Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (183)

Search Parameters:
Keywords = advanced purification systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
54 pages, 4870 KB  
Review
Catalyst, Reactor, and Purification Technology in Methanol Steam Reforming for Hydrogen Production: A Review
by Ruochen Wang, Te Ma, Renkai Ding, Wei Liu and Dong Sun
Catalysts 2025, 15(9), 802; https://doi.org/10.3390/catal15090802 - 23 Aug 2025
Viewed by 53
Abstract
Methanol steam reforming (MSR) represents a highly promising pathway for sustainable hydrogen production due to its favorable hydrogen-to-carbon ratio and relatively low operating temperatures. The performance of the MSR process is strongly dependent on the selection and rational design of catalysts, which govern [...] Read more.
Methanol steam reforming (MSR) represents a highly promising pathway for sustainable hydrogen production due to its favorable hydrogen-to-carbon ratio and relatively low operating temperatures. The performance of the MSR process is strongly dependent on the selection and rational design of catalysts, which govern methanol conversion, hydrogen selectivity, and the suppression of undesired side reactions such as carbon monoxide formation. Moreover, advancements in reactor configuration and thermal management strategies play a vital role in minimizing heat loss and enhancing heat and mass transfer efficiency. Effective carbon monoxide removal technologies are indispensable for obtaining high-purity hydrogen, particularly for applications sensitive to CO contamination. This review systematically summarizes recent progress in catalyst development, reactor design, and gas purification technologies for MSR. In addition, the key technical challenges and potential future directions of the MSR process are critically discussed. The insights provided herein are expected to contribute to the development of more efficient, stable, and scalable MSR-based hydrogen production systems. Full article
25 pages, 4412 KB  
Review
MXenes: Manufacturing, Properties, and Tribological Insights
by Subin Antony Jose, Alessandro M. Ralls, Ashish K. Kasar, Alexander Antonitsch, Daniel Cerrillo Neri, Jaybon Image, Kevin Meyer, Grace Zhang and Pradeep L. Menezes
Materials 2025, 18(17), 3927; https://doi.org/10.3390/ma18173927 - 22 Aug 2025
Viewed by 107
Abstract
MXenes, a novel class of two-dimensional (2D) transition metal carbides and nitrides, have garnered significant attention due to their exceptional thermal conductivity, electrical properties, and mechanical strength. This review offers a comprehensive overview of MXenes, focusing on their synthesis methods, material properties, tribological [...] Read more.
MXenes, a novel class of two-dimensional (2D) transition metal carbides and nitrides, have garnered significant attention due to their exceptional thermal conductivity, electrical properties, and mechanical strength. This review offers a comprehensive overview of MXenes, focusing on their synthesis methods, material properties, tribological performance, and potential challenges and opportunities. Typically synthesized through the selective etching of layered precursors, MXenes offer highly tunable structures, allowing for precise tailoring for specific functionalities. Their outstanding properties, such as high electrical conductivity, chemical versatility, mechanical durability, and intrinsic lubricity, make them promising candidates for various applications, including energy storage, electromagnetic shielding, water purification, biosensing, biomedicine, and advanced tribological systems. While many of these applications are briefly acknowledged, this review primarily emphasizes MXenes’ potential in tribological applications, where recent studies have highlighted their promise as solid lubricants and tribological additives due to their low shear strength, layered structure, and ability to form protective tribofilms under sliding contact. However, challenges such as oxidation resistance, long-term stability, and performance under extreme environments continue to impede their full potential. With less than a decade of focused research, the field is still evolving, but MXenes hold tremendous promise for revolutionizing modern material science, especially in next-generation lubrication and wear-resistant systems. This review explores both the opportunities and challenges associated with MXenes, emphasizing their emerging role in tribology alongside their broader engineering applications. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

