef]
- England, P.; Molnar, P. Surface uplift, uplift of rocks, and exhumation of rocks. Geology 1990, 18, 1173. [Google Scholar] [CrossRef]
- Burbank, D.W. Causes of recent Himalayan uplift deduced from deposited patterns in the Ganges basin. Nature 1992, 357, 680–683. [Google Scholar] [CrossRef]
- Montgomery, D.R. Valley incision and the uplift of mountain peaks. J. Geophys. Res. 1994, 99, 13913–13921. [Google Scholar] [CrossRef]
- Azañón, J.M.; Galve, J.P.; Pérez-Peña, J.V.; Giaconia, F.; Carvajal, R.; Booth-Rea, G.; Jabaloy, A.; Vázquez, M.; Azor, A.; Roldán, F.J. Relief and drainage evolution during the exhumation of the Sierra Nevada (SE Spain): Is denudation keeping pace with uplift? Tectonophysics 2015, 663, 19–32. [Google Scholar] [CrossRef]
- Liu-Zeng, J.; Tapponnier, P.; Gaudemer, Y.; Ding, L. Quantifying landscape differences across the Tibetan plateau: Implications for topographic relief evolution. J. Geophys. Res.-Earth 2008, 113, F04018. [Google Scholar] [CrossRef]
- DiBiase, R.A.; Whipple, K.X.; Heimsath, A.M.; Ouimet, W.B. Landscape form and millennial erosion rates in the San Gabriel Mountains, CA. Earth Planet. Sci. Lett. 2010, 289, 134–144. [Google Scholar] [CrossRef]
- Weissel, J.K.; Pratson, L.F.; Malinverno, A. The Length-Scaling Properties of Topography. J. Geophys. Res.-Solid Earth 1994, 99, 13997–14012. [Google Scholar] [CrossRef]
- Molin, P.; Pazzaglia, F.J.; Dramis, F. Geomorphic expression of active tectonics in a rapidly-deforming forearc, sila massif, calabria, southern Italy. Am. J. Sci. 2004, 304, 559–589. [Google Scholar] [CrossRef]
- Scotti, V.N.; Molin, P.; Faccenna, C.; Soligo, M.; Casas-Sainz, A. The influence of surface and tectonic processes on landscape evolution of the Iberian Chain (Spain): Quantitative geomorphological analysis and geochronology. Geomorphology 2014, 206, 37–57. [Google Scholar] [CrossRef]
- Hack, J.T. Interpretation of erosional topography in humid temperate regions. Am. J. Sci. 1960, 258, 80–97. [Google Scholar]
- Burbank, D.W. Geomorphology—Characteristic Size of Relief. Nature 1992, 359, 483–484. [Google Scholar] [CrossRef]
- Tarquini, S.; Isola, I.; Favalli, M.; Battistini, A.; Dotta, G. TINITALY, a Digital Elevation Model of Italy with a 10 Meters Cell Size (Version 1.1); Istituto Nazionale di Geofisica e Vulcanologia (INGV): Rome, Italy, 2023. [Google Scholar] [CrossRef]
- Telbisz, T.; Kovacs, G.; Szekely, B.; Szabo, J. Topographic swath profile analysis: A generalization and sensitivity evaluation of a digital terrain analysis tool. Z. Geomorphol. 2013, 57, 485–513. [Google Scholar] [CrossRef]
- Rehak, K.; Strecker, M.R.; Echtler, H.P. Morphotectonic segmentation of an active forearc, 37°–41° S, Chile. Geomorphology 2008, 94, 98–116. [Google Scholar] [CrossRef]
- Di Naccio, D.; Boncio, P.; Brozzetti, F.; Pazzaglia, F.J.; Lavecchia, G. Morphotectonic analysis of the Lunigiana and Garfagnana grabens (northern Apennines, Italy): Implications for active normal faulting. Geomorphology 2013, 201, 293–311. [Google Scholar] [CrossRef]
- Miccadei, E.; Piacentini, T.; Buccolini, M. Long-term geomorphological evolution in the Abruzzo area, Central Italy: Twenty years of research. Geol. Carpathica 2017, 68, 19–28. [Google Scholar] [CrossRef]
