Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (621)

Search Parameters:
Keywords = air-to-fuel ratio

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3081 KiB  
Review
Surface Air-Cooled Oil Coolers (SACOCs) in Turbofan Engines: A Comprehensive Review of Design, Performance, and Optimization
by Wiktor Hoffmann and Magda Joachimiak
Energies 2025, 18(15), 4052; https://doi.org/10.3390/en18154052 - 30 Jul 2025
Viewed by 266
Abstract
Surface Air-Cooled Oil Coolers (SACOCs) can become a critical component in managing the increasing thermal loads of modern turbofan engines. Installed within the bypass duct, SACOCs utilize high-mass flow bypass air for convective heat rejection, reducing reliance on traditional Fuel-Oil Heat Exchangers. This [...] Read more.
Surface Air-Cooled Oil Coolers (SACOCs) can become a critical component in managing the increasing thermal loads of modern turbofan engines. Installed within the bypass duct, SACOCs utilize high-mass flow bypass air for convective heat rejection, reducing reliance on traditional Fuel-Oil Heat Exchangers. This review explores SACOC design principles, integration challenges, aerodynamic impacts, and performance trade-offs. Emphasis is placed on the balance between thermal efficiency and aerodynamic penalties such as pressure drop and flow distortion. Experimental techniques, including wind tunnel testing, are discussed alongside numerical methods, and Conjugate Heat Transfer modeling. Presented studies mostly demonstrate the impact of fin geometry and placement on both heat transfer and drag. Optimization strategies and Additive Manufacturing techniques are also covered. SACOCs are positioned to play a central role in future propulsion systems, especially in ultra-high bypass ratio and hybrid-electric architectures, where traditional cooling strategies are insufficient. This review highlights current advancements, identifies limitations, and outlines research directions to enhance SACOC efficiency in aerospace applications. Full article
(This article belongs to the Special Issue Heat Transfer Analysis: Recent Challenges and Applications)
Show Figures

Figure 1

30 pages, 7897 KiB  
Review
Recent Progress of 2D Pt-Group Metallic Electrocatalysts for Energy-Conversion Applications
by Ziyue Chen, Yuerong Wang, Haiyan He and Huajie Huang
Catalysts 2025, 15(8), 716; https://doi.org/10.3390/catal15080716 - 27 Jul 2025
Viewed by 495
Abstract
With the rapid growth of energy demand, the development of efficient energy-conversion technologies (e.g., water splitting, fuel cells, metal-air batteries, etc.) becomes an important way to circumvent the problems of fossil fuel depletion and environmental pollution, which motivates the pursuit of high-performance electrocatalysts [...] Read more.
With the rapid growth of energy demand, the development of efficient energy-conversion technologies (e.g., water splitting, fuel cells, metal-air batteries, etc.) becomes an important way to circumvent the problems of fossil fuel depletion and environmental pollution, which motivates the pursuit of high-performance electrocatalysts with controllable compositions and morphologies. Among them, two-dimensional (2D) Pt-group metallic electrocatalysts show a series of distinctive architectural merits, including a high surface-to-volume ratio, numerous unsaturated metal atoms, an ameliorative electronic structure, and abundant electron/ion transfers channels, thus holding great potential in realizing good selectivity, rapid kinetics, and high efficiency for various energy-conversion devices. Considering that great progress on this topic has been made in recent years, here we present a panoramic review of recent advancements in 2D Pt-group metallic nanocrystals, which covers diverse synthetic methods, structural analysis, and their applications as electrode catalysts for various energy-conversion technologies. At the end, the paper also outlines the research challenges and future opportunities in this emerging area. Full article
Show Figures

