A Fast-Time MATLAB Model of an Aeronautical Low-Temperature PEM Fuel Cell for Sustainable Propulsion and Compressor Behavior at Varying Altitudes
Abstract
1. Introduction
1.1. Background and Motivation
1.2. Literature Review
1.3. Research Contributions and Objectives
2. Materials and Methods
2.1. Fuel Cell Stack Model
2.2. Methodological Framework Overview
2.3. The Effect of Altitude on Air Consumption in PEM Fuel Cell
2.4. Compressor Model and Iso-Efficiency Map Integration
2.4.1. Compressor Design
2.4.2. Polynomial Fit for Iso-Efficiency Lines
2.5. PEMFC Model
2.5.1. Steady-State Modeling
Ideal Voltage
- and are the partial pressures at the anode and cathode, respectively.
- is the current density in [A/cm2].
- is the saturation pressure of water, evaluated with the following equation:
Voltage Losses
3. Results and Discussion
3.1. Fuel Cell Stack Voltage, Current and Power
3.2. Compressor Performance
3.3. Net Power and Stack Power
3.4. Cathode Pressure and Oxygen Pressure
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PEMFCs | Proton exchange membrane fuel cells |
ICEs | Internal combustion engines |
SAFs | Sustainable aviation fuels |
UAVs | Unmanned aerial vehicles |
ISA | International standard atmosphere |
References
- Massaro, M.C.; Biga, R.; Kolisnichenko, A.; Marocco, P.; Monteverde, A.H.A.; Santarelli, M. Potential and technical challenges of on-board hydrogen storage technologies coupled with fuel cell systems for aircraft electrification. J. Power Sources 2023, 555, 232397. [Google Scholar] [CrossRef]
- Available online: https://news.nationalgeographic.com/energy/2015/04/150409-epa-aviation-emissionsrules-for-airplanes/ (accessed on 29 June 2018).
- Frosina, E.; Senatore, A.; Palumbo, L.; Di Lorenzo, G.; Pascarella, C. Development of a lumped parameter model for an aeronautic hybrid electric propulsion system. Aerospace 2018, 5, 105. [Google Scholar] [CrossRef]
- Keiyinci, S.; Aydın, K. Conceptual Design of Fuel Cell Based Hybrid Unmanned Air Vehicle. Eur. Mech. Sci. 2021, 5, 14–20. [Google Scholar] [CrossRef]
- Zhang, W.; Li, C.; Jia, T.; Wang, S.; Hao, Q.; Yang, J. Evolutionary game analysis of sustainable aviation fuel promotion. Energy 2025, 322, 135723. [Google Scholar] [CrossRef]
- Chen, J.; He, H.; Quan, S.; Wei, Z.; Zhang, Z.; Wang, Y.X. Real-time power optimization based on PSO feedforward and perturbation & observation of fuel cell system for high altitude. Fuel 2024, 356, 129551. [Google Scholar]
- Zhao, D.; Hua, Z.; Dou, M.; Huangfu, Y. Control oriented modeling and analysis of centrifugal compressor working characteristic at variable altitude. Aerosp. Sci. Technol. 2018, 72, 174–182. [Google Scholar] [CrossRef]
- Meng, X.; Sun, C.; Mei, J.; Tang, X.; Hasanien, H.M.; Jiang, J.; Fan, F.; Song, K. Fuel cell life prediction considering the recovery phenomenon of reversible voltage loss. J. Power Sources 2025, 625, 235634. [Google Scholar] [CrossRef]
- Haraldsson, K.; Alvfors, P. Effects of ambient conditions on fuel cell vehicle performance. J. Power Sources 2005, 145, 298–306. [Google Scholar] [CrossRef]
- Liu, X.; Guo, H.; Ye, F.; Ma, C.F. Water flooding and pressure drop characteristics in flow channels of proton exchange membrane fuel cells. Electrochim. Acta 2007, 52, 3607–3614. [Google Scholar] [CrossRef]
- Atkinson, R.W.; Hazard, M.W.; Rodgers, J.A.; Stroman, R.O.; Gould, B.D. An open-cathode fuel cell for atmospheric flight. J. Electrochem. Soc. 2016, 164, F46. [Google Scholar] [CrossRef]
- González-Espasandín, Ó.; Leo, T.J.; Raso, M.A.; Navarro, E. Direct methanol fuel cell (DMFC) and H2 proton exchange membrane fuel (PEMFC/H2) cell performance under atmospheric flight conditions of Unmanned Aerial Vehicles. Renew. Energy 2019, 130, 762–773. [Google Scholar] [CrossRef]
- Chen, H.; Guo, H.; Ye, F.; Ma, C.F. An experimental study of cell performance and pressure drop of proton exchange membrane fuel cells with baffled flow channels. J. Power Sources 2020, 472, 228456. [Google Scholar] [CrossRef]
- Schröter, J.; Graf, T.; Frank, D.; Bauer, C.; Kallo, J.; Willich, C. Influence of pressure losses on compressor performance in a pressurized fuel cell air supply system for airplane applications. Int. J. Hydrogen Energy 2021, 46, 21151–21159. [Google Scholar] [CrossRef]
