Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (129)

Search Parameters:
Keywords = aging microplastics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 1388 KB  
Article
Combined Environmental Impacts and Toxicological Interactions of Per- and Polyfluoroalkyl Substances (PFAS) and Microplastics (MPs)
by Christina M. Brenckman, Ashish D. Borgaonkar, William H. Pennock and Jay N. Meegoda
Environments 2026, 13(1), 38; https://doi.org/10.3390/environments13010038 - 8 Jan 2026
Viewed by 642
Abstract
Pervasive microplastics (MPs) and per- and polyfluoroalkyl substances (PFAS) frequently co-occur across aquatic and terrestrial environments due to shared sources, transport pathways, and persistence, yet their interaction-driven effects on environmental fate, bioavailability, and toxicity remain incompletely resolved. This review critically synthesizes current knowledge [...] Read more.
Pervasive microplastics (MPs) and per- and polyfluoroalkyl substances (PFAS) frequently co-occur across aquatic and terrestrial environments due to shared sources, transport pathways, and persistence, yet their interaction-driven effects on environmental fate, bioavailability, and toxicity remain incompletely resolved. This review critically synthesizes current knowledge on the environmental co-occurrence of MPs and PFAS, the physicochemical mechanisms governing their interactions, and the resulting ecological and toxicological consequences across aquatic, terrestrial, and biological systems. Emphasis is placed on sorption and desorption processes; environmental modifiers such as pH, salinity, dissolved organic matter (DOM), and aging; and biological responses under combined exposure scenarios. Across laboratory and field studies, MPs–PFAS co-exposure is frequently associated with altered PFAS partitioning and enhanced organismal uptake, with reported bioaccumulation increases of up to ~2.5-fold relative to PFAS-only exposures. These changes are often accompanied by amplified oxidative stress, immune dysregulation, metabolic disturbance, and reproductive impairment, particularly in aquatic invertebrates and early life stages of fish. Evidence further indicates that the magnitude and direction of combined effects depend on polymer type, particle size, surface aging, and biological context, underscoring the highly system-specific nature of MPs–PFAS interactions. By integrating findings from environmental monitoring, laboratory toxicology, and mechanistic and modeling studies, this review identifies key knowledge gaps related to nanoplastics detection, environmentally realistic exposure conditions, sorption reversibility, and mixture toxicity assessment. Collectively, these insights highlight limitations in current single-contaminant risk frameworks and underscore the importance of incorporating MPs-mediated PFAS transport and bioavailability into exposure assessment and regulatory evaluation. Full article
Show Figures

Figure 1

15 pages, 513 KB  
Article
Frequent Plastic Usage Behavior and Lack of Microplastic Awareness Correlates with Cognitive Decline: A Cross-Sectional Survey
by Pukovisa Prawiroharjo, Anyelir Nielya Mutiara Putri, Noryanto Ikhromi, Aldithya Fakhri, Elizabeth Divina, Rani Permata, Aileen Gabrielle, Violine Martalia and Agustyno Zulys
Int. J. Environ. Res. Public Health 2026, 23(1), 67; https://doi.org/10.3390/ijerph23010067 - 1 Jan 2026
Viewed by 356
Abstract
Introduction: Microplastics (MPs) are widespread environmental pollutants with possible neurotoxic effects. Exploring links between plastic use, MP awareness, and cognition is key for assessing public health risks. Objective: To examine correlations between plastic consumption, MP awareness and attitudes, and neurocognitive function among Greater [...] Read more.
Introduction: Microplastics (MPs) are widespread environmental pollutants with possible neurotoxic effects. Exploring links between plastic use, MP awareness, and cognition is key for assessing public health risks. Objective: To examine correlations between plastic consumption, MP awareness and attitudes, and neurocognitive function among Greater Jakarta residents. Methods: A cross-sectional survey of 562 adults used a validated e-questionnaire covering plastic usage, MP knowledge, attitudes, risk perception, and cognition via the Ascertain Dementia 8 (AD-8). Analyses included chi-square, t-tests, and logistic regression. Results: Suspected cognitive impairment (AD-8 ≥ 2) was observed in 44.5% of respondents. High single-use plastic consumption correlated with worse cognition (p = 0.032), while reusable plastic use showed no association (p = 0.605). Awareness of MPs was relatively low, with 19.4% of respondents having never heard of them. Awareness and knowledge also varied significantly by age (p = 0.007), gender (p = 0.004), and education level (p = 0.027). Positive attitudes and higher risk perception aligned with greater awareness (p < 0.001) but not cognitive scores. Risk perception influenced bottled water use (p = 0.009), with low-risk groups consuming more. Conclusions: Frequent single-use plastic consumption is linked to poorer cognition, while MP awareness and risk perception do not directly affect cognitive outcomes. Educational strategies may enhance awareness and reduce exposure. Full article
Show Figures