Graphical abstract

26 pages, 7439 KiB  
Review
A Review of Marine Dual-Fuel Engine New Combustion Technology: Turbulent Jet-Controlled Premixed-Diffusion Multi-Mode Combustion
by Jianlin Cao, Zebang Liu, Hao Shi, Dongsheng Dong, Shuping Kang and Lingxu Bu
Energies 2025, 18(15), 3903; https://doi.org/10.3390/en18153903 - 22 Jul 2025
Viewed by 316
Abstract
Driven by stringent emission regulations, advanced combustion modes utilizing turbulent jet ignition technology are pivotal for enhancing the performance of marine low-speed natural gas dual-fuel engines. This review focuses on three novel combustion modes, yielding key conclusions: (1) Compared to the conventional DJCDC [...] Read more.
Driven by stringent emission regulations, advanced combustion modes utilizing turbulent jet ignition technology are pivotal for enhancing the performance of marine low-speed natural gas dual-fuel engines. This review focuses on three novel combustion modes, yielding key conclusions: (1) Compared to the conventional DJCDC mode, the TJCDC mode exhibits a significantly higher swirl ratio and turbulence kinetic energy in the main chamber during initial combustion. This promotes natural gas jet development and combustion acceleration, leading to shorter ignition delay, reduced combustion duration, and a combustion center (CA50) positioned closer to the Top Dead Center (TDC), alongside higher peak cylinder pressure and a faster early heat release rate. Energetically, while TJCDC incurs higher heat transfer losses, it benefits from lower exhaust energy and irreversible exergy loss, indicating greater potential for useful work extraction, albeit with slightly higher indicated specific NOx emissions. (2) In the high-compression ratio TJCPC mode, the Liquid Pressurized Natural Gas (LPNG) injection parameters critically impact performance. Delaying the start of injection (SOI) or extending the injection duration degrades premixing uniformity and increases unburned methane (CH4) slip, with the duration effects showing a load dependency. Optimizing both the injection timing and duration is, therefore, essential for emission control. (3) Increasing the excess air ratio delays the combustion phasing in TJCPC (longer ignition delay, extended combustion duration, and retarded CA50). However, this shift positions the heat release more optimally relative to the TDC, resulting in significantly improved indicated thermal efficiency. This work provides a theoretical foundation for optimizing high-efficiency, low-emission combustion strategies in marine dual-fuel engines. Full article
(This article belongs to the Special Issue Towards Cleaner and More Efficient Combustion)
Show Figures

Figure 1

28 pages, 5504 KiB  
Article
Towards a Digital Twin for Gas Turbines: Thermodynamic Modeling, Critical Parameter Estimation, and Performance Optimization Using PINN and PSO
by Jian Tiong Lim, Achnaf Habibullah and Eddie Yin Kwee Ng
Energies 2025, 18(14), 3721; https://doi.org/10.3390/en18143721 - 14 Jul 2025
Viewed by 405
Abstract
Gas turbine (GT) modeling and optimization have been widely studied at the design level but still lacks focus on real-world operational cases. The concept of a digital twin (DT) allows for the interaction between operation data and the system dynamic performance. Among many [...] Read more.
Gas turbine (GT) modeling and optimization have been widely studied at the design level but still lacks focus on real-world operational cases. The concept of a digital twin (DT) allows for the interaction between operation data and the system dynamic performance. Among many DT studies, only a few focus on GT for thermal power plants. This study proposes a digital twin prototype framework including the following modules: process modeling, parameter estimation, and performance optimization. Provided with real-world power plant operational data, key performance parameters such as turbine inlet temperature (TIT) and specific fuel consumption (SFC) were initially unavailable, therefore necessitating further calculation using thermodynamic analysis. These parameters are then used as a target label for developing artificial neural networks (ANNs). Three ANN models with different structures are developed to predict TIT, SFC, and turbine power output (GTPO), achieving high R2 scores of 94.03%, 82.27%, and 97.59%, respectively. Physics-informed neural networks (PINNs) are then employed to estimate the values of the air–fuel ratio and combustion efficiency for each time index. The PINN-based estimation resulted in estimated values that align with the literature. Subsequently, an unconventional method of detecting alarms by using conformal prediction were also proposed, resulting in a significantly reduced number of alarms. The developed ANNs are then combined with particle swarm optimization (PSO) to carry out performance optimization in real time. GTPO and SFC are selected as the primary metrics for the optimization, with controllable parameters such as AFR and a fine-tuned inlet guide vane position. The results demonstrated that GTPO could be optimized with the application of conformal prediction when the true GTPO is detected to be higher than the upper range of GTPO obtained from the ANN model with a conformal prediction of a 95% confidence level. Multiple PSO variants were also compared and benchmarked to ensure an enhanced performance. The proposed PSO in this study has a lower mean loss compared to GEP. Furthermore, PSO has a lower computational cost compared to RS for hyperparameter tuning, as shown in this study. Ultimately, the proposed methods aim to enhance GT operations via a data-driven digital twin concept combination of deep learning and optimization algorithms. Full article
(This article belongs to the Special Issue Advancements in Gas Turbine Aerothermodynamics)
Show Figures