- Gong, C.; Xing, L.; Liang, C.; Tu, Z. Modeling and dynamic characteristic simulation of air-cooled proton exchange membrane fuel cell stack for unmanned aerial vehicle. Renew. Energy 2022, 188, 1094–1104. [Google Scholar] [CrossRef]
- Meng, H.; Yu, X.; Luo, X.; Tu, Z. Modelling and operation characteristics of air-cooled PEMFC with metallic bipolar plate used in unmanned aerial vehicle. Energy 2024, 300, 131559. [Google Scholar] [CrossRef]
- Donateo, T. Simulation approaches and validation issues for open-cathode fuel cell systems in manned and unmanned aerial vehicles. Energies 2024, 17, 900. [Google Scholar] [CrossRef]
- Willich, C.; Frank, D.; Graf, T.; Wazlawik, S.; Brandao, S.; Bauer, C. High-Altitude Operation of a Commercial 100 kW PEM Fuel Cell System. Energies 2024, 17, 6309. [Google Scholar] [CrossRef]
- Gao, L.; Wang, X. Intelligent Control of the Air Compressor (AC) and Back Pressure Valve (BPV) to Improve PEMFC System Dynamic Response and Efficiency in High Altitude Regions. Eng 2025, 6, 19. [Google Scholar] [CrossRef]
- Wei, Z.; Jiang, F.; Meng, S.; Li, M.; He, H. Cathodic modelling and control for PEMFC in variable altitude environment. Chem. Eng. J. 2025, 507, 160475. [Google Scholar] [CrossRef]
- Piqueras, P.; de la Morena, J.; Sanchis, E.J.; Saadouni, I. An Analysis of the Altitude Impact on Roots Compressor Operation for a Fuel Cell System. Appl. Sci. 2025, 15, 5513. [Google Scholar] [CrossRef]
- Jacobson, M.Z.J.A. Fundamentals of Atmospheric Modeling; Cambridge University Press: Cambridge, UK, 2002; pp. 50–60. [Google Scholar]
- Cavcar, M. The international standard atmosphere (ISA). Sci. Res. 2000, 30, 1–6. [Google Scholar]
- Turns, S.R.; Pauley, L.L. Thermodynamics: Concepts and Applications; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar]
- Salah, I.M. Modelling, Simulation and Performance Evaluation: PEM Fuel Cells for High Altitude UAS. Ph.D. Thesis, Sheffield Hallam University, Sheffield, UK, 2015. [Google Scholar]
- Pukrushpan, J.T. Modeling and Control of Fuel Cell Systems and Fuel Processors. Ph.D. Thesis, University of Michigan, En Arbor, MI, USA, 2003. [Google Scholar]
- Moraal, P.; Kolmanovsky, I. Turbocharger Modeling for Automotive Control Applications; SAE Technical Paper; SAE: Warrendale, PA, USA, 1999. [Google Scholar]
- Amphlett, J.C.; Baumert, R.M.; Mann, R.F.; Peppley, B.A.; Roberge, P.R.; Harris, T.J. Performance modeling of the Ballard Mark IV solid polymer electrolyte fuel cell: II. Empirical model development. J. Electrochem. Soc. 1995, 142, 9. [Google Scholar] [CrossRef]
- Springer, T.E.; Zawodzinski, T.A.; Gottesfeld, S. Polymer electrolyte fuel cell model. J. Electrochem. Soc. 1991, 138, 2334. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Symbol | Description | Value | Unit |
---|---|---|---|
Motor mechanical efficiency | 0.98 | ||
Torque constant of the motor | 0.0153 | ||
Speed constant of the motor | 0.0153 | ||
Resistance of the compressor motor | 0.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Movahedian, A.; Marinaro, G.; Frosina, E. A Fast-Time MATLAB Model of an Aeronautical Low-Temperature PEM Fuel Cell for Sustainable Propulsion and Compressor Behavior at Varying Altitudes. Sustainability 2025, 17, 5817. https://doi.org/10.3390/su17135817
Movahedian A, Marinaro G, Frosina E. A Fast-Time MATLAB Model of an Aeronautical Low-Temperature PEM Fuel Cell for Sustainable Propulsion and Compressor Behavior at Varying Altitudes. Sustainability. 2025; 17(13):5817. https://doi.org/10.3390/su17135817
Chicago/Turabian StyleMovahedian, Abolfazl, Gianluca Marinaro, and Emma Frosina. 2025. "A Fast-Time MATLAB Model of an Aeronautical Low-Temperature PEM Fuel Cell for Sustainable Propulsion and Compressor Behavior at Varying Altitudes" Sustainability 17, no. 13: 5817. https://doi.org/10.3390/su17135817
APA StyleMovahedian, A., Marinaro, G., & Frosina, E. (2025). A Fast-Time MATLAB Model of an Aeronautical Low-Temperature PEM Fuel Cell for Sustainable Propulsion and Compressor Behavior at Varying Altitudes. Sustainability, 17(13), 5817. https://doi.org/10.3390/su17135817