Figure 1

17 pages, 1315 KB  
Article
Evolution of Microplastic Properties and Tetracycline Adsorption During Aging in Laboratory and Natural Environments
by Yunhang Wang, Qihong Miao, Qi An and Hongbo Fu
Atmosphere 2026, 17(1), 32; https://doi.org/10.3390/atmos17010032 - 26 Dec 2025
Viewed by 243
Abstract
With the continuous rise in global plastic production and emissions, microplastics (MPs) have become ubiquitous across environmental compartments, including the atmosphere. Aging in natural settings substantially alters MP physicochemical properties and, in turn, their interactions with coexisting contaminants. Here, polyethylene (PE), polyethylene terephthalate [...] Read more.
With the continuous rise in global plastic production and emissions, microplastics (MPs) have become ubiquitous across environmental compartments, including the atmosphere. Aging in natural settings substantially alters MP physicochemical properties and, in turn, their interactions with coexisting contaminants. Here, polyethylene (PE), polyethylene terephthalate (PET), and polystyrene (PS) were subjected to ultraviolet (UV)-accelerated aging and natural exposure in marine intertidal zones, freshwater lakes, and the atmosphere, and changes in their properties and tetracycline (TC) adsorption were systematically compared. Aging intensity followed the order seawater > freshwater > air. Fourier-transform infrared spectroscopy showed the formation and enrichment of oxygen-containing functional groups, and naturally aged samples exhibited stronger oxidation signatures than those aged solely under UV irradiation. Adsorption kinetics indicated higher equilibrium capacities and rate constants for aged MPs; after 324 h of UV exposure in seawater, TC adsorption on PE, PS, and PET increased by 64.6%, 56.6%, and 64.0%, respectively. Mechanistic analysis suggests that surface roughening, oxygenated functional groups, and enhanced negative surface charge collectively promote TC adsorption, dominated by electrostatic interactions and hydrogen bonding. These findings not only elucidate how different aging pathways modulate the interactions between MPs and pollutants but also offer new insights into assessing the carrier potential of microplastics in environments such as the atmosphere and their adsorption of other contaminants. Full article
(This article belongs to the Special Issue Chemical Characterization of Urban Air Pollution)
Show Figures

Graphical abstract

16 pages, 9643 KB  
Article
Synergistically Enhanced Ta2O5/AgNPs SERS Substrate Coupled with Deep Learning for Ultra-Sensitive Microplastic Detection
by Chenlong Zhao, Yaoyang Wang, Shuo Cheng, Yuhang You, Yi Li and Xianwu Xiu
Materials 2026, 19(1), 90; https://doi.org/10.3390/ma19010090 - 25 Dec 2025
Viewed by 332
Abstract
Herein, a high-performance Ta2O5/AgNPs composite Surface-Enhanced Raman Scattering (SERS) substrate is engineered for highly sensitive detection of microplastics. Through morphology modulation and band-gap engineering, the semiconductor Ta2O5 is structured into spheres and composited with silver nanoparticles [...] Read more.
Herein, a high-performance Ta2O5/AgNPs composite Surface-Enhanced Raman Scattering (SERS) substrate is engineered for highly sensitive detection of microplastics. Through morphology modulation and band-gap engineering, the semiconductor Ta2O5 is structured into spheres and composited with silver nanoparticles (AgNPs), facilitating efficient charge transfer and localized surface plasmon resonance (LSPR). This architecture integrates electromagnetic (EM) and chemical (CM) enhancement mechanisms, achieving an ultra-low detection limit of 10−13 M for rhodamine 6G (R6G) with excellent linearity. Furthermore, the three-dimensional “pseudo-Neuston” network structure exhibits superior capture capability for microplastics (PS, PET, PMMA). To address spectral interference in simulated complex environments, a multi-scale deep-learning model combining wavelet transform, Convolutional Neural Networks (CNN), and Transformers is proposed. This model achieves a classification accuracy of 98.7% under high-noise conditions, significantly outperforming traditional machine learning methods. This work presents a robust strategy for environmental monitoring, offering a novel solution for precise risk assessment of microplastic pollution. Full article
Show Figures