- Pérez-Peña, J.V.; Al-Awabdeh, M.; Azañón, J.M.; Galve, J.P.; Booth-Rea, G.; Notti, D. SwathProfiler and NProfiler: Two new ArcGIS Add-ins for the automatic extraction of swath and normalized river profiles. Comput. Geosci. 2017, 104, 135–150. [Google Scholar] [CrossRef]
- Moore, I.D.; Grayson, R.B.; Ladson, A.R. Digital Terrain Modeling—A Review of Hydrological, Geomorphological, and Biological Applications. Hydrol Process 1991, 5, 3–30. [Google Scholar] [CrossRef]
- Dietrich, W.E.; Bellugi, D.G.; Sklar, L.S.; Stock, J.D. Geomorphic Transport Laws for Predicting Landscape Form and Dynamics. In Prediction in Geomorphology: Geophysical Monograph Series; AGU Publications: Washington, DC, USA, 2003; Volume 135. [Google Scholar] [CrossRef]
- Hilley, G.E.; Chamberlain, C.P.; Moon, S.; Porder, S.; Willett, S.D. Competition between erosion and reaction kinetics in controlling silicate-weathering rates. Earth Planet. Sci. Lett. 2010, 293, 191–199. [Google Scholar] [CrossRef]
- Zevenbergen, L.W.; Thorne, C.R. Quantitative-Analysis of Land Surface-Topography. Earth Surf. Process. Landf. 1987, 12, 47–56. [Google Scholar] [CrossRef]
- Pizzi, A.; Pugliese, G. InSAR-DEM analyses integrated with geologic field methods for the study of long-term seismogenic fault behavior: Applications in the axial zone of the central Apennines (Italy). J. Seismol. 2004, 8, 313–329. [Google Scholar] [CrossRef]
- DeLong, S.B.; Hilley, G.E.; Rymer, M.J.; Prentice, C. Fault zone structure from topography: Signatures of en echelon fault slip at Mustang Ridge on the San Andreas Fault, Monterey County, California. Tectonics 2010, 29, Tc5003. [Google Scholar] [CrossRef]
- Bürgmann, R.; Rosen, P.A.; Fielding, E.J. Synthetic aperture radar interferometry to measure Earth’s surface topography and its deformation. Annu. Rev. Earth Planet. Sci. 2000, 28, 169–209. [Google Scholar] [CrossRef]
- Rosen, P.A.; Hensley, S.; Joughin, I.R.; Li, F.K.; Madsen, S.N.; Rodriguez, E.; Goldstein, R.M. Synthetic aperture radar interferometry. Proc. IEEE 2000, 88, 333–382. [Google Scholar] [CrossRef]
- Simons, M.; Rosen, P. Interferometric Synthetic Aperture Radar Geodesy; Schubert, G., Ed.; Elsevier: Amsterdam, The Netherlands, 2015; Volume 3, ISBN 978-0-444-51928-3. [Google Scholar]
- Kusk, A.; Merryman Boncori, J.P.; Dall, J. An automated System for Ice Velocity Measurement from SAR. In Proceedings of the 2th European Conference on Synthetic Aperture Radar, Aachen, Germany, 4–7 June 2018; pp. 1–4. [Google Scholar]
- Tamás, T. Large-scale relief of the Slovak Karst and Aggtelek Karst (Gömör–Torna/Gemer–Turňa Karst)—A DEM-based study. Hung. Geogr. Bull. 2011, 60, 379–396. [Google Scholar]
- Di Bucci, D.; Scrocca, D. Assetto tettonico dell’Alto Molise (Appennino Centrale): Considerazioni stratigrafiche e strutturali sull’unita di Montenero Val Cocchiara. Boll. Soc. Geol. Ital. 1997, 116, 221–236. [Google Scholar]
- Savage, W.Z.; Varnes, D.J. Mechanics of gravitational spreading of steep-sided ridges (“Sackung”). Bull. Int. Assoc. Eng. Geol. 1987, 35, 31–36. [Google Scholar] [CrossRef]
- Agliardi, F.; Crosta, G.B.; Zanchi, A.; Ravazzi, C. Onset and timing of deep-seated gravitational slope deformations in the eastern Alps, Italy. Geomorphology 2009, 103, 113–129. [Google Scholar] [CrossRef]
