Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (402)

Search Parameters:
Keywords = aircraft propulsion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 7771 KB  
Review
Advances in Folding-Wing Flying Underwater Drone (FUD) Technology
by Jianqiu Tu, Junjie Zhuang, Haixin Chen, Changjian Zhao, Hairui Zhang and Wenbiao Gan
Drones 2026, 10(1), 62; https://doi.org/10.3390/drones10010062 - 15 Jan 2026
Viewed by 25
Abstract
The evolution of modern warfare and civil exploration requires platforms that can operate seamlessly across the air–water interface. The folding-wing Hybrid Air and Underwater Vehicle (FUD) has emerged as a transformative solution, combining the high-speed cruising capabilities of fixed-wing aircraft with the stealth [...] Read more.
The evolution of modern warfare and civil exploration requires platforms that can operate seamlessly across the air–water interface. The folding-wing Hybrid Air and Underwater Vehicle (FUD) has emerged as a transformative solution, combining the high-speed cruising capabilities of fixed-wing aircraft with the stealth characteristics of underwater navigation. This review thoroughly analyzes the advancements and challenges in folding-wing FUD technology. The discussion is framed around four interconnected pillars: the overall design driven by morphing technology, adaptation of the propulsion system, multi-phase dynamic modeling and control, and experimental verification. The paper systematically compares existing technical pathways, including lateral and longitudinal folding mechanisms, as well as dual-use and hybrid propulsion strategies. The analysis indicates that, although significant progress has been made with prototypes demonstrating the ability to transition between air and water, core challenges persist. These challenges include underwater endurance, structural reliability under impact loads, and effective integration of the power system. Additionally, this paper explores promising application scenarios in both military and civilian domains, discussing future development trends that focus on intelligence, integration, and clustering. This review not only consolidates the current state of technology but also emphasizes the necessity for interdisciplinary approaches. By combining advanced materials, computational intelligence, and robust control systems, we can overcome existing barriers to progress. In conclusion, FUD technology is moving from conceptual validation to practical engineering applications, positioning itself to become a crucial asset in future cross-domain operations. Full article
(This article belongs to the Special Issue Advances in Autonomous Underwater Drones: 2nd Edition)
Show Figures

Figure 1

32 pages, 31698 KB  
Article
Sub-Scale Flight Testing of Drag Reduction Features for Amphibious Light Sport Aircraft
by Jackson Tenhave, Keith Joiner and Dominic Hill
Aerospace 2026, 13(1), 59; https://doi.org/10.3390/aerospace13010059 - 7 Jan 2026
Viewed by 148
Abstract
Amphibious light sport aircraft (LSA) combine the versatility of land and water operations but suffer aerodynamic penalties from their inherent design requirements, limiting cruise performance. This study investigates two drag reduction features for a proposed high-performance amphibious LSA developed by Altavia Aerospace. The [...] Read more.
Amphibious light sport aircraft (LSA) combine the versatility of land and water operations but suffer aerodynamic penalties from their inherent design requirements, limiting cruise performance. This study investigates two drag reduction features for a proposed high-performance amphibious LSA developed by Altavia Aerospace. The concept targets a cruise speed of 140 KTAS, using retractable wingtip pontoons and a novel retractable hull step fairing. A 1/5-scale flying model was built and flight tested to assess the aerodynamic benefits of these features and evaluate sub-scale flight testing as a tool for drag measurement. Estimated propulsive power and GPS-based speed data corrected for wind were used to compute an estimated 17% reduction in drag coefficient by retracting the pontoons. The hull step fairing showed no measurable gains, likely due to inconsistent battery voltage, despite literature indicating potential 5% drag savings. Drag measurement precision of 7–9% was achieved using the power-based method, with potential precision better than 3% achievable if the designed thrust data system were fully validated and an autopilot integrated. A performance estimation for Altavia Aerospace’s concept predicts a cruise speed of 134 KTAS at 10,000 ft. Achieving the target of 140 KTAS may require further aerodynamic refinement, with investigation of a tandem seating configuration to reduce frontal area recommended. The study provides an initial drag assessment of retractable wingtip pontoons and demonstrates the potential of sub-scale flight testing for comparative drag analysis—two novel contributions to the field. Full article
(This article belongs to the Special Issue Recent Advances in Applied Aerodynamics (2nd Edition))
Show Figures