23 pages, 3380 KB  
Article
Environmental Performance of the Sewage Sludge Gasification Process Considering the Recovered CO2
by Daichi Terasawa, Mayu Hamazaki, Kanato Kumagai and Kiyoshi Dowaki
Energies 2025, 18(17), 4460; https://doi.org/10.3390/en18174460 - 22 Aug 2025
Viewed by 354
Abstract
An advanced gasification module (AGM) for green hydrogen production involves a small-scale biomass gasification process owing to the low energy density of biomass. Therefore, significant heat loss and the endothermic nature of gasification system require additional fossil fuel heat, increasing CO2 emissions. [...] Read more.
An advanced gasification module (AGM) for green hydrogen production involves a small-scale biomass gasification process owing to the low energy density of biomass. Therefore, significant heat loss and the endothermic nature of gasification system require additional fossil fuel heat, increasing CO2 emissions. This study focuses on bioenergy conversion with carbon capture and utilization (BECCU), where carbon-neutral CO2 from biomass gasification is captured and reused as a gasifying agent to reduce the greenhouse gas intensity of green hydrogen. BECCU is expected to achieve negative emissions and enhance gasification efficiency by promoting conversion of char and tar through CO2 gasification. To evaluate the effectiveness of BECCU in the AGM, we conducted a sensitivity analysis of the reformer temperature and S/C ratio using process simulation combined with life cycle assessment. In both sensitivity analyses, the GWP for CO2 capture was lower compared with conventional conditions, considering recovered CO2 from purification and the additional steam generated through heat recovery. This suggests improved hydrogen yields from enhanced char and tar conversion. Consequently, the GWP was reduced by more than 50%, demonstrating BECCU’s effectiveness in the AGM. This represents a step toward operating biomass gasification systems with lower environmental impact and contributing to sustainable energy production. Full article
Show Figures

Figure 1

28 pages, 814 KB  
Review
Functional Carbon-Based Materials for Blood Purification: Recent Advances Toward Improved Treatment of Renal Failure and Patient Quality of Life
by Abolfazl Mozaffari, Farbod Alimohammadi and Mazeyar Parvinzadeh Gashti
Bioengineering 2025, 12(8), 893; https://doi.org/10.3390/bioengineering12080893 - 21 Aug 2025
Viewed by 232
Abstract
The accumulation of blood toxins, including urea, uric acid, creatinine, bilirubin, p-cresyl sulfate, and indoxyl sulfate, poses severe health risks for patients with renal failure. Effective removal strategies are essential to mitigate complications associated with chronic kidney disease (CKD) and improve patient outcomes. [...] Read more.
The accumulation of blood toxins, including urea, uric acid, creatinine, bilirubin, p-cresyl sulfate, and indoxyl sulfate, poses severe health risks for patients with renal failure. Effective removal strategies are essential to mitigate complications associated with chronic kidney disease (CKD) and improve patient outcomes. Functional carbon-based materials, such as activated carbon (activated charcoal) and graphene oxide, have emerged as promising adsorbents due to their large surface area, adjustable porosity, and biocompatibility. This review comprehensively explores the latest advancements in carbon-based materials for blood purification across three key therapeutic modalities: (1) Hemoperfusion, where activated and modified carbonaceous materials enhance the adsorption of small-molecule and protein-bound toxins; (2) Hemodialysis, where functionalized carbon materials improve clearance rates and reduce treatment duration; and (3) Oral Therapeutics, where orally administered carbon adsorbents show potential in lowering systemic toxin levels in CKD patients. Furthermore, we present a comparative analysis of these approaches, highlighting their advantages, limitations, and future research directions for optimizing carbon-based detoxification strategies. The findings discussed in this review emphasize the significance of material engineering in advancing blood purification technologies. By enhancing the efficiency of toxin removal, carbon-based materials have the potential to revolutionize renal failure treatment, offering improved clinical outcomes and enhanced patient quality of life. Full article
Show Figures