- Miccadei, E.; Parotto, M. Assetto geologico delle dorsali Rotella-Pizzalto-Porrara (Appennino abruzzese orientale). Geol. Romana 1999, 34, 87–113. [Google Scholar]
- Messina, P.; Moro, M.; Speranza, F. Primi risultati di stratigrafia magnetica su alcune formazioni continentali dell’alta valle dell’Aterno (Italia centrale). Il Quat. 2001, 14, 167–172. [Google Scholar]
- Bosi, C.; Galadini, F.; Giaccio, B.; Messina, P.; Sposato, A. Plio-Quaternary continental deposits in the Latium-Abruzzi Apennines: The correlation of geological events across different intermontane basins. Alp. Mediterr. Quat. 2003, 16, 55–76. [Google Scholar]
- Carafa, M.M.; Bird, P.; Verdecchia, A.; Taroni, M.; Doglioni, C. Empirical evidence for multi-decadal transients affecting geodetic velocity fields and derived seismicity forecasts in Italy. Sci. Rep. 2024, 14, 19941. [Google Scholar]
- Bigi, G.; Coli, M.; Cosentino, D.; Parotto, M.; Praturlon, A.; Sartori, R.; Scandone, P.; Turco, E. Structural Model of Italy scale 1:500,000, sheet 4. In C.N.R., Progetto Finalizzato Geodinamica; SELCA: Firenze, Italy, 1992. [Google Scholar]
- Ferrill, D.A.; Morris, A.P. Fault zone deformation controlled by carbonate mechanical stratigraphy, Balcones fault system, Texas. Aapg Bull. 2008, 92, 359–380. [Google Scholar] [CrossRef]
- Ferrill, D.A.; Morris, A.P.; McGinnis, R.N.; Smart, K.J.; Wigginton, S.S.; Hill, N.J. Mechanical stratigraphy and normal faulting. J. Struct. Geol. 2017, 94, 275–302. [Google Scholar] [CrossRef]
- Parrino, N.; Pepe, F.; Burrato, P.; Dardanelli, G.; Corradino, M.; Pipitone, C.; Morticelli, M.G.; Sulli, A.; Di Maggio, C. Elusive active faults in a low strain rate region (Sicily, Italy): Hints from a multidisciplinary land-to-sea approach. Tectonophysics 2022, 839, 229520. [Google Scholar] [CrossRef]
- Brandes, C.; Tanner, D.C.; Fossen, H.; Halisch, M.; Müller, K. Disaggregation bands as an indicator for slow creep activity on blind faults. Commun. Earth Environ. 2022, 3, 99. [Google Scholar] [CrossRef]
- Patacca, E.; Scandone, P.; Bellatalla, M.; Perilli, N.; Santini, U. La zona di giunzione tra l’arco appenninico settentrionale e l’arco appenninico meridionale nell’Abruzzo e nel Molise. Studi Geol. Camerti 1991, 1991/2, CROP-11, 417–441. [Google Scholar]
- Di Bucci, D.; Corrado, S.; Naso, G. Active faults at the boundary between Central and Southern Apennines (Isernia, Italy). Tectonophysics 2002, 359, 47–63. [Google Scholar] [CrossRef]
- Chiaraluce, L.; Barchi, M.; Collettini, C.; Mirabella, F.; Pucci, S. Connecting seismically active normal faults with Quaternary geological structures in a complex extensional environment: The Colfiorito 1997 case history (northern Apennines, Italy). Tectonics 2005, 24, Tc1002. [Google Scholar] [CrossRef]
- Pizzi, A.; Galadini, F. Pre-existing cross-structures and active fault segmentation in the northern-central Apennines (Italy). Tectonophysics 2009, 476, 304–319. [Google Scholar] [CrossRef]
- Di Domenica, A.; Turtù, A.; Satolli, S.; Calamita, F. Relationships between thrusts and normal faults in curved belts: New insight in the inversion tectonics of the Central-Northern Apennines (Italy). J. Struct. Geol. 2012, 42, 104–117. [Google Scholar] [CrossRef]