Figure 1

18 pages, 13940 KB  
Article
Assessment of Propulsion Patterns for Hybrid Wing Configuration Aircraft with Embedded Propellers
by Xiaolu Wang, Changning Chen, Zhihao Jiao, Jiahao Li and Ke Zhao
Aerospace 2026, 13(1), 57; https://doi.org/10.3390/aerospace13010057 - 7 Jan 2026
Viewed by 178
Abstract
This study employs computational fluid dynamics (CFD) to investigate the aerodynamic performance and static stability of hybrid wing aircraft, considering the interference of counter-rotating embedded propellers. Extensive numerical verification has been carried out, including comparisons with NASA’s high-lift propeller (HLP) data. Three configurations—no [...] Read more.
This study employs computational fluid dynamics (CFD) to investigate the aerodynamic performance and static stability of hybrid wing aircraft, considering the interference of counter-rotating embedded propellers. Extensive numerical verification has been carried out, including comparisons with NASA’s high-lift propeller (HLP) data. Three configurations—no propeller, counter-rotating inboard-upwash (CNIU) and counter-rotating outboard-upwash (CNOU) are defined to analyze the aerodynamic force/moment characteristics and flow field structures over a range of angles of attack from −6° to 26°, in conjunction with crosswind velocities of 0, 5, 10, and 15 m/s. The propeller-induced slipstream alters the aircraft’s fundamental performance by modifying wing pressure distributions and vortex systems. Specifically, the CNIU configuration increases the low-pressure areas on both the fuselage and outer wing upper surfaces, enhancing the lift-to-drag ratio by 28.4% at low angles of attack. In contrast, the CNOU configuration improves longitudinal steady-static margin by 27.4% under typical conditions and demonstrates superior lateral static stability under 10 m/s leftward crosswind conditions. For engineering applications in the aerodynamic design of such aircraft, the CNIU configuration is recommended for high cruise efficiency, whereas the CNOU configuration is preferred for flight stability. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

30 pages, 1887 KB  
Article
Energetic and Exergetic Analysis of High-Bypass Turbofan Engines for Commercial Aircraft: Part I—Operation and Performance
by Abdulrahman S. Almutairi, Hamad M. Alhajeri, Mohamed Gharib Zedan and Hamad H. Almutairi
Aerospace 2026, 13(1), 27; https://doi.org/10.3390/aerospace13010027 - 26 Dec 2025
Viewed by 410
Abstract
Despite substantial advances in turbofan engineering, a crucial gap persists: there remains the need for an all-inclusive comparative analysis that includes real-world operational data and evaluates the performance of modern turbofans used in aviation. Specifically, systematic investigations that examine the exergy and efficiency [...] Read more.
Despite substantial advances in turbofan engineering, a crucial gap persists: there remains the need for an all-inclusive comparative analysis that includes real-world operational data and evaluates the performance of modern turbofans used in aviation. Specifically, systematic investigations that examine the exergy and efficiency of turbofan engines for takeoff and cruise remain scarce. Further, the current literature needs to address rigorous performance assessments that include simultaneous consideration of the combined effects of ambient conditions (e.g., temperature, density, relative humidity), Mach number, and turbine inlet temperature on high-bypass turbofan engines used in modern, commercial aircraft. Energetic and exergetic analyses were conducted on five commercial high-bypass turbofan engines with different configurations for both takeoff and cruise flight modes. The computational thermodynamic models developed showed strong correlation with manufacturers’ specifications. Performance evaluations included variations in ambient conditions, altitude, Mach number, and turbine inlet temperature. Results demonstrate that three-spool engine architecture exhibits 70–71% reduction in exergy destruction between flight phases compared to 62.5% for two-spool designs, indicating greater operational adaptability. The combustion chamber emerged as the dominant contributor to irreversibilities, representing approximately 55–58% of overall exergy destruction during takeoff operations. Results demonstrate that increased ambient temperature and/or humidity increase both degraded exergetic efficiency and thrust-specific fuel consumption, and that Mach number and altitude influenced efficiency metrics through ram compression and density effects, while higher turbine inlet temperatures enhanced exhaust kinetic energy via increased thermal input. We show that cruise operations demonstrated superior exergetic efficiency (68–74%) compared with takeoff (47–60%) across all engine configurations. Our results confirm the fundamental trade-off in turbofan design: for long-range applications, high-bypass engines prioritize propulsive efficiency, while for power-intensive operations, moderate-bypass configurations deliver higher specific thrust. Full article
(This article belongs to the Special Issue Advanced Aircraft Technology (2nd Edition))
Show Figures