Graphical abstract

24 pages, 4757 KiB  
Article
Effect of Port-Injecting Isopropanol on Diesel Engine Performance and Emissions by Changing EGR Ratio and Charge Temperature
by Horng-Wen Wu, Po-Hsien He and Ting-Wei Yeh
Processes 2025, 13(7), 2224; https://doi.org/10.3390/pr13072224 - 11 Jul 2025
Viewed by 276
Abstract
Researchers have tended to blend isopropanol (IPA) with other fuels in diesel engines to reduce emissions and improve performance. However, low-reactivity controlled compression ignition via port injection at a low cetane number results in a well-mixed charge of low-reactivity fuel, air, and recirculated [...] Read more.
Researchers have tended to blend isopropanol (IPA) with other fuels in diesel engines to reduce emissions and improve performance. However, low-reactivity controlled compression ignition via port injection at a low cetane number results in a well-mixed charge of low-reactivity fuel, air, and recirculated exhaust gas (EGR). This study’s novel approach combines critical elements, such as the mass fraction of port-injected IPA, EGR ratio, and charge temperature, to improve combustion characteristics and lessen emissions from a diesel engine. The results demonstrated that the injection of IPA and the installation of EGR at the inlet reduced NOx, smoke, and PM2.5. On the contrary, HC and CO increased with the port-injection of IPA and EGR. Preheating air at the inlet can suppress the emissions of HC and CO. Under 1500 rpm and 60% load, when compared to diesel at the same EGR ratio and charge temperature, the maximum smoke decrease rate (26%) and PM2.5 decrease rate (21%) occur at 35% IPA, 45 °C, and 10% EGR, while the maximum NOx decrease rate (24%) occurs at 35% IPA, 60 °C, and 20% EGR. These findings support the novelty of the research. Conversely, it modestly increased CO and HC emissions. However, port-injecting IPA increased thermal efficiency by up to 24% at 60 °C, 1500 rpm, and 60% load with EGR. Full article
Show Figures

Figure 1

21 pages, 5436 KiB  
Article
Engine Optimization Model for Accurate Prediction of Friction Model in Marine Dual-Fuel Engine
by Mina Tadros
Algorithms 2025, 18(7), 415; https://doi.org/10.3390/a18070415 - 4 Jul 2025
Viewed by 368
Abstract
This paper presents an innovative engine optimization model integrated with a friction fitting tool to enhance the accuracy of computed performance for a marine dual-fuel engine. The focus is on determining the terms of the Chen–Flynn correlation—an empirical engine friction model—to improve the [...] Read more.
This paper presents an innovative engine optimization model integrated with a friction fitting tool to enhance the accuracy of computed performance for a marine dual-fuel engine. The focus is on determining the terms of the Chen–Flynn correlation—an empirical engine friction model—to improve the precision of friction and performance predictions. The developed model employs WAVE, a 1D engine simulation software, coupled with a nonlinear optimizer to identify the optimal configuration of key parameters, including the turbocharger, injection system, combustion behavior, and friction model. The optimization procedure maximizes the air–fuel ratio (AFR) within the engine while adhering to various predefined constraints. The model is applied to four operational points along the propeller curve, with the optimized results subsequently integrated into a friction fitting tool. This tool predicts the terms of the Chen–Flynn correlation through an updated procedure, achieving highly accurate results with a coefficient of determination (R2) value of 99.88%, eliminating the need for experimental testing. The optimized friction model provides a reliable foundation for future studies and applications, enabling precise friction predictions across various engine types and fuel compositions. Full article
Show Figures