- Bonini, L.; Maesano, F.E.; Basili, R.; Burrato, P.; Carafa, M.M.C.; Fracassi, U.; Kastelic, V.; Tarabusi, G.; Tiberti, M.M.; Vannoli, P.; et al. Imaging the tectonic framework of the 24 August 2016, Amatrice (central Italy) earthquake sequence: New roles for old players? Ann. Geophys. 2016, 59, 1–10. [Google Scholar] [CrossRef]
- Buttinelli, M.; Pezzo, G.; Valoroso, L.; De Gori, P.; Chiarabba, C. Tectonics Inversions, Fault Segmentation, and Triggering Mechanisms in the Central Apennines Normal Fault System: Insights From High-Resolution Velocity Models. Tectonics 2018, 37, 4135–4149. [Google Scholar] [CrossRef]
- Brozzetti, F.; Boncio, P.; Cirillo, D.; Ferrarini, F.; de Nardis, R.; Testa, A.; Liberi, F.; Lavecchia, G. High-Resolution Field Mapping and Analysis of the August–October 2016 Coseismic Surface Faulting (Central Italy Earthquakes): Slip Distribution, Parameterization, and Comparison With Global Earthquakes. Tectonics 2019, 38, 417–439. [Google Scholar] [CrossRef]
- Porreca, M.; Fabbrizzi, A.; Azzaro, S.; Pucci, S.; Del Rio, L.; Pierantoni, P.P.; Giorgetti, C.; Roberts, G.; Barchi, M.R. 3D geological reconstruction of the M. Vettore seismogenic fault system (Central Apennines, Italy): Cross-cutting relationship with the M. Sibillini thrust. J. Struct. Geol. 2020, 131, 103938. [Google Scholar] [CrossRef]
- Stendardi, F.; Capotorti, F.; Fabbi, S.; Ricci, V.; Silvestri, S.; Bigi, S.; Iannace, A. Geological map of the Mt. Vettoretto–Capodacqua area (Central Apennines, Italy) and cross-cutting relationships between Sibillini Mts. Thrust and Mt. Vettore normal faults system. Geol. Field Trips 2020, 12, 1–22. [Google Scholar] [CrossRef]
- Vignaroli, G.; Mancini, M.; Brilli, M.; Bucci, F.; Cardinali, M.; Giustini, F.; Voltaggio, M.; Yu, T.L.; Shen, C.C. Spatial-Temporal Evolution of Extensional Faulting and Fluid Circulation in the Amatrice Basin (Central Apennines, Italy) During the Pleistocene. Front. Earth Sci. 2020, 8, 130. [Google Scholar] [CrossRef]
- Bagh, S.; Chiaraluce, L.; De Gori, P.; Moretti, M.; Govoni, A.; Chiarabba, C.; Di Bartolomeo, P.; Romanelli, M. Background seismicity in the Central Apennines of Italy: The Abruzzo region case study. Tectonophysics 2007, 444, 80–92. [Google Scholar] [CrossRef]
- Falcucci, E.; Gori, S.; Moro, M.; Fubelli, G.; Saroli, M.; Chiarabba, C.; Galadini, F. Deep reaching versus vertically restricted Quaternary normal faults: Implications on seismic potential assessment in tectonically active regions: Lessons from the middle Aterno valley fault system, central Italy. Tectonophysics 2015, 651, 186–198. [Google Scholar] [CrossRef]
- Lavecchia, G.; Ferrarini, F.; Brozzetti, F.; Nardis, R.D.; Boncio, P.; Chiaraluce, L. From surface geology to aftershock analysis: Constraints on the geometry of the L’Aquila 2009 seismogenic fault system. Ital. J. Geosci. 2012, 131, 330–347. [Google Scholar] [CrossRef]
- Galli, P.; Galderisi, A.; Peronace, E.; Giaccio, B.; Hajdas, I.; Messina, P.; Pileggi, D.; Polpetta, F. The Awakening of the Dormant Mount Vettore Fault (2016 Central Italy Earthquake, M w 6.6): Paleoseismic Clues on Its Millennial Silences. Tectonics 2019, 38, 687–705. [Google Scholar] [CrossRef]