Figure 1

35 pages, 12068 KB  
Article
Parametric Geometry Modeling for Conceptual Design of Supersonic Tailless Combat Aircraft
by Jian Xu and Xiongqing Yu
Aerospace 2026, 13(1), 17; https://doi.org/10.3390/aerospace13010017 - 25 Dec 2025
Viewed by 306
Abstract
The fully tailless configuration has lower observability, less structural weight and less drag, and it is considered one of the preferred designs for the next generation of efficient supersonic combat aircraft. In the conceptual design of such novel aircraft, a parametric geometry model [...] Read more.
The fully tailless configuration has lower observability, less structural weight and less drag, and it is considered one of the preferred designs for the next generation of efficient supersonic combat aircraft. In the conceptual design of such novel aircraft, a parametric geometry model is essential for multidisciplinary design analysis and optimization (MDAO). This paper presents a parametric three-dimensional (3D) geometry modeling methodology and tool for MDAO in the conceptual design of a notional supersonic tailless combat aircraft (STCA). The geometries of the STCA components (wing, fuselage and propulsion) are defined specifically by a set of parameters. In particular, the inlet and nozzle geometries are defined with the required details. Based on the geometric relationships among the STCA components, an approach involving master-dependent parameters is proposed. The geometry model generated by the approach has features such as the fuselage being blended smoothly with the wing and the propulsion being well integrated with the fuselage. Moreover, the geometry model can be generated by simply specifying the values of the master parameters, and the number of parameters required to generate the geometry model is reduced substantially. Based on the methodology, a parametric geometry modeling tool for the STCA conceptual design is developed using a Visual Basic (VB) script in the CATIA V5 platform. The applicability of the tool is validated with several case studies. Full article
(This article belongs to the Special Issue Aircraft Conceptual Design: Tools, Processes and Examples)
Show Figures