Figure 1

31 pages, 1950 KB  
Review
Evaluation of Polypyrrole as a Functional Sorbent for Water Treatment Technologies
by Sylwia Golba and Justyna Jurek-Suliga
Appl. Sci. 2025, 15(16), 9153; https://doi.org/10.3390/app15169153 - 20 Aug 2025
Viewed by 122
Abstract
Polypyrrole, which belongs to the conducting polymer family, has demonstrated profound potential in advanced water purification applications due to its inherent electrical conductivity, environmental stability, and tunable surface chemistry. As a sorbent, PPy exhibits high sorption capacity for aquatic contaminants, including heavy metals, [...] Read more.
Polypyrrole, which belongs to the conducting polymer family, has demonstrated profound potential in advanced water purification applications due to its inherent electrical conductivity, environmental stability, and tunable surface chemistry. As a sorbent, PPy exhibits high sorption capacity for aquatic contaminants, including heavy metals, pharmaceutical compounds, and their metabolites, as well as synthetic dyes. The removal efficiency is correlated to a complex interaction mechanism involving electrostatic attractions, redox activity, and π–π stacking. Recent advances have expanded the utility by further developing nanostructured PPy-based (nano)composites, which elevate sorption performance by increasing surface area, mechanical integrity, and selective affinity. In addition, its integration into membrane technologies has enabled the design of an effective filtration system with improved selectivity and regeneration capabilities. Moreover, PPy is effective in electrochemical processes of water treatment, including capacitive deionization and electrochemically assisted sorption, opening novel paths towards energy-efficient pollutant removal. The multifunctionality of PPy as a sorbent material highlights its value as an important material for water treatment, with the capability of extended modification tailored for emerging environmental needs revised in this work. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

21 pages, 3739 KB  
Article
Occurrence State and Extraction of Lithium from Jinyinshan Clay-Type Lithium Deposit, Southern Hubei: Novel Blank Roasting–Acid Leaching Processes
by Hao Zhang, Peng Li, Wensheng Zhang, Jiankang Li, Zhenyu Chen, Jin Yin, Yong Fang, Shuang Liu, Jian Kang and Dan Zhu
Appl. Sci. 2025, 15(16), 9100; https://doi.org/10.3390/app15169100 - 18 Aug 2025
Viewed by 285
Abstract
Addressing the technological bottlenecks in the efficient utilization of clay-type Li deposits in China, this study systematically investigates Li occurrence states and develops clean extraction processes using the Jinyinshan clay-type Li deposit in southern Hubei as a case study. The research aims to [...] Read more.
Addressing the technological bottlenecks in the efficient utilization of clay-type Li deposits in China, this study systematically investigates Li occurrence states and develops clean extraction processes using the Jinyinshan clay-type Li deposit in southern Hubei as a case study. The research aims to provide technical guidance for subsequent geological exploration and development of such deposits. Analytical techniques, including AMICS, EPMA, and LA-ICP-MS, reveal that Li primarily occurs in structurally bound forms within cookeite (82.55% of total Li), illite (6.65%), and rectorite (5.20%), with mineral particle sizes concentrated in fine-grained fractions (<45 μm). Leveraging process mineralogical insights, two industrially adaptable blank roasting–acid leaching processes were innovatively developed. Process I employs a full flow of blank roasting–hydrochloric acid leaching–Li-Al separation–Ca/Mg removal–concentration for Li precipitation–three-stage counter-current washing. Optimizing roasting temperature (600 °C), hydrochloric acid concentration (18 wt%), and leaching parameters achieved a 92.37% Li leaching rate. Multi-step purification yielded lithium carbonate with >99% Li2CO3 purity and an overall Li recovery of 73.89%. Process II follows blank roasting–sulfuric acid leaching–Al removal via alum precipitation–Al/Fe removal–freeze crystallization for sodium sulfate removal–Ca/Mg removal–concentration for Li precipitation–three-stage counter-current washing. Parameter optimization and freezing impurity removal achieved an 89.11% Li leaching rate, producing lithium carbonate with >98.85% Li2CO3 content alongside by-products like crude sodium chloride and ammonium alum. Both processes enable resource utilization of Al-rich residues, with the hydrochloric acid-based method excelling in stability and the sulfuric acid-based approach offering superior by-product valorization potential. This low-energy, high-yield clean extraction system provides critical theoretical and technical foundations for scaling clay-type Li deposit utilization, advancing green Li extraction and industrial chain development. Full article
(This article belongs to the Special Issue Recent Advances in Geochemistry)
Show Figures