Graphical abstract

20 pages, 1517 KiB  
Article
Development of a Linking System Between Vehicle’s Computer and Alexa Auto
by Jaime Paúl Ayala Taco, Kimberly Sharlenka Cerón, Alfredo Leonel Bautista, Alexander Ibarra Jácome and Diego Arcos Avilés
Designs 2025, 9(4), 84; https://doi.org/10.3390/designs9040084 - 2 Jul 2025
Viewed by 423
Abstract
The integration of intelligent voice-control systems represents a critical pathway for enhancing driver comfort and reducing cognitive distraction in modern vehicles. Currently, voice assistants capable of accessing real-time vehicular data (e.g., engine parameters) or controlling actuators (e.g., door locks) remain exclusive to premium [...] Read more.
The integration of intelligent voice-control systems represents a critical pathway for enhancing driver comfort and reducing cognitive distraction in modern vehicles. Currently, voice assistants capable of accessing real-time vehicular data (e.g., engine parameters) or controlling actuators (e.g., door locks) remain exclusive to premium brands. While aftermarket solutions like Amazon’s Echo Auto provide multimedia functionality, they lack access to critical vehicle systems. To address this gap, we develop a novel architecture leveraging the OBD-II port to enable voice-controlled telematics and actuation in mass-production vehicles. Our system interfaces with a Toyota Hilux (2020) and Mazda CX-3 SUV (2021), utilizing an MCP2515 CAN controller for engine control unit (ECU) communication, an Arduino Nano for data processing, and an ESP01 Wi-Fi module for cloud transmission. The Blynk IoT platform orchestrates data flow and provides user interfaces, while a Voiceflow-programmed Alexa skill enables natural language commands (e.g., “unlock doors”) via Alexa Auto. Experimental validation confirms the successful real-time monitoring of engine variables (coolant temperature, air–fuel ratio, ignition timing) and secure door-lock control. This work demonstrates that high-end vehicle capabilities—previously restricted to luxury segments—can be effectively implemented in series-production automobiles through standardized OBD-II protocols and IoT integration, establishing a scalable framework for next-generation in-vehicle assistants. Full article
(This article belongs to the Topic Vehicle Dynamics and Control, 2nd Edition)
Show Figures