Figure 1

31 pages, 6651 KB  
Article
Integrated Approach to Design and Additive Manufacturing of Solar Unmanned Aerial Vehicles
by Ioana Nistor and Sebastian-Marian Zaharia
Appl. Sci. 2025, 15(24), 12964; https://doi.org/10.3390/app152412964 - 9 Dec 2025
Viewed by 433
Abstract
The development of solar-powered UAVs offers major advantages, such as extended mission autonomy, marking a significant technological advance in the aerospace industry. In this context, the study demonstrated the feasibility of additive manufacturing of a solar-powered UAV by successfully completing all the steps [...] Read more.
The development of solar-powered UAVs offers major advantages, such as extended mission autonomy, marking a significant technological advance in the aerospace industry. In this context, the study demonstrated the feasibility of additive manufacturing of a solar-powered UAV by successfully completing all the steps necessary for the development of an aeronautical product. The conceptual design was the initial phase in which the needs were defined, and the basic vision of the UAV model was outlined, exploring multiple possible solutions to identify the concept capable of meeting the mission requirements (search and rescue and surveillance). The preliminary design stage included aerodynamic analysis of the aircraft and preliminary sizing of the propulsion system and solar cells. The preliminary design stage included aerodynamic analysis of the UAV model, resulting in a lift coefficient of 1.05 and a drag coefficient of 0.08 at an angle of attack of 15°. A major advantage of the design is the integration of the electrical circuit, where solar input reduced battery consumption from 92.5 W to just 40.4 W in standard operational conditions, thereby more than doubling the UAV’s autonomy (from 48 min to approximately 110 min). The detailed design stage consisted of the final design of the solar UAV model for additive manufacturing, after which the final electrical architecture of the energy system was established. The model was subsequently validated by a finite element analysis, which confirmed the strength of the wing structure by achieving a safety factor of 6.6. The use of additive manufacturing allowed the rapid and accurate production of the structural components of the UAV model, ensuring that their subsequent physical assembly would be straightforward. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

27 pages, 16096 KB  
Article
Effect of Dynamic Tilting Speed on the Flow Field of Distributed Multi-Propeller Tilt-Wing Aircraft During Transition Flight
by Jiahao Zhu, Yongjie Shi, Taihang Ma, Guohua Xu and Zhiyuan Hu
Machines 2025, 13(12), 1130; https://doi.org/10.3390/machines13121130 - 9 Dec 2025
Viewed by 394
Abstract
Advances in distributed electric propulsion and urban air mobility technologies have spurred a surge of research on electric Vertical Take-Off and Landing (eVTOL) aircraft. Distributed Multi-Propeller Tilting-Wing (DMT) eVTOL configurations offer higher forward flight speed and efficiency. However, aerodynamic challenges during the transition [...] Read more.
Advances in distributed electric propulsion and urban air mobility technologies have spurred a surge of research on electric Vertical Take-Off and Landing (eVTOL) aircraft. Distributed Multi-Propeller Tilting-Wing (DMT) eVTOL configurations offer higher forward flight speed and efficiency. However, aerodynamic challenges during the transition phase have limited their practical application. This study develops a high-fidelity body-fitted mesh CFD numerical simulation method for flow field calculations of DMT aircraft. Using the reverse overset assembly method and CPU-GPU collaborative acceleration technology, the accuracy and efficiency of flow field simulations are enhanced. Using the established method, the influence of dynamic tilting speeds on the flow field of this configuration is investigated. This paper presents the variations in the aerodynamic characteristics of the tandem propellers and tilt-wings throughout the full tilt process under different tilting speeds, analyzes the mechanisms behind reductions in the propeller’s aerodynamic performance and tilt-wing lift overshoot, and conducts a detailed comparison of flow field distribution characteristics under fixed-angle tilting, slow tilting, and fast tilting conditions. The study explores the influence mechanism of tilting speed on blade tip vortex-lifting surface interactions and interference between tandem propellers and tilt-wings, providing valuable conclusions for the aerodynamic design and safe transition implementation of DMT aircraft. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