Figure 1

15 pages, 1784 KB  
Review
Advanced Technologies for Wastewater Treatment: Graphene-Based Catalysts
by Justine Elgoyhen and Radmila Tomovska
Molecules 2025, 30(16), 3405; https://doi.org/10.3390/molecules30163405 - 18 Aug 2025
Viewed by 310
Abstract
This short review provides a focused overview of recent advances in catalytic systems for water purification, with particular attention to photocatalysis, Fenton-like processes, and biocatalysis. While not intended as a comprehensive survey, this review is grounded primarily in recent work from our research [...] Read more.
This short review provides a focused overview of recent advances in catalytic systems for water purification, with particular attention to photocatalysis, Fenton-like processes, and biocatalysis. While not intended as a comprehensive survey, this review is grounded primarily in recent work from our research group, supported by comparisons with relevant studies from the broader literature. Emphasis is placed on the role of graphene-based materials, particularly aerogels, hydrogels, and xerogels, as functional platforms for catalytic nanoparticles inclusion and enzyme immobilization. This review aims to highlight key insights, practical limitations, and emerging strategies to improve catalyst reusability, stability, and scalability for real-world water treatment applications. Full article
Show Figures

Graphical abstract

25 pages, 1207 KB  
Review
Critical Assessment of Migration Strategies for Corrosion in Molten Salts
by M. Carmen Pavón-Moreno, Antonio Lopez-Paneque, Jose María Gallardo, Antonio Paul, Eduardo Díaz-Gutierrez and Cristina Prieto
Materials 2025, 18(16), 3804; https://doi.org/10.3390/ma18163804 - 13 Aug 2025
Viewed by 288
Abstract
This review article examines the corrosion phenomena and mitigation strategies associated with molten salts used in thermal energy storage (TES) and heat transfer applications. Corrosion presents a critical challenge in concentrated solar power (CSP) plants and other high-temperature systems, affecting the durability and [...] Read more.
This review article examines the corrosion phenomena and mitigation strategies associated with molten salts used in thermal energy storage (TES) and heat transfer applications. Corrosion presents a critical challenge in concentrated solar power (CSP) plants and other high-temperature systems, affecting the durability and cost-efficiency of materials in storage tanks, heat exchangers, and piping. This study offers a comprehensive comparison of corrosion test methods and results, analyzing factors such as operating conditions, salt compositions, and material properties. Emphasis is also placed on strategies such as molten salt purification, the addition of corrosion inhibitors, and the application of protective coatings. This review aims to advance research and development in the TES sector by highlighting knowledge gaps and proposing directions for future experimentation. Full article
(This article belongs to the Section Corrosion)
Show Figures

Figure 1

16 pages, 2603 KB  
Article
Preparation of Uniform-Pore Ceramics from Highly Stable Emulsions via the Sol–Gel Method
by Alena Fedoročková, Dana Ivánová, Gabriel Sučik and Martina Kubovčíková
Gels 2025, 11(8), 638; https://doi.org/10.3390/gels11080638 - 12 Aug 2025
Viewed by 269
Abstract
A facile and cost-effective sol–gel method for the synthesis of uniformly porous alumina (Al2O3) was developed using stable CTAB/hexanol/water microemulsions as soft templates. The phase behavior of the ternary system was investigated to identify compositions that form kinetically stable [...] Read more.
A facile and cost-effective sol–gel method for the synthesis of uniformly porous alumina (Al2O3) was developed using stable CTAB/hexanol/water microemulsions as soft templates. The phase behavior of the ternary system was investigated to identify compositions that form kinetically stable microemulsions, with an optimal ratio of 7.5 wt.% CTAB, 5 wt.% hexanol, and 87.5 wt.% water exhibiting minimal droplet size variation over one week. Gelation was induced by partial neutralization to pH 4.2 with ammonium carbonate, promoting the formation of polynuclear Al species and enabling the uniform entrapment of hexanol droplets. Lyophilization preserved the porous network, and calcination at 500 °C yielded η-Al2O3 with a large specific surface area (~225 m2·g−1) and a narrow mesopore size distribution centered around 100 nm, consistent with the original droplet size. Mercury porosimetry and SEM analyses confirmed a highly porous, low-density material (0.75 g·cm−3) with an interconnected pore morphology. This scalable synthesis method, supported by the high kinetic stability of the microemulsion, provides sufficient processing time and eliminates the need for post-synthesis purification. It shows strong potential for producing advanced alumina materials for use in energy storage, catalysis, and sensor applications. Full article
(This article belongs to the Special Issue Gel Formation Processes and Materials for Functional Thin Films)
Show Figures