Figure 1

11 pages, 1699 KiB  
Article
Optimization of the LIBS Technique in Air, He, and Ar at Atmospheric Pressure for Hydrogen Isotope Detection on Tungsten Coatings
by Salvatore Almaviva, Lidia Baiamonte and Marco Pistilli
J. Nucl. Eng. 2025, 6(3), 22; https://doi.org/10.3390/jne6030022 - 1 Jul 2025
Viewed by 334
Abstract
In current and future fusion devices, detecting hydrogen isotopes, particularly tritium and deuterium, implanted or redeposited on the surface of Plasma-Facing Components (PFCs) will be increasingly important to ensure safe machine operations. The Laser-Induced Breakdown Spectroscopy (LIBS) technique has proven capable of performing [...] Read more.
In current and future fusion devices, detecting hydrogen isotopes, particularly tritium and deuterium, implanted or redeposited on the surface of Plasma-Facing Components (PFCs) will be increasingly important to ensure safe machine operations. The Laser-Induced Breakdown Spectroscopy (LIBS) technique has proven capable of performing this task directly in situ, without handling or removing PFCs, thus limiting analysis times and increasing the machine’s duty cycle. To increase sensitivity and the ability to discriminate between isotopes, LIBS analysis can be performed under different background gases at atmospheric pressure, such as air, He, and Ar. In this work, we present the results obtained on tungsten coatings enriched with deuterium and/or hydrogen as a deuterium–tritium nuclear fuel simulant, measured with the LIBS technique in air, He, and Ar at atmospheric pressure, and discuss the pros and cons of their use. The results obtained demonstrate that both He and Ar can improve the LIBS signal resolution of the hydrogen isotopes compared to air. However, using Ar has the additional advantage that the same procedure can also be used to detect He implanted in PFCs as a product of fusion reactions without any interference. Finally, the LIBS signal in an Ar atmosphere increases in terms of the signal-to-noise ratio (SNR), enabling the use of less energetic laser pulses to improve performance in depth profiling analyses. Full article
(This article belongs to the Special Issue Fusion Materials with a Focus on Industrial Scale-Up)
Show Figures

Graphical abstract

19 pages, 2678 KiB  
Article
Simulation-Based Study of NH3/H2-Dual Fueled HCCI Engine Performance: Effects of Blending Ratio, Equivalence Ratio, and Compression Ratio Using Detailed Chemical Kinetic Modeling
by Fatimoh Balogun, Aneesh Vasudev, Alireza Kakoee, Katriina Sirviö and Maciej Mikulski
Processes 2025, 13(7), 2049; https://doi.org/10.3390/pr13072049 - 27 Jun 2025
Viewed by 371
Abstract
Challenges associated with the homogeneous charge combustion ignition (HCCI) concept include combustion phasing control and a narrow operating window. To address the HCCI engine developmental needs, chemical kinetic solvers have been recently included in the commercial engine simulation toolchains like GT-Suite v2024 upward. [...] Read more.
Challenges associated with the homogeneous charge combustion ignition (HCCI) concept include combustion phasing control and a narrow operating window. To address the HCCI engine developmental needs, chemical kinetic solvers have been recently included in the commercial engine simulation toolchains like GT-Suite v2024 upward. This study investigates the feasibility of ammonia (NH3) and hydrogen (H2) as dual fuels in homogenous charge compression ignition (HCCI) engines, leveraging chemical kinetics modeling via GT-Suite software v2024. A validated baseline model was adapted with NH3/H2 injectors and simulated across varying blending ratios (BR), compression ratios (CR), air–fuel equivalence ratios (ER), and engine speeds. Results reveal that adding 10% H2 to NH3 significantly improves ignition. Optimal performance was observed at a CR of 20 and a lean mixture, achieving higher indicated thermal efficiency (about 40%), while keeping the intrinsic advantages of zero-carbon fuel. However, NOx emissions increased with higher ER due to elevated combustion temperatures. The study emphasizes the trade-offs between efficiency and NOx emissions under tested conditions. Finally, despite the single-zone model limitations in neglecting thermal stratification, this study shows that kinetic modeling has great potential for effectively predicting trends in HCCI, thereby demonstrating the promise of NH3/H2 blends in HCCI engines for cleaner and efficient combustion, paving the way for advanced dual-fuel combustion concepts. Full article
Show Figures