18 pages, 2076 KB  
Review
Proton Exchange Membrane Fuel Cells for Aircraft Applications: A Comprehensive Review of Key Challenges and Development Trends
by Xinfeng Zhang, Han Yue, Hui Zheng, Lixing Tan, Zhiming Zhang and Feng Li
Hydrogen 2025, 6(4), 116; https://doi.org/10.3390/hydrogen6040116 - 9 Dec 2025
Viewed by 880
Abstract
Hydrogen energy is a pivotal alternative to lithium-ion batteries for low-altitude aircraft, offering a pathway to sustainable aviation with its zero emissions and high energy density. Nevertheless, its broader application is hindered by challenges in storage, safety, and performance under extreme conditions such [...] Read more.
Hydrogen energy is a pivotal alternative to lithium-ion batteries for low-altitude aircraft, offering a pathway to sustainable aviation with its zero emissions and high energy density. Nevertheless, its broader application is hindered by challenges in storage, safety, and performance under extreme conditions such as low pressure and low temperature at high altitudes. This paper systematically evaluates various hydrogen power technologies—including water-cooled and air-cooled proton exchange membrane fuel cells (PEMFCs) as well as hydrogen turbines—highlighting their respective advantages, limitations, and suitability for different aircraft types. Among these, water-cooled PEMFCs are identified as the most viable option for manned low-altitude aircraft due to their balanced performance in power density and startup capability. In contrast, air-cooled PEMFCs demonstrate distinct cost-effectiveness for lightweight drones, while hydrogen turbines show promise for long-range regional transport. Furthermore, we analyze current progress in integrating PEMFCs into aircraft platforms and discuss persistent challenges in system compatibility and environmental adaptation. Finally, potential future development directions for PEMFC applications in low-altitude aviation are outlined. Full article
(This article belongs to the Special Issue Advances in Hydrogen Production, Storage, and Utilization)
Show Figures

Graphical abstract

13 pages, 941 KB  
Article
Conceptual Design of a Hybrid-Electric Aircraft Based on a Dornier 328 Demonstrator
by Annika Nora Staats, Florian Troeltsch and Andreas Bardenhagen
Aerospace 2025, 12(12), 1085; https://doi.org/10.3390/aerospace12121085 - 4 Dec 2025
Viewed by 340
Abstract
Air travel contributed 3.5% to global warming in 2020, with a rising tendency. Only one third of the climate impact is caused by CO2. Other exhaust gases that cause harm to the climate are nitrogen oxides, soot, and water vapor, creating [...] Read more.
Air travel contributed 3.5% to global warming in 2020, with a rising tendency. Only one third of the climate impact is caused by CO2. Other exhaust gases that cause harm to the climate are nitrogen oxides, soot, and water vapor, creating contrails with a negative impact on earth’s albedo. Hence, it is important to reduce any type of emission. As the effects of global climate change become an unneglectable threat to society, calls for quick changes become prominent. Recognizing the need for disruptive changes in air transport, the LuFo-project 328eHY-TECH was initiated to investigate the potential of regional hybrid-electric aircraft. This article focuses on conceptual aircraft design. An aircraft resembling the D328eco is modeled as a baseline aircraft, on which the sizing of the hybrid-electric propulsion systems is performed. As aircraft are mostly operated on a typical mission, which is shorter than the design mission, a distance of 400 nm is found to be a feasible range for this regional aircraft. In a conducted range study, the potential of state-of-the-art battery properties is being investigated and found to be insufficient. Subsequently conducted trade-off studies show that a 104 kW horsepower electric motor and a battery of 1.8 kWh/kg are needed to save 5% block fuel on a mission with 40 passengers of 95 kg over a distance of 400 nm. It is concluded that changing solely the propulsion system will not yield feasible aircraft designs in the near and midterm future. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