- Lavecchia, G.; de Nardis, R.; Cirillo, D.; Brozzetti, F.; Boncio, P. The May–June 2012 Ferrara Arc earthquakes (northern Italy): Structural control of the spatial evolution of the seismic sequence and of the surface pattern of coseismic fractures. Ann. Geophys. 2012, 55, 533–540. [Google Scholar] [CrossRef]
- Wessel, P.; Luis, J.F.; Uieda, L.; Scharroo, R.; Wobbe, F.; Smith, W.H.F.; Tian, D. The Generic Mapping Tools Version 6. Geochem. Geophys. Geosyst. 2019, 20, 5556–5564. [Google Scholar] [CrossRef]
Key Area | Relief Analysis | Topographic Derivatives | Stereoscopic Imagery Analysis | Time-Series InSAR Analysis | Literature |
---|---|---|---|---|---|
KA1 | Transients from local and residual relief maps (Figure 4) and Swath Profile 2 (Figure 5) | Geomorphic scarp from slope and curvature analysis (Figure 6) | Geom. lineaments and gravitational processes (Figure 8A) | PS deformation patterns of Sk1 and Sk2 (Figure 9A) | ACM in *; Ro in **; Pi in #; Po in §. |
KA2 | Transients from local and residual relief maps (Figure 4) and Swath Profile 3 (Figure 5) | Geomorphic scarp from slope and curvature analysis (Figure 7B,C) | Geom. lineaments and gravitational processes (Figure 8B) | - | Partly in °° |
KA3 | (Subtle) transients from local and residual relief maps (Figure 4) and Swath Profile 4 (Figure 5) | Geomorphic scarp from slope and curvature analysis (Figure 7D–G) | Geom. lineaments and gravitational processes (Figure 8C) | PS deformation pattern for Rs3 (Figure 9B) and interferometric coherence loss related to Rs1 and Rs2 (Figure 9C,D) | Partly in ++ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Battistelli, M.; Ferrarini, F.; Bucci, F.; Santangelo, M.; Cardinali, M.; Merryman Boncori, J.P.; Cirillo, D.; Carafa, M.M.C.; Brozzetti, F. Bridging the Gap Between Active Faulting and Deformation Across Normal-Fault Systems in the Central–Southern Apennines (Italy): Multi-Scale and Multi-Source Data Analysis. Remote Sens. 2025, 17, 2491. https://doi.org/10.3390/rs17142491
Battistelli M, Ferrarini F, Bucci F, Santangelo M, Cardinali M, Merryman Boncori JP, Cirillo D, Carafa MMC, Brozzetti F. Bridging the Gap Between Active Faulting and Deformation Across Normal-Fault Systems in the Central–Southern Apennines (Italy): Multi-Scale and Multi-Source Data Analysis. Remote Sensing. 2025; 17(14):2491. https://doi.org/10.3390/rs17142491
Chicago/Turabian StyleBattistelli, Marco, Federica Ferrarini, Francesco Bucci, Michele Santangelo, Mauro Cardinali, John P. Merryman Boncori, Daniele Cirillo, Michele M. C. Carafa, and Francesco Brozzetti. 2025. "Bridging the Gap Between Active Faulting and Deformation Across Normal-Fault Systems in the Central–Southern Apennines (Italy): Multi-Scale and Multi-Source Data Analysis" Remote Sensing 17, no. 14: 2491. https://doi.org/10.3390/rs17142491
APA StyleBattistelli, M., Ferrarini, F., Bucci, F., Santangelo, M., Cardinali, M., Merryman Boncori, J. P., Cirillo, D., Carafa, M. M. C., & Brozzetti, F. (2025). Bridging the Gap Between Active Faulting and Deformation Across Normal-Fault Systems in the Central–Southern Apennines (Italy): Multi-Scale and Multi-Source Data Analysis. Remote Sensing, 17(14), 2491. https://doi.org/10.3390/rs17142491