Graphical abstract

15 pages, 3086 KB  
Article
Hydrodynamic Aging Process Altered Benzo(a)pyrene Adsorption on Poly(butylene adipate-co-terephthalate) and Poly(butylene succinate) Microplastics in Seawater
by Xiaotao Liu, Yuexia Feng, Xueting Hua, Jian Lu and Jun Wu
Sustainability 2025, 17(24), 11344; https://doi.org/10.3390/su172411344 - 18 Dec 2025
Viewed by 216
Abstract
The environmental behavior of biodegradable plastics under long-term hydrodynamic aging processes in seawater remains poorly understood, although plastic pollution has attracted global concern. This study obtained poly(butylene adipate-co-terephthalate) (PBAT) and poly(butylene succinate) (PBS) microplastics that endured 36-month hydrodynamic aging in seawater to elucidate [...] Read more.
The environmental behavior of biodegradable plastics under long-term hydrodynamic aging processes in seawater remains poorly understood, although plastic pollution has attracted global concern. This study obtained poly(butylene adipate-co-terephthalate) (PBAT) and poly(butylene succinate) (PBS) microplastics that endured 36-month hydrodynamic aging in seawater to elucidate their physicochemical transformations and interactions with benzo(a)pyrene (BaP). Hydrodynamic aging markedly altered surface morphology, generated cracks and pores, and enriched -C=O and -OH groups, indicating oxidative degradation. Adsorption experiments showed that BaP adsorption capacity of virgin PBAT/PBS reached 213.3/235.3 μg g−1, while it increased to 233.3/258.2 μg g−1 after hydrodynamic aging in seawater. Elevated salinity and alkaline conditions reduced BaP adsorption on microplastics. Notably, hydrodynamic aging mitigated the risk of BaP desorption from PBAT in ectothermic organisms. Gibbs free energy calculations indicated that the adsorption process was primarily driven by hydrophobic effects, hydrogen bonding, and van der Waals forces. These findings highlight that long-term hydrodynamic aging substantially modifies the interfacial properties of biodegradable plastics to alter their capacity for mediating the environmental fate of hydrophobic organic pollutants in marine ecosystems. Full article
(This article belongs to the Special Issue Plastic Pollution Reduction and Sustainable Marine Ecosystems)
Show Figures

Graphical abstract

26 pages, 3186 KB  
Review
Wastewater-Derived Microplastics as Carriers of Aromatic Organic Contaminants (AOCs): A Critical Review of Ageing, Sorption Mechanisms, and Environmental Implications
by Zuzanna Prus and Katarzyna Styszko
Int. J. Mol. Sci. 2025, 26(23), 11758; https://doi.org/10.3390/ijms262311758 - 4 Dec 2025
Viewed by 657
Abstract
Wastewater-derived microplastics (WW-MPs) are increasingly recognised as reactive vectors for aromatic organic contaminants (AOCs), yet their role in contaminant fate remains insufficiently constrained. This review synthesises current knowledge on the transformation of microplastics in wastewater treatment plants, including fragmentation, oxidative ageing, additive leaching, [...] Read more.
Wastewater-derived microplastics (WW-MPs) are increasingly recognised as reactive vectors for aromatic organic contaminants (AOCs), yet their role in contaminant fate remains insufficiently constrained. This review synthesises current knowledge on the transformation of microplastics in wastewater treatment plants, including fragmentation, oxidative ageing, additive leaching, and biofilm formation, and links these processes to changes in sorption capacity toward phenols, PAHs and their derivatives, and organochlorine pesticides (OCPs). We summarise the dominant adsorption mechanisms-hydrophobic partitioning, π-π interactions, hydrogen bonding, and electrostatic and, in some cases, halogen bonding-and critically evaluate how wastewater-relevant parameters (pH, ionic strength, dissolved organic matter, temperature, and biofilms) can modulate these interactions. Evidence in the literature consistently shows that ageing and biofouling enhance WW-MP affinity for many AOCs, reinforcing their function as mobile carriers. However, major gaps persist, including limited data on real wastewater-aged MPs, lack of methodological standardisation, and incomplete representation of ageing, competitive sorption, and non-equilibrium diffusion in existing isotherm and kinetic models. We propose key descriptors that should be incorporated into future sorption and fate frameworks and discuss how WW-MP-AOC interactions may influence ecological exposure, bioavailability, and risk assessment. This critical analysis supports more realistic predictions of AOC behaviour in wastewater environments. Full article
(This article belongs to the Special Issue Molecular Research on Micropollutants in Various Enviroments)
Show Figures