27 pages, 5009 KB  
Article
From Potential Routes to Climate Impact: Assessing the Fleet Transition to Hydrogen-Powered Aircraft
by Gabriele Sirtori and Lorenzo Trainelli
Aerospace 2025, 12(12), 1075; https://doi.org/10.3390/aerospace12121075 - 1 Dec 2025
Cited by 1 | Viewed by 517
Abstract
The paper presents a methodology aiming to assess the impact of operations of a short- and medium-range fleet transitioning from jet fuel to hydrogen propulsion, considering the constraint arising from the distribution of hydrogen refueling infrastructures across airports, leveraging on the different performance [...] Read more.
The paper presents a methodology aiming to assess the impact of operations of a short- and medium-range fleet transitioning from jet fuel to hydrogen propulsion, considering the constraint arising from the distribution of hydrogen refueling infrastructures across airports, leveraging on the different performance of the two sub-fleets to obtain the least climate-impacting transition. Hydrogen tankering will enable flights to airports that have no hydrogen refueling capabilities, as long as the destination is within half of the operational range of the selected aircraft, at the cost of a slight increase in fuel burn. The proposed methodology aims to assess said increase, while minimizing the expenditure for hydrogen, and the coverage of a reference network, achievable when considering aircraft performance and assumptions on the availability and cost of hydrogen at various airports. The results of such analysis can be used to determine whether a reduction in the design range of a given aircraft is acceptable. Such a reduction would mitigate the impact that the hydrogen tank has on the sizing of the aircraft and its performance. Depending on the considered scenario, a network potential coverage spanning from 81% to 96% can be achieved. Starting from this result, it is possible to assess the transition of a short-haul airliner fleet from jet fuel to hydrogen propulsion, considering the constraint arising from the distribution of hydrogen refueling infrastructures across airports and the different performances (energetic, environmental and economic) of the two sub-fleets. The aircraft assignment to each route is performed with the objective of minimizing either the energy, the carbon intensity or the fuel cost of the overall network, obtaining different route assignment distributions. The results show that the aviation-induced temperature change can be reduced by up to 57% compared to an all-jet-fuel fleet. Full article
Show Figures

Figure 1

45 pages, 15707 KB  
Article
Lightweight, High-Efficiency, High-Dynamic-Response and Low-Ripple DC-DC Converters Based on Interleaved Magnetic Integrated Switched-Coupled Inductor for Electric Propulsion Aircraft
by Rui Guo, Hongkai Gao, Li Chen, Yiyi Zhang and Lei Wang
Aerospace 2025, 12(12), 1067; https://doi.org/10.3390/aerospace12121067 - 30 Nov 2025
Viewed by 329
Abstract
With the development of distributed electric propulsion aircraft, researching airborne high-efficiency, high-power-density, high-gain, high-dynamic and low-ripple, low-stress DC-DC that meets aviation standards is an urgent and profoundly challenging task (Research Background). We propose a new topology to implement related applications. The new topology [...] Read more.
With the development of distributed electric propulsion aircraft, researching airborne high-efficiency, high-power-density, high-gain, high-dynamic and low-ripple, low-stress DC-DC that meets aviation standards is an urgent and profoundly challenging task (Research Background). We propose a new topology to implement related applications. The new topology consists of an interleaved switched-inductor unit for a high-gain, low-ripple, and high-dynamic response, and a switched-capacitor unit for secondary boosting and low voltage stress. This study first analyzes in depth the operating principle and electrical characteristics of the proposed topology in different modes, showing that the proposed topology can achieve an extremely high voltage gain while maintaining low voltage stress. Moreover, the proposed topology employs interleaved inverse coupled inductors to eliminate right-half-plane zero (RHPZ). We establish a universal design guideline for coupled inductors by deriving the equivalent inductance equations, and we implement an ultra-lightweight switched-coupled inductor using planar thin-film integrated magnetic technology. We conduct small-signal modeling to verify the loop characteristics and stability of the proposed converter. Finally, the correctness of the theoretical analysis and the advantages of the proposed converter were verified through a 5000 W experimental prototype and comprehensive comparative experiments. Full article
(This article belongs to the Special Issue Advanced Aircraft Technology (2nd Edition))
Show Figures