Figure 1

45 pages, 4647 KB  
Systematic Review
A Systematic Review of Biopolymer Phase Change Materials for Thermal Energy Storage: Challenges, Opportunities, and Future Direction
by Nadia Parwaty Wijanarko, Sindu Daniarta and Piotr Kolasiński
Energies 2025, 18(16), 4262; https://doi.org/10.3390/en18164262 - 11 Aug 2025
Viewed by 565
Abstract
This article systematically reviews biopolymer phase change materials (PCMs) for TES applications. The review was conducted based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines using databases from Scopus, Web of Science, and Google Scholar. The biopolymer PCMs are categorized [...] Read more.
This article systematically reviews biopolymer phase change materials (PCMs) for TES applications. The review was conducted based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines using databases from Scopus, Web of Science, and Google Scholar. The biopolymer PCMs are categorized as natural, synthetic, and hybrid (a combination of natural and synthetic). A total of 82 articles were included in the analysis. Several thermal properties, mechanical properties, advancements, and challenges are discussed. This article aims to review biopolymer PCMs and identify research gaps for future development. Natural biopolymer PCMs include lipid, lignin, polysaccharides, proteins, etc. Synthetic biopolymer PCMs include supramolecular, polyethylene glycol, polyurethane, polyrotaxane, polylactic acid, etc. Hybrid biopolymer PCMs combine natural and synthetic polymers with conductive fillers, balancing high latent heat with improved thermal stability and durability, although issues, like leakage and low conductivity, persist. It is found that biopolymers can be used as the core and supporting matrix of PCMs. Several cases and configurations of core, supporting matrix, and fillers in the development of PCM from biopolymers are discussed. This article also demonstrates that several natural, synthetic, and hybrid biopolymer PCMs hold promise for demanding TES applications due to their tunable properties and reliability. Biopolymer PCMs offer a sustainable alternative to petroleum-derived substances by minimizing environmental harm, cutting carbon emissions, and promoting a circular economy. This review also highlights several challenges, such as feedstock selection, purification and encapsulation, system compatibility, and standardization, that future research might address to enable scalable, safe, and cost-effective biopolymer PCM solutions. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

14 pages, 2427 KB  
Article
Enhanced Tangential Flow Filtration of Precipitated Proteins Using Screened Membrane Cassettes
by Zachary Badinger, Ali Behboudi and Andrew L. Zydney
Membranes 2025, 15(8), 245; https://doi.org/10.3390/membranes15080245 - 11 Aug 2025
Viewed by 729
Abstract
Background: Recent advances in cell culture have led to significant increases in monoclonal antibody (mAb) titers, opening a new window of opportunity for developing a fully continuous downstream purification process based on the selective precipitation of the mAb from harvested cell culture fluid, [...] Read more.
Background: Recent advances in cell culture have led to significant increases in monoclonal antibody (mAb) titers, opening a new window of opportunity for developing a fully continuous downstream purification process based on the selective precipitation of the mAb from harvested cell culture fluid, with the precipitate dewatered and washed using single-pass tangential flow filtration (SPTFF) with microfiltration membranes. Methods: Experiments were performed with precipitates of human serum immunoglobulin G formed using ZnCl2 and polyethylene glycol, both with and without added disodium malonate. SPTFF was conducted in both hollow fiber and screened cassette modules, with the critical flux identified using flux-stepping experiments. Results: Critical fluxes as high as 250 L/m2/h were obtained in the screened cassette, significantly higher than what was possible in hollow fiber modules. A two-stage system was designed that provided up to 85% conversion in a single pass. This system could be operated continuously for 24 h with 80% conversion at a filtrate flux of 144 L/m2/h without any significant fouling. Conclusions: The results demonstrate the potential of using screened membrane cassettes for the continuous/intensified processing of precipitated proteins like monoclonal antibodies. Full article
(This article belongs to the Section Membrane Applications for Other Areas)
Show Figures