Figure 1

34 pages, 9898 KB  
Article
Physiological and Multi-Omics Insights into Trichoderma harzianum Alleviating Aged Microplastic Stress in Nicotiana benthamiana
by Feiyan Wang, Xiaoyan Sun, Ke Wang, Bibo Long, Fayong Li and Dong Xie
Int. J. Mol. Sci. 2025, 26(23), 11667; https://doi.org/10.3390/ijms262311667 - 2 Dec 2025
Viewed by 391
Abstract
Microplastics derived from biodegradable PBAT film, widely used in agriculture, pose ecological and biological hazards. This study explores how Trichoderma harzianum T4 mitigates this microplastic-induced stress in Nicotiana benthamiana. Using five experimental setup-control (CK), low/high-dose aged microplastics (MP80/MP320), and their co-treatments with [...] Read more.
Microplastics derived from biodegradable PBAT film, widely used in agriculture, pose ecological and biological hazards. This study explores how Trichoderma harzianum T4 mitigates this microplastic-induced stress in Nicotiana benthamiana. Using five experimental setup-control (CK), low/high-dose aged microplastics (MP80/MP320), and their co-treatments with T. harzianum T4 (MP80+T4/MP320+T4), multi-omics analyses reveal the microplastic stress-alleviating mechanisms of T. harzianum T4. Aged microplastics significantly inhibit plant growth, promote reactive oxygen species (ROS) and malondialdehyde (MDA) accumulation, and disrupt metabolic homeostasis. Conversely, T. harzianum T4 activates the plant antioxidant defense system, reducing ROS/MDA levels and upregulating superoxide dismutase (SOD)/peroxidase (POD) activities, and promotes biomass. Transcriptomic analysis shows T. harzianum T4 reverses gene expression patterns disrupted by microplastics, particularly in DNA replication and pentose–glucuronic acid pathways. Metagenomic sequencing indicates T. harzianum T4 restores soil microbial diversity, increases the abundance of Bacteroidota and Myxococcota, downregulates antibiotic resistance genes (e.g., tetA5, MDR), and upregulates carbohydrate-active enzymes (CAZys), thereby enhancing carbon metabolism. In conclusion, T. harzianum T4 alleviates microplastic stress through a tripartite mechanism: activating plant stress-response gene networks, reshaping soil microbial communities, and modulating functional gene expression, offering a promising bioremediation strategy. Full article
(This article belongs to the Special Issue Abiotic Stress in Plants: Physiological and Molecular Responses)
Show Figures