Figure 1

26 pages, 4587 KB  
Article
Configuration Trade-Off and Co-Design Optimization of Hybrid-Electric VTOL Propulsion Systems
by Yanan Li, Haiwang Li, Gang Xie and Zhi Tao
Drones 2025, 9(11), 800; https://doi.org/10.3390/drones9110800 - 17 Nov 2025
Viewed by 1030
Abstract
Unmanned vertical takeoff and landing (VTOL) aircraft are increasingly deployed for logistics, surveillance, and urban air mobility (UAM) applications. However, the limitations of full-electric (FE) and internal combustion engine (ICE) systems in meeting diverse mission requirements have motivated the development of hybrid-electric (HE) [...] Read more.
Unmanned vertical takeoff and landing (VTOL) aircraft are increasingly deployed for logistics, surveillance, and urban air mobility (UAM) applications. However, the limitations of full-electric (FE) and internal combustion engine (ICE) systems in meeting diverse mission requirements have motivated the development of hybrid-electric (HE) propulsion systems. The design of HE powertrains remains challenging due to configuration flexibility and the lack of unified criteria for performance trade-offs among FE, ICE-powered, and HE configurations. This study proposes an integrated propulsion co-design framework coupling power allocation, energy management, and component capacity constraints through parametric system modeling. These interdependencies are represented by three key matching parameters: the power ratio (Φ), energy ratio (Ω), and maximum continuous discharge rate (rc). Through Pareto-optimal design space exploration, trade-off analysis results and optimization principles are derived for diverse mission scenarios such as UAM, remote sensing, and military surveillance. Different technological conditions are considered to guide component-level technological advancements. The method was applied to the power system retrofit of the Great White eVTOL. Subsystem steady-state tests provided accurate design inputs, and a simulation model was developed to reproduce the full flight mission. By comparing the simulation with flight-test measurements, mean absolute percentage errors of 8.91% for instantaneous fuel consumption and 0.26% for battery voltage were obtained. Based on these error magnitudes, a dynamic design margin was defined and then incorporated into a subsequent re-optimization, which achieved the 1.5 h endurance target with a 10.49% increase in cost per ton-kilometer relative to the initial design. These results demonstrate that the proposed co-design methodology offers a scalable, data-driven foundation for early-stage hybrid-electric VTOL powertrain design, enabling iterative performance correction and supporting system optimization in subsequent design stages. Full article
Show Figures

Figure 1

11 pages, 1062 KB  
Article
Static Rate of Failed Equipment-Related Fatal Accidents in General Aviation
by Douglas D. Boyd and Linfeng Jin
Safety 2025, 11(4), 109; https://doi.org/10.3390/safety11040109 - 14 Nov 2025
Viewed by 1465
Abstract
General aviation (GA), comprised mainly of piston engine airplanes, has an inferior safety history compared with air carriers in the United States. Most studies addressing this safety disparity has focused on pilot deficiencies. Herein, we determined the rates/causes of equipment failure-related GA fatal [...] Read more.
General aviation (GA), comprised mainly of piston engine airplanes, has an inferior safety history compared with air carriers in the United States. Most studies addressing this safety disparity has focused on pilot deficiencies. Herein, we determined the rates/causes of equipment failure-related GA fatal accidents for type-certificated and experimental-amateur-built airplanes. Aviation accidents/injury severity were per the NTSB AccessR database. Statistical tests employed proportion/binomial tests/a Poisson distribution. The rate of fatal accidents (1990–2019) due to equipment failure was unchanged (p > 0.026), whereas the fatal mishap rate related to other causes declined (p < 0.001). A disproportionate (2× higher) count (p < 0.001) of equipment-related fatal accidents was evident for experimental-amateur-built aircraft with type-certificated references. Propulsion system (67%) and airframe (36%) failures were the most frequent causes of fatal accidents for type-certificated and experimental-amateur-built aircraft, respectively. The components “fatigue/corrosion” and “manufacturer–builder error” resulted in 60% and 55% of powerplant and airframe failures, respectively. Most (>90%) type-certificated aircraft propulsion system failures were within the manufacturer-prescribed engine time-between-overhaul (TBO) and involved components inaccessible for examination during an annual inspection. There is little evidence for a decline in equipment failure-related fatal accident rate over three decades. Considering the fact that powerplant failures mostly occur within the TBO and involve fatigue/corrosion of one or more components inaccessible for examination, GA pilots should avoid operations where a safe off-field landing within glide-range is not assured. Full article
Show Figures