Figure 1

19 pages, 1567 KB  
Review
Design Efficiency: A Critical Perspective on Testing Methods for Solar-Driven Photothermal Evaporation and Photocatalysis
by Hady Hamza, Maria Vittoria Diamanti, Vanni Lughi, Sergio Rossi and Daniela Meroni
Nanomaterials 2025, 15(14), 1121; https://doi.org/10.3390/nano15141121 - 18 Jul 2025
Viewed by 459
Abstract
Water scarcity is a growing global challenge, intensified by climate change, seawater intrusion, and pollution. While conventional desalination methods are energy-intensive, solar-driven interfacial evaporators offer a promising low-energy solution by leveraging solar energy for water evaporation, with the resulting steam condensed into purified [...] Read more.
Water scarcity is a growing global challenge, intensified by climate change, seawater intrusion, and pollution. While conventional desalination methods are energy-intensive, solar-driven interfacial evaporators offer a promising low-energy solution by leveraging solar energy for water evaporation, with the resulting steam condensed into purified water. Despite advancements, challenges persist, particularly in addressing volatile contaminants and biofouling, which can compromise long-term performance. The integration of photocatalysts into solar-driven interfacial evaporators has been proposed as a solution, enabling pollutant degradation and microbial inactivation while enhancing water transport and self-cleaning properties. This review critically assesses testing methodologies for solar-driven interfacial evaporators incorporating both photothermal and photocatalytic functions. While previous studies have examined materials and system design, the added complexity of photocatalysis necessitates new testing approaches. First, solar still setups are analyzed, particularly concentrating on the selection of materials and geometry for the transparent cover and water-collecting surfaces. Then, performance evaluation tests are discussed, with focus on the types of tested pollutants and analytical techniques. Finally, key challenges are presented, providing insights for future advancements in sustainable water purification. Full article
(This article belongs to the Special Issue Degradation of Pollutants by Nanostructured Photocatalysts)
Show Figures

Graphical abstract

15 pages, 1006 KB  
Review
Multifunctional Applications of Biofloc Technology (BFT) in Sustainable Aquaculture: A Review
by Changwei Li and Limin Dai
Fishes 2025, 10(7), 353; https://doi.org/10.3390/fishes10070353 - 17 Jul 2025
Viewed by 606
Abstract
Biofloc technology (BFT), traditionally centered on feed supplementation and water purification in aquaculture, harbors untapped multifunctional potential as a sustainable resource management platform. This review systematically explores beyond conventional applications. BFT leverages microbial consortia to drive resource recovery, yielding bioactive compounds with antibacterial/antioxidant [...] Read more.
Biofloc technology (BFT), traditionally centered on feed supplementation and water purification in aquaculture, harbors untapped multifunctional potential as a sustainable resource management platform. This review systematically explores beyond conventional applications. BFT leverages microbial consortia to drive resource recovery, yielding bioactive compounds with antibacterial/antioxidant properties, microbial proteins for efficient feed production, and algae biomass for nutrient recycling and bioenergy. In environmental remediation, its porous microbial aggregates remove microplastics and heavy metals through integrated physical, chemical, and biological mechanisms, addressing critical aquatic pollution challenges. Agri-aquatic integration systems create symbiotic loops where nutrient-rich aquaculture effluents fertilize plant cultures, while plants act as natural filters to stabilize water quality, reducing freshwater dependence and enhancing resource efficiency. Emerging applications, including pigment extraction for ornamental fish and the anaerobic fermentation of biofloc waste into organic amendments, further demonstrate its alignment with circular economy principles. While technical advancements highlight its capacity to balance productivity and ecological stewardship, challenges in large-scale optimization, long-term system stability, and economic viability necessitate interdisciplinary research. By shifting focus to its underexplored functionalities, this review positions BFT as a transformative technology capable of addressing interconnected global challenges in food security, pollution mitigation, and sustainable resource use, offering a scalable framework for the future of aquaculture and beyond. Full article
(This article belongs to the Section Sustainable Aquaculture)
Show Figures