Figure 1

13 pages, 3931 KB  
Communication
Promoting Biofilm Formation by Serratia marcescens on Three Types of Artificially Aged Microplastics Under Marine Conditions
by Manildo Marcião de Oliveira, Nikolas Gomes Silveira de Souza, Rachel Ann Hauser-Davis, Renato Matos Lopes, Victor Barbosa Saraiva, Ocimar Ferreira de Andrade, Jader Lugon, Antônio Silva Neto, Carla C. C. R. de Carvalho and Ramiro Neves
Microplastics 2025, 4(4), 95; https://doi.org/10.3390/microplastics4040095 - 1 Dec 2025
Viewed by 550
Abstract
Bacterial biofilms on different types of microplastics in aquatic environments have become an increasing ecological and public health concern. In this context, this study investigated biofilm formation on virgin and aged microplastics under marine conditions. Serratia marcescens biofilm formation was observed on both [...] Read more.
Bacterial biofilms on different types of microplastics in aquatic environments have become an increasing ecological and public health concern. In this context, this study investigated biofilm formation on virgin and aged microplastics under marine conditions. Serratia marcescens biofilm formation was observed on both virgin and aged polyethylene particles after 7 days, with no significant changes by day 14. Concerning polypropylene microplastics, biofilms developed on aged particles but were not detectable on virgin particles, likely due to interference from the polypropylene red color matching S. marcescens cells. In contrast, expanded polystyrene spheres showed an initial biofilm formation that dissipated by day 14, potentially due to toxic residues from photooxidation, including potential styrene monomers and other chemical additives, inhibiting biofilm persistence. These findings indicate differences in biofilm formation across microplastics types, which may influence microplastic buoyancy and ecological impacts. Thus, microplastic color and additives should be considered in future studies on microplastics biofilm formation and biofouling. Full article
Show Figures

Figure A1

25 pages, 5026 KB  
Review
The Microplastic–PFAS Nexus: From Co-Occurrence to Combined Toxicity in Aquatic Environments
by Ping Wang, Yu-Zhen Shi and Qingqing Guan
Toxics 2025, 13(12), 1041; https://doi.org/10.3390/toxics13121041 - 30 Nov 2025
Viewed by 1252
Abstract
The pervasive environmental contamination by microplastics (MPs) and per- and polyfluoroalkyl substances (PFAS) represents a critical challenge of the Anthropocene. While historically studied in isolation, a growing body of evidence confirms that these pollutants interact to form a complex and dynamic MP-PFAS Nexus. [...] Read more.
The pervasive environmental contamination by microplastics (MPs) and per- and polyfluoroalkyl substances (PFAS) represents a critical challenge of the Anthropocene. While historically studied in isolation, a growing body of evidence confirms that these pollutants interact to form a complex and dynamic MP-PFAS Nexus. This review synthesizes current knowledge to elucidate the multifaceted mechanisms of this interaction, where MPs act as vectors, concentrators, and secondary sources for PFAS. We detail how environmental aging and water chemistry modulate adsorption and transport, fundamentally altering the fate of both contaminants. Crucially, the review consolidates evidence demonstrating that co-exposure often leads to synergistic toxicity, disrupting physiological processes from photosynthesis in algae to lipid metabolism and neurogenesis in animals, with significant implications for trophic transfer. The nexus also presents formidable challenges for water treatment and soil remediation, while simultaneously offering opportunities for targeted destructive technologies like pyrolysis. Furthermore, we explore the emerging threats of this complex to human health via seafood and water, and the amplifying feedback of climate change. Finally, we argue that current regulatory frameworks, which assess pollutants individually, are inadequate and must evolve to account for combined effects. This review underscores the imperative to reframe MPs and PFAS as an interconnected pollutant system, necessitating integrated research and policy for effective environmental risk assessment and management. Full article
(This article belongs to the Section Emerging Contaminants)
Show Figures

Graphical abstract

12 pages, 2172 KB  
Article
Micro/Nanoplastics Alter Daphnia magna Life History by Disrupting Glucose Metabolism and Intestinal Structure
by Biying Zhao, Chaoyang Zhang, Chunliu Wang and Hai-Ming Zhao
Sustainability 2025, 17(23), 10728; https://doi.org/10.3390/su172310728 - 30 Nov 2025
Viewed by 615
Abstract
Microplastic pollution poses growing risks to aquatic zooplankton, yet its impact on Daphnia magna life history remains incompletely understood. This study explored the influences of micro/nanoplastics (MPs/NPs) on D. magna by exposing organisms to size- and concentration-varied microplastics, tracking microplastic distribution via fluorescence [...] Read more.
Microplastic pollution poses growing risks to aquatic zooplankton, yet its impact on Daphnia magna life history remains incompletely understood. This study explored the influences of micro/nanoplastics (MPs/NPs) on D. magna by exposing organisms to size- and concentration-varied microplastics, tracking microplastic distribution via fluorescence imaging. Results demonstrated significant microplastic-induced impairments in growth and reproduction. Gut microbiota analysis revealed microplastic-altered microbial communities, with functional prediction identifying disrupted glucose metabolism as a key driver of life-history changes. Intestinal structure observations further showed microplastic-accelerated aging. Collectively, our findings highlight that microplastic accumulation in D. magna disrupts gut microbiota and tissue integrity, ultimately impairing life-history traits. These alterations in growth and gut characteristics of D. magna may further propagate through the aquatic food web, potentially damaging the intestinal structure and function of plankton communities. Given the pivotal role of zooplankton in nutrient cycling and energy transfer, our findings underscore that microplastic-induced disruptions in key species like D. magna could threaten the stability and sustainability of aquatic ecosystems. Full article
Show Figures