Figure 1

18 pages, 3013 KB  
Article
Study on Certification-Driven Fault Detection Threshold Optimization for eVTOL Dual-Motor-Driven Rotor
by Liqun Ma, Chenchen Ma and Jianzhong Yang
Aerospace 2025, 12(11), 973; https://doi.org/10.3390/aerospace12110973 - 30 Oct 2025
Viewed by 560
Abstract
Advances in motor technology and the application of distributed electric propulsion systems have greatly promoted the development of electric vertical take-off and landing aircraft. As a critical safety component of eVTOL aircraft, the motor system design must satisfy both performance requirements and stringent [...] Read more.
Advances in motor technology and the application of distributed electric propulsion systems have greatly promoted the development of electric vertical take-off and landing aircraft. As a critical safety component of eVTOL aircraft, the motor system design must satisfy both performance requirements and stringent airworthiness standards. This paper studies the lift–thrust unit drive motor system of an eVTOL aircraft and proposes an architecture that utilizes analytical redundancy to enhance system-level reliability. This paper focuses on threshold optimization in analytical redundancy systems. Through simulations and reliability analyses, the performance of the analytical redundancy system is quantified, with false alarm and missed detection probabilities evaluated, fault detection thresholds optimized, and overall system reliability enhanced analytical redundancy systems is improved. Simulation and calculation results demonstrate that the proposed fault detection method can effectively meet the requirements for rapid detection and achieve optimal reliability at the given optimal threshold. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

21 pages, 31363 KB  
Article
SHM for Complex Composite Aerospace Structures: A Case Study on Engine Fan Blades
by Georgios Galanopoulos, Shweta Paunikar, Giannis Stamatelatos, Theodoros Loutas, Nazih Mechbal, Marc Rébillat and Dimitrios Zarouchas
Aerospace 2025, 12(11), 963; https://doi.org/10.3390/aerospace12110963 - 28 Oct 2025
Cited by 1 | Viewed by 1110
Abstract
Composite engine fan blades are critical aircraft engine components, and their failure can compromise the safe and reliable operation of the entire aircraft. To enhance aircraft availability and safety within a condition-based maintenance framework, effective methods are needed to identify damage and monitor [...] Read more.
Composite engine fan blades are critical aircraft engine components, and their failure can compromise the safe and reliable operation of the entire aircraft. To enhance aircraft availability and safety within a condition-based maintenance framework, effective methods are needed to identify damage and monitor the blades’ condition throughout manufacturing and operation. This paper presents a unique experimental framework for real-time monitoring of composite engine blades utilizing state-of-the-art structural health monitoring (SHM) technologies, discussing the associated benefits and challenges. A case study is conducted on a representative Foreign Object Damage (FOD) panel, a substructure of a LEAP (Leading Edge Aviation Propulsion) engine fan blade, which is a curved, 3D-woven Carbon Fiber Reinforced Polymer (CFRP) panel with a secondary bonded steel leading edge. The loading scheme involves incrementally increasing, cyclic 4-point bending (loading–unloading) to induce controlled damage growth, simulating in-operation conditions and allowing evaluation of flexural properties before and after degradation. External damage, simulating foreign object impact common during flight, is introduced using a drop tower apparatus either before or during testing. The panel’s condition is monitored in-situ and in real time by two types of SHM sensors: screen-printed piezoelectric sensors for guided ultrasonic wave propagation studies and surface-bonded Fiber Bragg Grating (FBG) strain sensors. Experiments are conducted until panel collapse, and degradation is quantified by the reduction in initial stiffness, derived from the experimental load-displacement curves. This paper aims to demonstrate this unique experimental setup and the resulting SHM data, highlighting both the potential and challenges of this SHM framework for monitoring complex composite structures, while an attempt is made at correlating SHM data with structural degradation. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

Back to TopTop