Graphical abstract

27 pages, 2217 KB  
Review
From Detection to Solution: A Review of Machine Learning in PM2.5 Sensing and Sustainable Green Mitigation Approaches (2021–2025)
by Arpita Adhikari and Chaudhery Mustansar Hussain
Processes 2025, 13(7), 2207; https://doi.org/10.3390/pr13072207 - 10 Jul 2025
Viewed by 1027
Abstract
Particulate matter 2.5 (PM2.5) pollution poses severe threats to public health, ecosystems, and urban sustainability. With increasing industrialization and urban sprawl, accurate pollutant monitoring and effective mitigation of PM2.5 have become global priorities. Recent advancements in machine learning (ML) have [...] Read more.
Particulate matter 2.5 (PM2.5) pollution poses severe threats to public health, ecosystems, and urban sustainability. With increasing industrialization and urban sprawl, accurate pollutant monitoring and effective mitigation of PM2.5 have become global priorities. Recent advancements in machine learning (ML) have revolutionized PM2.5 sensing by enabling high-accuracy predictions, and scalable solutions through data-driven approaches. Meanwhile, sustainable green technologies—such as urban greening, phytoremediation, and smart air purification systems—offer eco-friendly, long-term strategies to reduce PM2.5 levels. This review, covering research publications from 2021 to 2025, systematically explores the integration of ML models with conventional sensor networks to enhance pollution forecasting, pollutant source attribution, and intelligent pollutant monitoring. The paper also highlights the convergence of ML and green technologies, including nature-based solutions and AI-driven environmental planning, to support comprehensive air quality management. In addition, the study critically examines integrated policy frameworks and lifecycle-based assessments that enable equitable, sector-specific mitigation strategies across industrial, transportation, energy, and urban planning domains. By bridging the gap between cutting-edge technology and sustainable practices, this study provides a comprehensive roadmap for researchers to combat PM2.5 pollution. Full article
(This article belongs to the Special Issue Environmental Protection and Remediation Processes)
Show Figures

Figure 1

43 pages, 5558 KB  
Review
A Comprehensive Review of Permeate Gap Membrane Distillation: Modelling, Experiments, Applications
by Eliza Rupakheti, Ravi Koirala, Sara Vahaji, Shruti Nirantar and Abhijit Date
Sustainability 2025, 17(14), 6294; https://doi.org/10.3390/su17146294 - 9 Jul 2025
Viewed by 678
Abstract
Permeate Gap Membrane Distillation (PGMD) is an emerging desalination technology that offers a promising alternative for freshwater production, particularly in energy-efficient and sustainable applications. This review provides a comprehensive analysis of PGMD, covering its fundamental principles, heat and mass transfer mechanisms, and key [...] Read more.
Permeate Gap Membrane Distillation (PGMD) is an emerging desalination technology that offers a promising alternative for freshwater production, particularly in energy-efficient and sustainable applications. This review provides a comprehensive analysis of PGMD, covering its fundamental principles, heat and mass transfer mechanisms, and key challenges such as temperature and concentration polarization. Various optimisation strategies, including Response Surface Morphology (RSM), Differential Evolution techniques, and Computational Fluid Dynamics (CFD) modelling, are explored to enhance PGMD performance. The study further discusses the latest advancements in system design, highlighting optimal configurations and the integration of PGMD with renewable energy sources. Factors influencing PGMD performance, such as operational parameters (flow rates, temperature, and feed concentration) and physical parameters (gap width, membrane properties, and cooling plate conductivity), are systematically analysed. Additionally, the techno-economic feasibility of PGMD for large-scale freshwater production is evaluated, with a focus on cost reduction strategies, energy efficiency, and hybrid system innovations. Finally, this review outlines the current limitations and future research directions for PGMD, emphasising novel system modifications, improved heat recovery techniques, and potential industrial applications. By consolidating recent advancements and identifying key challenges, this paper aims to guide future research and facilitate the broader adoption of PGMD in sustainable desalination and water purification processes. Full article
Show Figures

Figure 1

Back to TopTop