Graphical abstract

28 pages, 2441 KB  
Review
Microplastic Behavior in Sludge Pretreatment and Anaerobic Digestion: Impacts, Mechanistic Insights, and Mitigation Strategies
by Peng Yue and Rongwei Chen
Sustainability 2025, 17(23), 10471; https://doi.org/10.3390/su172310471 - 22 Nov 2025
Viewed by 685
Abstract
Microplastics (MPs) are increasingly reported as contaminants in sewage sludge, with wastewater treatment plants retaining approximately 103–106 particles kg−1 of dry sludge. Anaerobic digestion (AD), widely applied for sludge stabilization and energy recovery, does not consistently remove these particles; [...] Read more.
Microplastics (MPs) are increasingly reported as contaminants in sewage sludge, with wastewater treatment plants retaining approximately 103–106 particles kg−1 of dry sludge. Anaerobic digestion (AD), widely applied for sludge stabilization and energy recovery, does not consistently remove these particles; MPs frequently persist and, at elevated or sensitive loadings, have been shown to affect methane production, microbial communities and sludge quality. In parallel, thermal hydrolysis and related pretreatments are being implemented at full scale to enhance sludge biodegradability, exposing embedded MPs to high temperature and pressure prior to AD. This review compiles and analyzes experimental studies on MPs in sludge pretreatment and AD systems, with an emphasis on how pretreatment severity, MP type, particle size and concentration influence MP transformation and process performance. Reported data indicate that intensified pretreatment accelerates MP aging, causing fragmentation, oxidative surface modification and additive release, while subsequent AD generally induces limited further MP degradation but can be negatively affected through reduced methane yields, shifts in microbial consortia and altered behavior of co-contaminants. Mechanisms implicated include leaching of plastic additives, enhanced oxidative and physiological stress, and formation of plastisphere biofilms that perturb syntrophic interactions. Mitigation approaches, including optimized thermal hydrolysis–AD configurations and the use of carbonaceous sorbents, are assessed with regard to their effects on MP-associated inhibition and their practical constraints. Analytical limitations, uncertainties in MP mass balances and environmental fate, and key research needs for evaluating MP risks and designing MP-resilient sludge treatment and biosolid management strategies are identified. Full article
(This article belongs to the Section Pollution Prevention, Mitigation and Sustainability)
Show Figures