Figure 1

31 pages, 4377 KiB  
Article
CFD Modelling and Experimental Validation of an Ethanol Spark-Ignition Heavy-Duty Engine
by Maria Cristina Cameretti, Roberta De Robbio, Raffaele Tuccillo, Diego Perrone and Teresa Castiglione
Energies 2025, 18(13), 3349; https://doi.org/10.3390/en18133349 - 26 Jun 2025
Viewed by 391
Abstract
The activity of the present work is part of a research project aimed at proposing a solution for off-grid charging stations relying on the adoption of a reciprocating engine fuelled with alternative renewable fuels. This technology has as its main advantage the zero-carbon [...] Read more.
The activity of the present work is part of a research project aimed at proposing a solution for off-grid charging stations relying on the adoption of a reciprocating engine fuelled with alternative renewable fuels. This technology has as its main advantage the zero-carbon emissions impact of biofuels with small modifications to current ICE technology and refuelling infrastructure. This research is founded on preliminary experimental tests carried out on a six-cylinder spark-ignition engine adapted to pure ethanol fuelling with a single-point injection system. The experimental results obtained at different engine loads have been useful to build and validate a CFD model by testing several kinetic mechanisms and for the proper calibration of a flame speed model. Nevertheless, due to the chemical and physical properties of alcohols such as ethanol, this type of fuelling system leads to a significant non-uniformity of the mixture among the cylinders, and in some cases, to rich air-to-fuel ratio; numerical simulations are performed to address such an issue, and to evaluate performance and exhaust emissions, in terms of CO, CO2, and NOx. Finally, a study on spark timing variation is presented as well, to study its effect on performance and pollutants. Full article
Show Figures

Figure 1

16 pages, 1390 KiB  
Article
A Fast-Time MATLAB Model of an Aeronautical Low-Temperature PEM Fuel Cell for Sustainable Propulsion and Compressor Behavior at Varying Altitudes
by Abolfazl Movahedian, Gianluca Marinaro and Emma Frosina
Sustainability 2025, 17(13), 5817; https://doi.org/10.3390/su17135817 - 24 Jun 2025
Viewed by 388
Abstract
The aviation sector significantly contributes to environmental challenges, including global warming and greenhouse gas emissions, due to its reliance on fossil fuels. Fuel cells present a viable alternative to conventional propulsion systems. In the context of light aircraft applications, proton exchange membrane fuel [...] Read more.
The aviation sector significantly contributes to environmental challenges, including global warming and greenhouse gas emissions, due to its reliance on fossil fuels. Fuel cells present a viable alternative to conventional propulsion systems. In the context of light aircraft applications, proton exchange membrane fuel cells (PEMFCs) have recently attracted growing interest as a substitute for internal combustion engines (ICEs). However, their performance is highly sensitive to altitude variations, primarily due to limitations in compressor efficiency and instability in cathode pressure. To address these challenges, this research presents a comprehensive numerical model that couples a PEMFC system with a dynamic air compressor model under altitude-dependent conditions ranging from 0 to 3000 m. Iso-efficiency lines were integrated into the compressor map to evaluate its behavior across varying environmental parameters. The study examines key fuel cell stack characteristics, including voltage, current, and net power output. The results indicate that, as altitude increases, ambient pressure and air density decrease, causing the compressor to work harder to maintain the required compression ratio at the cathode of the fuel cell module. This research provides a detailed prediction of compressor efficiency trends by implementing iso-efficiency lines into the compressor map, contributing to sustainable aviation and aligning with global goals for low-emission energy systems by supporting cleaner propulsion technologies for lightweight aircraft. Full article
Show Figures

