ijms-logo

Journal Browser

Journal Browser

Abiotic Stress in Plants: Physiological and Molecular Responses

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Plant Sciences".

Deadline for manuscript submissions: 31 January 2026 | Viewed by 88

Special Issue Editor


E-Mail Website
Guest Editor

Special Issue Information

Dear Colleagues,

As the global climate continues to change, plants are increasingly exposed to adverse environmental conditions that negatively affect their growth and development, ultimately reducing productivity. Today, plants often have to cope with extreme temperatures, water shortages, floods, environmental salinity, or UV radiation. Equally important are the detrimental effects associated with environmental pollution from heavy metals and herbicides. When exposed to abiotic stress factors, plants activate a number of physiological and molecular responses that enable them to survive under these harsh conditions.

This Special Issue aims to bring together the latest advances in understanding plant responses to abiotic stress factors that have emerged from the implementation of a wide range of approaches, from whole-plant physiological studies to molecular approaches dealing with stress perception mechanisms, stress-triggered signaling pathways, and downstream transcriptomic and metabolomic responses. All types of articles, such as original research, opinion pieces, and reviews, are welcome.

Dr. Edyta Zdunek-Zastocka
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • cold
  • drought
  • gene expression
  • heat
  • heavy metals
  • oxidative stress
  • salinity
  • stress tolerance
  • stress perception
  • stress signaling

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 6554 KB  
Article
MfWRKY40 Positively Regulates Drought Tolerance in Arabidopsis thaliana by Scavenging Reactive Oxygen Species
by Xueli Zhang, Wei Duan, Yuxiang Wang, Zhihu Jiang and Qian Li
Int. J. Mol. Sci. 2025, 26(17), 8495; https://doi.org/10.3390/ijms26178495 (registering DOI) - 1 Sep 2025
Abstract
Drought stress is a major abiotic constraint that severely restricts the growth of Medicago falcata L. by inducing the accumulation of reactive oxygen species (ROS) in plants. WRKY transcription factors (TFs) play a key role in regulating plant responses to drought stress. In [...] Read more.
Drought stress is a major abiotic constraint that severely restricts the growth of Medicago falcata L. by inducing the accumulation of reactive oxygen species (ROS) in plants. WRKY transcription factors (TFs) play a key role in regulating plant responses to drought stress. In this study, we investigated the role of the MfWRKY40 gene in drought tolerance. Under mannitol and ABA stress treatments, MfWRKY40-overexpressing lines (OEs) showed significantly longer primary roots, increased lateral roots, and higher fresh weight compared to wild-type (Col) lines, indicating significantly enhanced growth and drought tolerance. Similarly, under soil drought conditions, transgenic Arabidopsis thaliana exhibited enhanced drought tolerance. NBT staining demonstrated decreased ROS accumulation in transgenic lines after stress treatment. Correspondingly, the MfWRKY40-overexpressing lines displayed significantly lower levels of hydrogen peroxide (H2O2), superoxide anion (O2), and malondialdehyde (MDA) compared to Col, along with elevated activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), as well as increased proline (Pro) content. Furthermore, MfWRKY40 upregulated the expression of antioxidant enzyme genes (AtPOD3, AtSOD4, and AtCAT1) and modulated the expression of other drought-related genes. In summary, our results demonstrate that MfWRKY40 enhances drought tolerance in A. thaliana by improving ROS scavenging capacity. This study provides a theoretical foundation for further exploration of MfWRKY40’s functional mechanisms in drought stress adaptation. Full article
(This article belongs to the Special Issue Abiotic Stress in Plants: Physiological and Molecular Responses)
Show Figures

Figure 1

Back to TopTop