Figure 1

23 pages, 602 KB  
Review
Environmental Pollution, Endocrine Disruptors, and Metabolic Status: Impact on Female Fertility—A Narrative Review
by Cristina-Diana Popescu, Romina Marina Sima, Mircea-Octavian Poenaru, Ancuta-Alina Constantin, Gabriel-Petre Gorecki, Andrei-Sebastian Diaconescu, Mara Mihai, Cristian-Valentin Toma and Liana Pleș
Reprod. Med. 2025, 6(4), 37; https://doi.org/10.3390/reprodmed6040037 - 18 Nov 2025
Viewed by 1895
Abstract
Objectives: Female fertility is increasingly threatened by environmental pollutants such as fine particulate matter (PM2.5 and NO2), endocrine-disrupting chemicals (BPA, phthalates, PFAS, and PCBs), and microplastics. These exposures are associated with impaired ovarian reserve, reduced implantation rates, and lower [...] Read more.
Objectives: Female fertility is increasingly threatened by environmental pollutants such as fine particulate matter (PM2.5 and NO2), endocrine-disrupting chemicals (BPA, phthalates, PFAS, and PCBs), and microplastics. These exposures are associated with impaired ovarian reserve, reduced implantation rates, and lower assisted reproductive technology (ART) success. Given the rising prevalence of obesity and weight-loss interventions, particularly bariatric surgery, understanding the combined influence of metabolic and environmental factors on reproductive outcomes is of critical importance. This review aimed to synthesize recent evidence on how these exposures interact to affect female fertility. Methods: A narrative review was conducted of studies published between 2019 and 2025 using PubMed, Google Scholar, Web of Science, and Wiley Online Library. The PubMed Boolean search string was “female fertility”, “ovarian function”, “IVF” and “pollution”, “endocrine disruptors”, “air pollutants”, and “microplastics”. Searches were limited to English language publications, with the last search performed on 30 March 2025. Human, animal, and in vitro data were screened separately. Human evidence was prioritized, and confounding factors (age, BMI, and smoking) were considered during interpretation. Results: Environmental pollutants were consistently associated with diminished ovarian reserve, poor oocyte quality, and reduced live birth rates in ART. PFAS exposure correlated with lower fecundability, while PM2.5 and NO2 were linked to decreased AMH and AFC levels. Mechanistic animal and in vitro studies support these findings through pathways involving oxidative stress, endocrine disruption, and epigenetic alterations. Rapid metabolic changes, particularly post-bariatric surgery, may transiently increase circulating lipophilic toxicants and reduce antioxidant defenses, amplifying reproductive vulnerability. Conclusions: Environmental exposures, especially PM2.5, NO2, PFAS, and microplastics, adversely influence ovarian and embryonic competence. Rapid metabolic transitions may further modulate this susceptibility through pollutant mobilization and micronutrient imbalances. Future interdisciplinary prospective studies integrating exposure monitoring, metabolic profiling, and reproductive endpoints are essential to guide clinical recommendations and precision fertility counseling. Full article
(This article belongs to the Collection Reproductive Medicine in Europe)
Show Figures

Figure 1

16 pages, 2209 KB  
Article
Effects of Aged Biodegradable Plastics and Antibiotics on the Conjugative Transfer of Antibiotic Resistance Genes Between Bacteria
by Xiaomei Liu, Songyu Shi, Mengzhen Yin, Xinyue Xu, Shuwen He and Shakeel Ahmad
Sustainability 2025, 17(22), 9981; https://doi.org/10.3390/su17229981 - 8 Nov 2025
Cited by 1 | Viewed by 749
Abstract
The widespread use of plastics has caused severe environmental pollution, driving interest in biodegradable alternatives like polylactic acid (PLA). However, incomplete degradation of biodegradable plastics under natural conditions may generate micro/nanoplastics that could exacerbate ecological risks. This study investigated the combined effects of [...] Read more.
The widespread use of plastics has caused severe environmental pollution, driving interest in biodegradable alternatives like polylactic acid (PLA). However, incomplete degradation of biodegradable plastics under natural conditions may generate micro/nanoplastics that could exacerbate ecological risks. This study investigated the combined effects of UV-aged microplastics from biodegradable PLA and conventional PET, along with sulfamethoxazole (SMX), on the conjugative transfer of antibiotic resistance genes (ARGs) between bacteria. Using UV aging to simulate environmental weathering, the microplastic morphology, adsorption behavior, and interaction with SMX were characterized. The study further evaluated the bacterial viability, ROS level, membrane permeability, and the expression of conjugative transfer-related genes to elucidate the underlying mechanisms. Results showed that aged PLA released significantly more nanoplastics and exhibited higher adsorption affinity for SMX than PET. Combined exposure to aged PLA and SMX significantly enhanced ARG transfer frequency by approximately 14.5-fold compared to the control. Mechanistic studies revealed that this promotion was associated with increased intracellular ROS levels, elevated membrane permeability, and upregulation of conjugative related genes. These findings underscore that biodegradable plastics, after environmental aging, may pose greater ecological risks than conventional plastics, and highlight the importance of considering environmental aging in the risk assessment of plastics. Full article
Show Figures