Figure 1

28 pages, 11218 KiB  
Article
Transient Temperature Evaluation and Thermal Management Optimization Strategy for Aero-Engine Across the Entire Flight Envelope
by Weilong Gou, Shiyu Yang, Kehan Liu, Yuanfang Lin, Xingang Liang and Bo Shi
Aerospace 2025, 12(6), 562; https://doi.org/10.3390/aerospace12060562 - 19 Jun 2025
Viewed by 630
Abstract
With the enhancement of thermodynamic cycle parameters and heat dissipation constraints in aero-engines, effective thermal management has become a critical challenge to ensure safe and stable engine operation. This study developed a transient temperature evaluation model applicable to the entire flight envelope, considering [...] Read more.
With the enhancement of thermodynamic cycle parameters and heat dissipation constraints in aero-engines, effective thermal management has become a critical challenge to ensure safe and stable engine operation. This study developed a transient temperature evaluation model applicable to the entire flight envelope, considering fluid–solid coupling heat transfer on both the main flow path and fuel systems. Firstly, the impact of heat transfer on the acceleration and deceleration performance of a low-bypass-ratio turbofan engine was analyzed. The results indicate that, compared to the conventional adiabatic model, the improved model predicts metal components absorb 4.5% of the total combustor energy during cold-state acceleration, leading to a maximum reduction of 1.42 kN in net thrust and an increase in specific fuel consumption by 1.18 g/(kN·s). Subsequently, a systematic evaluation of engine thermal management performance throughout the complete flight mission was conducted, revealing the limitations of the existing thermal management design and proposing targeted optimization strategies, including employing Cooled Cooling Air technology to improve high-pressure turbine blade cooling efficiency, dynamically adjusting low-pressure turbine bleed air to minimize unnecessary losses, optimizing fuel heat sink utilization for enhanced cooling performance, and replacing mechanical pumps with motor pumps for precise fuel supply control. Full article
(This article belongs to the Special Issue Aircraft Thermal Management Technologies)
Show Figures

Figure 1

24 pages, 6176 KiB  
Article
Study of Ignition Process in an Aero Engine Combustor Based on Droplet Evaporation Characteristics Analyses
by Lei Sun, Rui Feng, Fangliang Wang and Xiwei Wang
Energies 2025, 18(12), 3130; https://doi.org/10.3390/en18123130 - 14 Jun 2025
Viewed by 425
Abstract
To study the coupling mechanism between droplet evaporation characteristics and flame propagation, in this paper, the ignition process in a single dome lean direct injection combustor is simulated by the Large Eddy Simulation (LES) method. A new concept, i.e., available droplet, and a [...] Read more.
To study the coupling mechanism between droplet evaporation characteristics and flame propagation, in this paper, the ignition process in a single dome lean direct injection combustor is simulated by the Large Eddy Simulation (LES) method. A new concept, i.e., available droplet, and a new parameter, i.e., available equivalence ratio, are innovatively introduced to accurately quantify fuel–air mixing characteristics and reveal flame propagation mechanisms. Simulation results show that the temporal variations in the locally available equivalence ratio during the ignition process can serve as a reliable indicator to identify the flame propagation direction. Moreover, the results show that during the ignition process, available droplets are mainly distributed in the regions where temperatures range from 650 K to 1200 K. The number percentage of available droplets in the combustor increases approximately exponentially to about 2.5% after 40 ms from the ignition. Additionally, the temperature fields and distributions of the available equivalence ratio at different moments during the ignition are also computed and analyzed. The results show that the volume percentage of flammable regions gradually increases from the ignition and eventually stabilizes at about 10% after 8 ms from the ignition. This result shows that during the ignition, the increase in regions whose available equivalence ratios fit flammability is a critical factor for ensuring stable flame development. The available droplet and available equivalence ratio can bridge the gap between droplet-scale evaporation and combustor-scale ignition dynamics, offering an analytical tool for optimizing ignition criteria in aero engine combustors. By analyzing the distributions and evolutions of available fuel rather than fuel vapor, this work can be utilized in design strategies for reliable ignition in extreme conditions. Full article
(This article belongs to the Special Issue Heat and Mass Transfer: Theory, Methods, and Applications)
Show Figures

Figure 1

20 pages, 2816 KiB  
Article
Swirling Flameless Combustion of Pure Ammonia Fuel
by Lizhen Qin, Hossein Ali Yousefi Rizi, Byeongjun Jeon and Donghoon Shin
Energies 2025, 18(12), 3104; https://doi.org/10.3390/en18123104 - 12 Jun 2025
Viewed by 374
Abstract
Ammonia combustion has garnered increasing attention due to its potential as a carbon-free fuel. Globally swirling flow in a rectangular furnace generates flameless conditions by high flue gas recirculation. The reverse air injection (RAI) technique enabled stable swirling flameless combustion of pure ammonia [...] Read more.
Ammonia combustion has garnered increasing attention due to its potential as a carbon-free fuel. Globally swirling flow in a rectangular furnace generates flameless conditions by high flue gas recirculation. The reverse air injection (RAI) technique enabled stable swirling flameless combustion of pure ammonia without auxiliary methods. Experiments with pure ammonia combustion in a swirling flameless furnace demonstrated an operable equivalence ratio (ER) range of 0.3–1.05, extending conventional flammability limits of pure ammonia as a fuel. NO emissions were reduced by 40% compared to conventional combustion, with peak concentrations of 1245 ppm at ER = 0.71 and near-zero emissions at ER = 1.05. Notably, flameless combustion exhibited lower temperature sensitivity in NO formation; however, the ER has a serious effect. Developing a simplified reaction model for ammonia combustion is crucial for computational fluid dynamics (CFD) research. A reduced kinetic mechanism comprising 36 reactions and 16 chemical species was introduced, specifically designed for efficient and precise modeling of pure ammonia flameless combustion. Combustion simulation using the eddy dissipation concept (EDC) approach confirmed the mechanism’s predictive capability, maintaining acceptable accuracy across the operating conditions. Full article
Show Figures

Figure 1

22 pages, 4924 KiB  
Article
Electrospun Polybenzimidazole Membranes: Fabrication and Fine-Tuning Through Physical and Statistical Approaches
by Emmanuel De Gregorio, Giuseppina Roviello, Valentina Naticchioni, Viviana Cigolotti, Alfonso Pozio, Luis Alexander Hein, Carlo De Luca, Claudio Ferone, Antonio Rinaldi and Oreste Tarallo
Polymers 2025, 17(12), 1594; https://doi.org/10.3390/polym17121594 - 6 Jun 2025
Viewed by 588
Abstract
Polybenzimidazole (PBI), a high-performance polymer known for its exceptional thermal stability and chemical resistance, was processed by solution electrospinning to manufacture fibrous non-woven membranes. The process was repeated under different conditions by adjusting four main settings: the polymer solution concentration, the flow rate, [...] Read more.
Polybenzimidazole (PBI), a high-performance polymer known for its exceptional thermal stability and chemical resistance, was processed by solution electrospinning to manufacture fibrous non-woven membranes. The process was repeated under different conditions by adjusting four main settings: the polymer solution concentration, the flow rate, the voltage applied between the needle and the collector, and the separating distance. To clarify the interplay between process parameters and material properties, a Design of Experiment (DOE) approach was used to systematically analyze the effects of said parameters on microstructural properties, including fiber diameter, porosity, and air permeability, pointing out that the increase in viscosity improves fiber uniformity, while optimizing the applied voltage and the needle–collector distance enhances jet stability and solvent evaporation, crucial for defect-free fibrous microstructures. Post-processing via calendering further refined the membrane texture and properties, for example by reducing porosity and air permeability without significantly altering the fibrous morphology, particularly at low lamination ratios. Thermal and mechanical evaluations highlighted that the obtained electrospun PBI membranes exhibited enhanced flexibility, but lower tensile strength compared to cast films due to the underlying open pore microstructure. This integrated approach—combining experimental characterization, DOE-guided optimization, and post-processing via calendering—provides a systematic framework for tailoring PBI membranes for specific applications, such as filtration, fuel cells, and molecular sieving. The findings highlight the potential of PBI-based electrospun membranes as versatile materials, offering high thermal stability, chemical resistance, and tunable properties, thereby establishing a foundation for further innovation in advanced polymeric membrane design and applications for energy and sustainability. Full article
Show Figures

Graphical abstract

Back to TopTop