Figure 1

13 pages, 8282 KB  
Article
Fabrication of Bowl Array Surface-Enhanced Raman Scattering Substrates via Ag Nanoparticle Self-Assembly on Polymer UV-Imprinted Microbowls for Enhanced Raman Detection of Microplastics
by Yihong Liu, Longchao Qi, Kaibo Guo, Xianlong Ning, Yiming Huang and Xun Lu
Polymers 2025, 17(21), 2930; https://doi.org/10.3390/polym17212930 - 31 Oct 2025
Viewed by 952
Abstract
A facile, efficient, and cost-effective strategy for fabricating a bowl array SERS (surface-enhanced Raman scattering) substrate is presented. The resulting substrate is dimensionally compatible with micrometer-sized microplastics and integrates both SERS enhancement and light-trapping effects, enabling highly sensitive detection of micrometer-sized microplastics. Initially, [...] Read more.
A facile, efficient, and cost-effective strategy for fabricating a bowl array SERS (surface-enhanced Raman scattering) substrate is presented. The resulting substrate is dimensionally compatible with micrometer-sized microplastics and integrates both SERS enhancement and light-trapping effects, enabling highly sensitive detection of micrometer-sized microplastics. Initially, a pillar array template was produced via UV lithography, followed by UV imprinting to replicate bowl arrays with a diameter of 50 μm, a depth of 25 μm, and a periodicity of 100 μm. A gold layer was subsequently deposited, followed by the modification of its surface with AgNPs to construct the SERS substrate. The experimental results reveal that the optimal enhancement was achieved at an AgNP suspension concentration of 15 mg/mL. The substrate exhibited a detection limit of 10−9 M for rhodamine 6G with an enhancement factor (EF) of 2.02 × 107 and successfully detected polyethylene (PE) microplastics of 5, 10, and 20 μm at concentrations down to 100 μg/mL, demonstrating outstanding sensing performance. Full article
(This article belongs to the Section Circular and Green Sustainable Polymer Science)
Show Figures

Graphical abstract

15 pages, 746 KB  
Article
Influence of Pristine and Photoaging Polystyrene Microspheres on Sperm Quality and DNA Integrity of the Sand Dollars Scaphechinus mirabilis
by Andrey Alexandrovich Mazur, Sergey Petrovich Kukla, Victor Pavlovich Chelomin, Valentina Vladimirovna Slobodskova and Nadezhda Vladimirovna Dovzhenko
J. Xenobiot. 2025, 15(6), 176; https://doi.org/10.3390/jox15060176 - 23 Oct 2025
Viewed by 740
Abstract
Plastic pollution represents a significant emerging environmental problem. Micro-sized particles of synthetic polymers—microplastics (MPs)—have been identified in all parts of marine ecosystems. In the marine environment, organisms are exposed to MPs, which undergo a constant process of physicochemical and biological degradation. Utilization of [...] Read more.
Plastic pollution represents a significant emerging environmental problem. Micro-sized particles of synthetic polymers—microplastics (MPs)—have been identified in all parts of marine ecosystems. In the marine environment, organisms are exposed to MPs, which undergo a constant process of physicochemical and biological degradation. Utilization of UV irradiation as the optimal exposure factor in the simulation of fundamental natural conditions is a widely accepted approach. This enables the study of the harmful effects of such particles when interacting with aquatic organisms. This study aimed to investigate the effect of pristine and photoaging primary polystyrene microspheres (µPS) at three concentrations on the viability and DNA integrity of the sperm of the sand dollars Scaphechinus mirabilis. The results of the investigation demonstrated that IR spectroscopy revealed structural changes in polystyrene, confirming the oxidative degradation of the polymer under UV irradiation. The study demonstrated that artificially aged µPS exhibited a more pronounced effect than pristine particles, as evidenced by reduced sperm viability and increased DNA damage. Thus, the resazurin test showed that after exposure to UV-irradiated µPS, sperm viability decreased to 83–85% at concentrations of 10 and 100 particles and to 70% at a concentration of 1000. In addition, the Comet assay showed that the particles increased the percentage of DNA in the tail from 20% to 30% in a dose-dependent manner. The findings substantiate and augment the existing body of experimental data of the toxicity of aged plastic fragments, thereby underscoring the need for further study into the toxicity of aged MPs on marine invertebrates. Full article
Show Figures

Graphical abstract

Back to TopTop